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Introduction

• Multiplication of constants by a variable is a ubiquitous operation
• digital signal processing [1] and cryptography [2]

• Constant multiplications can be realized without multipliers
• adders, subtractors, and shift operations under the shift-adds architecture

• In cryptography, constants can be very large
• Elliptic Curve Cryptography (ECC): 204-521

• Singular Isogeny Key Encapsulation (SIKE): 448-768

• The Very Large Constant Multiplication (VLCM) problem
• find a minimum number of adders/subtractors which realize the multiplication of 

given very large constants by a variable

[1] H. Nguyen and A. Chatterjee, “Number-Splitting with Shift-and-Add Decomposition for Power and Hardware Optimization in Linear DSP Synthesis,” IEEE TVLSI, 8(4), 419–424, 2000.
[2] D. B. Roy and D. Mukhopadhyay, “High-Speed Implementation of ECC Scalar Multiplication in GF(p) for Generic Montgomery Curves,” IEEE TVLSI, 27(7), 1587–1600, 2019. 3



Background

= (110011)binx
= (110111)binx

[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.
[4] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Multiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.
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Digit-based Recoding [3] GB Algorithm [4] 
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= x<<5 + x<<4 + x<<1 + x
= x<<5 + x<<4 + x<<2 + x<<1 + x
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Carry Save Adder (CSA)

Ripple Carry Adder (RCA)



Background

= (110011)binx = x<<5 + x<<4 + x<<1 + x
= (110111)binx = x<<5 + x<<4 + x<<2 + x<<1 + x

Digit-based Recoding [3] GB Algorithm [4] 

[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.
[4] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Multiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.
[5] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing High Speed Arithmetic Circuits using Three-Term Extraction,” in DATE, 2006, pp. 1–6.
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Digit-based Recoding [3] CSE Algorithm [5]
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Constant Time Montgomery Multiplication [2] Montgomery Multiplier Architecture [2]

Background
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Contributions

• The CAD tool LEIGER that implements multiplierless high-speed VLCM operation
• shift-adds architecture using CSAs (SA-CSA)

• shift-adds architecture using 2- and 3-input adders (SA-Hybrid)

• design architecture using compressor trees (CT)

• Implementation of the Montgomery multiplication using LEIGER
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LEIGER – SA-CSA

Partition the large constants into p-bit coefficients
Define each large constant as a linear equation

Realize p-bit coefficients using 3-input adders

Extract three-term common subexpressions in the linear equations
Realize the final linear equations using 3-input adders

VLCM Design

lc1, lc2, …, lcn px
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LEIGER – SA-CSA – Partitioning

lc1 = 4E 13 15 33 lc2 = 9C 151366

Partitioning when p is 8

Large constants

lc1 = 1,309,873,459 = 0x4E131533 lc2 = 2,623,935,253 = 0x9C661315

Linear equations

lc1 = S&C78<<24 + S&C19<<16 + S&C21<<8 + S&C51

lc2 = S&C156<<24 + S&C102<<16 + S&C19<<8 + S&C21 

Coefficients

0x33 = 51 0x15 = 21 0x13 = 19 0x66 = 102

C = {51, 21, 19, 78, 102, 156}

0x4E = 78 0x9C = 156
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LEIGER – SA-CSA – Realization of Coefficients

C = {51, 21, 19, 78, 102, 156}

Coefficients

Subexpressions

s&c19 = 1<<4 + 1<<1 + 1

s&c21 = 1<<4 + 1<<2 + 1

s&c39 = s&c19<<1 + 1

s&c51 = s&c19 + 1<<5

Realization of coefficients

S&C51 = s&c51 S&C19 = s&c19S&C21 = s&c21

S&C78 = s&c39<<1 S&C156 = s&c39<<2S&C102 = s&c51<<1
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LEIGER – SA-CSA – Realization of Linear Equations

Common subexpressions

S&Cexp0 = S&C19<<8 + S&C21

Final linear equations

lc1 = S&C78<<24 + S&Cexp0<<8 + S&C51

lc2 = S&C156<<24 + S&C102<<16 + S&Cexp0

Realization of final linear equations

S&Cexp1 = S&Cexp0<<8 + S&C51
S&Clc1 = S&C78<<24 + S&Cexp1

Linear equations

lc1 = S&C78<<24 + S&C19<<16 + S&C21<<8 + S&C51

lc2 = S&C156<<24 + S&C102<<16 + S&C19<<8 + S&C21 

S&Cexp2 = S&C102<<16  + S&Cexp0

S&Clc2 = S&C156<<24 + S&Cexp2
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LEIGER – SA-Hybrid

Partition the large constants into p-bit coefficients
Define each large constant as a linear equation

Realize p-bit coefficients using 2-input adders

Extract two-term common subexpressions in the linear equations
Realize the final linear equations using 3-input adders

lc1, lc2, …, lcn p

VLCM Design

x
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STAGE 1

STAGE 3

STAGE 2



LEIGER – SA-Hybrid – Partitioning

lc1 = 4E 13 15 33 lc2 = 9C 151366

Partitioning when p is 8

Large constants

lc1 = 1,309,873,459 = 0x4E131533 lc2 = 2,623,935,253 = 0x9C661315

Linear equations

lc1 = S78<<24 + S19<<16 + S21<<8 + S51

lc2 = S156<<24 + S102<<16 + S19<<8 + S21 

Coefficients

0x33 = 51 0x15 = 21 0x13 = 19 0x66 = 102

C = {51, 21, 19, 78, 102, 156}

0x4E = 78 0x9C = 156
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LEIGER – SA-Hybrid – Realization of Coefficients

C = {51, 21, 19, 78, 102, 156}

Coefficients

Realization of coefficients

S51 = s51 S19 = s19S21 = s21

S78 = s39<<1 S156 = s39<<2S102 = s51<<1

Subexpressions

s3 = 1<<1 + 1

s19 = 1<<4 + s3

s21 = s3<<3 – s3

s39 = s19<<1 + 1

s51 = s3<<4 + s3
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LEIGER – SA-Hybrid – Realization of Linear Equations

Common subexpressions

exp0 = S19<<8 + S21

Final linear equations

lc1 = S78<<24 + exp0<<8 + S51

lc2 = S156<<24 + S102<<16 + exp0

Linear equations

lc1 = S78<<24 + S19<<16 + S21<<8 + S51

lc2 = S156<<24 + S102<<16 + S19<<8 + S21 

Realization of final linear equations

S&Clc1 = S78<<24 + exp0<<8 + S51

S&Clc2 = S156<<24 + S102<<16 + exp0
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LEIGER – CT

Partition the input variable x into r-bits

Generate multiples of large constants between 0 and 2r-1

Use MUXes to select the multiples of large constants based on the 
partition of x and add them using compressor trees

VLCM Design

lc1, lc2, …, lcn rx
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STAGE 1

STAGE 3

STAGE 2



LEIGER 
SA-CSA – p=8

Architecture #2-input Adders #3-input Adders #4x1 MUXes

SA-CSA 0 14 0

SA-Hybrid 6 2 0

CT 0 4 8

Hardware Complexity

18

CT – r=2 

SA-Hybrid – p=8



Experimental Results

• LEIGER was applied to well-known cryptographic prime numbers [6]
• bit-width of primes ranges between 204 and 384
• corresponding VLCM operations and Montgomery multiplications were designed

• TÕLL [7] was also applied to realize these operations and Montgomery multiplications 
under the shift-adds architecture with 2-input operations (SA-2IO)

• Logic synthesis was performed by Cadence Genus using a commercial 65 nm cell library

[6] D. J. Bernstein and T. Lange. SafeCurves: Choosing Safe Curves for ECC. [Online]. Available: https://safecurves.cr.yp.to
[7] L. Aksoy, D. B. Roy, M. Imran, P. Karl and S. Pagliarini, “Multiplierless Design of Very Large Constant Multiplications in Cryptography, ” IEEE TCAS II, vol. 69, no. 11, pp. 4503-4507, 2022. 19
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Experimental Results – VLCM Operation

Impact of p and r on area of the VLCM operation

anomalous - iw=16
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Experimental Results – VLCM Operation

Impact of design architectures on area of the VLCM operation

iw=16 iw=32 iw=64
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Experimental Results – VLCM Operation

Architecture

iw=16 iw=32 iw=64

Area 
(m2)

Delay
(ps) 

ADP 
(m2*ps*106)

Power
(W)

Area 
(m2)

Delay
(ps) 

ADP 
(m2*ps*106)

Power
(W)

Area 
(m2)

Delay
(ps) 

ADP 
(m2*ps*106)

Power
(W)

SA-2IO 5546 1341 7.4 1642 13847 1972 27.3 5601 39662 2719 107.8 15959

SA-CSA 8978 738 6.6 2735 17711 942 16.6 6702 95565 1014 96.9 34713

SA-Hybrid 4873 1154 5.6 1410 13704 1777 24.3 5745 46374 2140 99.2 18874

CT 5863 302 1.7 889 17684 505 8.9 4555 68342 703 48.0 18750

VLCM designs with minimum achievable delay (MAD) values

anomalous
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Experimental Results – VLCM Operation

Impact of delay constraint on area of VLCM operation

anomalous - iw=16
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Experimental Results – Montgomery Multiplication

Architecture

iw=16 iw=32

Area
(m2)

Delay
(ps)

ADP
(m2*ps*106)

#Clock 
cycles

Latency
(ns)

Power 
(mW)

Energy 
(pJ)

Area
(m2)

Delay
(ps)

ADP
(m2*ps*106)

#Clock 
cycles

Latency
(ns)

Power 
(mW)

Energy 
(pJ)

SA-2IO 74220 1680 124.6 51 85.6 6.5 560 117214 2166 253.8 30 64.9 8.7 567

SA-CSA 94632 1087 102.8 51 55.4 8.8 489 197744 1197 236.6 30 35.9 17.1 616

SA-Hybrid 73685 1550 114.2 51 79.0 6.3 504 123590 1914 236.5 30 57.4 12.3 709

CT 106287 875 93.0 51 44.6 7.8 352 174710 1158 202.3 30 34.7 12.5 436

Montgomery multiplication designs with minimum achievable delay (MAD) values

anomalous
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Conclusions

• We introduced LEIGER proposed for high-speed design of VLCM operations
• is equipped with area optimization techniques

• can describe VLCM designs under different multiplierless architectures

• can also realize the Montgomery multiplication

• Experimental results showed that
• it can generate alternative designs which may help a designer to choose the best fit for 

design requirements in a given application
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LEIGER GitHub Repository: https://github.com/leventaksoy/vlcm



Motivation

• There exist no methods proposed for high-speed design of the VLCM problem
• earlier works [3-5] target DSP applications with a limited number of bit-widths

• TÕLL [6] targets reduction of the number of operations and number of operations in series

[3] R. Hartley, “Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers,” IEEE TCAS II, vol. 43, no. 10, pp. 677–688, 1996.
[4] A. Hosangadi, F. Fallah, and R. Kastner, “Reducing Hardware Complexity of Linear DSP Systems by Iteratively Eliminating Two-Term Common Subexpressions,” in ASP-DAC, 2005, pp. 523–528.
[5] L. Aksoy and E. O. Günes, “Area Optimization Algorithms in High-Speed Digital FIR Filter Synthesis,” in SBCCI, 2008, pp. 64–69.
[6] L. Aksoy, D. B. Roy, M. Imran, P. Karl and S. Pagliarini, “Multiplierless Design of Very Large Constant Multiplications in Cryptography, ” IEEE TCAS II, vol. 69, no. 11, pp. 4503-4507, 2022.



Experimental Results – Montgomery Multiplication

Instance

iw=16 iw=32

Area
(m2)

Delay
(ps)

ADP
(m2*ps*106)

#Clock 
cycles

Latency
(ns)

Power 
(mW)

Energy 
(pJ)

Area
(m2)

Delay
(ps)

ADP
(m2*ps*106)

#Clock 
cycles

Latency
(ns)

Power 
(mW)

Energy 
(pJ)

anomalous 106287 875 93.0 51 44.6 7.8 352 174710 1158 202.3 30 34.7 12.5 436

anssifrp 133381 955 127.3 63 60.1 11.8 712 224574 1199 269.2 36 43.1 20.4 882

bn(2,254) 133850 944 126.3 60 56.6 10.9 621 211212 1139 240.5 36 41.0 18.2 750

brainpool256 140497 935 131.3 63 58.9 12.2 722 230367 1176 270.9 36 42.3 23.0 977

brainpool348 178034 914 162.7 87 79.5 19.2 1534 308665 1213 374.4 48 58.2 34.2 1992

High-speed Montgomery multiplication designs

CT


