Multiplierless Design of High-Speed Very Large Constant Multiplications

Levent Aksoy⁺, Debapriya Basu Roy[‡], Malik Imran⁺ and Samuel Pagliarini[†] [†]Tallinn University of Technology, Tallinn, Estonia [‡]Indian Institute of Technology Kanpur, Kanpur, India

Asia and South Pacific Design Automation Conference, Incheon, South Korea, 25th of January 2024

- Introduction
- Background
- Contributions
- Proposed Method
- Experimental Results
- Conclusions

- Multiplication of constants by a variable is a ubiquitous operation
 - digital signal processing [1] and cryptography [2]
- Constant multiplications can be realized without multipliers
 - adders, subtractors, and shift operations under the shift-adds architecture
- In cryptography, constants can be very large
 - Elliptic Curve Cryptography (ECC): 204-521
 - Singular Isogeny Key Encapsulation (SIKE): 448-768
- The Very Large Constant Multiplication (VLCM) problem
 - find a minimum number of adders/subtractors which realize the multiplication of given very large constants by a variable

3

 $51x = (110011)_{bin}x = x <<5 + x <<4 + x <<1 + x$ $55x = (110111)_{bin}x = x <<5 + x <<4 + x <<2 + x <<1 + x$

[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.

[4] Y. Voronenko and M. Püschel, "Multiplierless Multiple Constant Multiplication," ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

Ripple Carry Adder (RCA)

Carry Save Adder (CSA)

Background

 $51x = (110011)_{bin}x = x <<5 + x <<4 + x <<1 + x$ $55x = (110111)_{bin}x = x <<5 + x <<4 + x <<2 + x <<1 + x$

[3] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.

[4] Y. Voronenko and M. Püschel, "Multiplierless Multiple Constant Multiplication," ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[5] A. Hosangadi, F. Fallah, and R. Kastner, "Optimizing High Speed Arithmetic Circuits using Three-Term Extraction," in DATE, 2006, pp. 1–6.

Constant Time Montgomery Multiplication [2]

 $\begin{array}{l} \text{Input: } M = \sum_{i=0}^{m-1} m_i \cdot 2^{ri}, \ A = \sum_{i=0}^{m+2} a_i \cdot 2^{ri} \text{ with } a_{m+2} = 0, \\ B = \sum_{i=0}^{m+1} b_i \cdot 2^{ri}, \ M' = -M^{-1} \mod R, \ \overline{M} = (M' \mod 2^r) \cdot M = \\ \sum_{i=0}^{m+1} \overline{m_i} \cdot 2^{ri}, \ A, B < 2\overline{M}, \ 4\overline{M} < 2^{rm}, \ R = 2^{r(m+2)} \\ \text{Output: } A \times B \times R^{-1} \mod M \\ 1: \ S_0 = 0 \\ 2: \ \text{for } i \leftarrow 0 \ \text{to } m + 2 \ \text{do} \\ 3: \quad q_i = S_i \mod 2^r \\ 4: \quad S_{i+1} = (S_i + \overline{q_i} \cdot \overline{M})/2^r + a_i \cdot B \\ 5: \ \text{return } S_{m+3} = A \times B \times R^{-1} \mod M \end{array}$

Montgomery Multiplier Architecture [2]

- The CAD tool LEIGER that implements multiplierless high-speed VLCM operation
 - shift-adds architecture using CSAs (SA-CSA)
 - shift-adds architecture using 2- and 3-input adders (SA-Hybrid)
 - design architecture using compressor trees (CT)
- Implementation of the Montgomery multiplication using LEIGER

LEIGER – SA-CSA – Partitioning

Large constants										
$lc_1 = 1,309,873,459 = 0x4E131533$ $lc_2 = 2,623,935,253 = 0x9C66131$										
Partitioning when p is 8										
$ c_1 = 4E 13 15 33 c_2 = 9C 66 13 15 $										
Coefficients										
0x33 = 51	0x15 = 21	0x13 = 19	0x4E = 78	0x66 = 102	0x9C = 156					
C = {51, 21,	, 19, 78, 102	, 156}								
Linear equa	ations									
lc ₁ = S&C78	3<<24 + S&C	19<<16 + S8	C21<<8 + S8	kC51						
lc ₂ = S&C15	5 <mark>6<<24 + S&</mark>	C102<<16 +	<mark>S&C19<<8</mark> +	S&C21						

LEIGER – SA-CSA – Realization of Coefficients

\sim		- 6	c •	_ •			
	n	ρτ	τı	CI	ρ	n	LS .
-	<u> </u>	<u> </u>		<u> </u>	-		

C = {51, 21, 19, 78, 102, 156}

Subexpressions										
s&c19 = 1<<4 + 1<<1 + 1	s&c39 = s&c19<<1 + 1									
s&c21 = 1<<4 + 1<<2 + 1	s&c51 = s&c19 + 1<<5									

Realization of coefficients									
S&C51 = s&c51	S&C21 = s&c21	S&C19 = s&c19							
S&C78 = s&c39<<1	S&C102 = s&c51<<1	S&C156 = s&c39<<2							

LEIGER – SA-CSA – Realization of Linear Equations

Linear equations

lc₁ = S&C78<<24 + S&C19<<16 + S&C21<<8 + S&C51

 $lc_2 = S\&C156<<24 + S\&C102<<16 + S\&C19<<8 + S\&C21$

Common subexpressions

S&Cexp₀ = S&C19<<8 + S&C21

Final linear equations

 $lc_1 = S\&C78 << 24 + S\&Cexp_0 << 8 + S\&C51$

 $lc_2 = S\&C156<<24 + S\&C102<<16 + S\&Cexp_0$

Realization of final linear equations

 $S\&Cexp_{1} = S\&Cexp_{0} <<8 + S\&C51 \\ S\&Clc_{1} = S\&C78 <<24 + S\&Cexp_{1} \\ S\&Clc_{2} = S\&C156 <<24 + S\&Cexp_{2} \\ S\&Clc_{2} = S\&C156 <<24 + S\&Cexp_{2} \\ S&Cexp_{2} \\ S&Cex$

LEIGER – SA-Hybrid – Partitioning

Large constants										
lc ₁ = 1,309,	23,935,253 =	0x9C661315								
Partitioning when p is 8										
Ic ₁ = 4E 13 15 33 Ic ₂ = 9C 66 13 15										
Coefficients										
0x33 = 51	0x15 = 21	0x13 = 19	0x4E = 78	0x66 = 102	0x9C = 156					
C = {51, 21,	, 19, 78, 102	, 156}								
Linear equa	ations									
lc ₁ = S78<<	<mark>24 + S19<<1</mark>	.6 + S21<<8 -	+ \$51							
lc ₂ = S156<	<24 + S102<	<16 + S19<<	8 + S21							

LEIGER – SA-Hybrid – Realization of Coefficients

Coefficients

C = {51, 21, 19, 78, 102, 156}

Subexpressions		
s3 = 1<<1 + 1	s21 = s3<<3 - s3	s51 = s3<<4 + s3
s19 = 1<<4 + s3	s39 = s19<<1 + 1	

Realization of coefficients

S51 = s51	S21 = s21	S19 = s19
S78 = s39<<1	S102 = s51<<1	S156 = s39<<2

LEIGER – SA-Hybrid – Realization of Linear Equations

Linear equations

lc₁ = S78<<24 + S19<<16 + S21<<8 + S51

lc₂ = S156<<24 + S102<<16 + S19<<8 + S21

Common subexpressions

exp₀ = S19<<8 + S21

Final linear equations

 $lc_1 = S78 << 24 + exp_0 << 8 + S51$

 $lc_2 = S156 << 24 + S102 << 16 + exp_0$

Realization of final linear equations

 $S\&Clc_1 = S78 << 24 + exp_0 << 8 + S51$

 $S\&Clc_2 = S156 << 24 + S102 << 16 + exp_0$

LEIGER

SA-CSA – p=8

Hardware Complexity

Architecture	#2-input Adders	#3-input Adders	#4x1 MUXes
SA-CSA	0	14	0
SA-Hybrid	6	2	0
СТ	0	4	8

SA-Hybrid – p=8

CT – r=2

- LEIGER was applied to well-known cryptographic prime numbers [6]
 - bit-width of primes ranges between 204 and 384
 - corresponding VLCM operations and Montgomery multiplications were designed
- TÕLL [7] was also applied to realize these operations and Montgomery multiplications under the shift-adds architecture with 2-input operations (SA-2IO)
- Logic synthesis was performed by Cadence Genus using a commercial 65 nm cell library

[6] D. J. Bernstein and T. Lange. SafeCurves: Choosing Safe Curves for ECC. [Online]. Available: https://safecurves.cr.yp.to
[7] L. Aksoy, D. B. Roy, M. Imran, P. Karl and S. Pagliarini, "Multiplierless Design of Very Large Constant Multiplications in Cryptography," IEEE TCAS II, vol. 69, no. 11, pp. 4503-4507, 2022.

Impact of **p** and **r** on area of the VLCM operation

VLCM designs with minimum achievable delay (MAD) values

a	nom	ald	DUS

Architecture			iw=16				iw=32		iw=64			
	Area (µm²)	Delay (ps)	ADP (μm ² *ps*10 ⁶)	Power (μW)	Area (µm²)	Delay (ps)	ADP (μm²*ps*10 ⁶)	Power (μW)	Area (μm²)	Delay (ps)	ADP (μm ² *ps*10 ⁶)	Power (μW)
SA-210	5546	1341	7.4	1642	13847	1972	27.3	5601	39662	2719	107.8	15959
SA-CSA	8978	738	6.6	2735	17711	942	16.6	6702	95565	1014	96.9	34713
SA-Hybrid	4873	1154	5.6	1410	13704	1777	24.3	5745	46374	2140	99.2	18874
СТ	5863	302	1.7	889	17684	505	8.9	4555	68342	703	48.0	18750

Impact of delay constraint on area of VLCM operation

Experimental Results – Montgomery Multiplication

Montgomery multiplication designs with minimum achievable delay (MAD) values

	iw=16								iw=32					
Architecture	Area (µm²)	Delay (ps)	ADP (μm²*ps*10 ⁶)	#Clock cycles	Latency (ns)	Power (mW)	Energy (pJ)	Area (µm²)	Delay (ps)	ADP (μm²*ps*10 ⁶)	#Clock cycles	Latency (ns)	Power (mW)	Energy (pJ)
SA-210	74220	1680	124.6	51	85.6	6.5	560	117214	2166	253.8	30	64.9	8.7	567
SA-CSA	94632	1087	102.8	51	55.4	8.8	489	197744	1197	236.6	30	35.9	17.1	616
SA-Hybrid	73685	1550	114.2	51	79.0	6.3	504	123590	1914	236.5	30	57.4	12.3	709
СТ	106287	875	93.0	51	44.6	7.8	352	174710	1158	202.3	30	34.7	12.5	436

anomalous

- We introduced LEIGER proposed for high-speed design of VLCM operations
 - is equipped with area optimization techniques
 - can describe VLCM designs under different multiplierless architectures
 - can also realize the Montgomery multiplication
- Experimental results showed that
 - it can generate alternative designs which may help a designer to choose the best fit for design requirements in a given application

Questions

THANKS for YOUR ATTENTION

Contact: Levent Aksoy E-mail: levent.aksoy@taltech.ee LEIGER GitHub Repository: https://github.com/leventaksoy/vlcm

- There exist no methods proposed for high-speed design of the VLCM problem
 - earlier works [3-5] target DSP applications with a limited number of bit-widths
 - TÕLL [6] targets reduction of the number of operations and number of operations in series

[3] R. Hartley, "Subexpression Sharing in Filters Using Canonic Signed Digit Multipliers," IEEE TCAS II, vol. 43, no. 10, pp. 677–688, 1996.

[4] A. Hosangadi, F. Fallah, and R. Kastner, "Reducing Hardware Complexity of Linear DSP Systems by Iteratively Eliminating Two-Term Common Subexpressions," in ASP-DAC, 2005, pp. 523–528. [5] L. Aksoy and E. O. Günes, "Area Optimization Algorithms in High-Speed Digital FIR Filter Synthesis," in SBCCI, 2008, pp. 64–69.

[6] L. Aksoy, D. B. Roy, M. Imran, P. Karl and S. Pagliarini, "Multiplierless Design of Very Large Constant Multiplications in Cryptography," IEEE TCAS II, vol. 69, no. 11, pp. 4503-4507, 2022.

Experimental Results – Montgomery Multiplication

High-speed Montgomery multiplication designs

CT

		iw=16								iw=32					
Instance	Area (µm²)	Delay (ps)	ADP (μm²*ps*10 ⁶)	#Clock cycles	Latency (ns)	Power (mW)	Energy (pJ)	Area (µm²)	Delay (ps)	ADP (μm²*ps*10 ⁶)	#Clock cycles	Latency (ns)	Power (mW)	Energy (pJ)	
anomalous	106287	875	93.0	51	44.6	7.8	352	174710	1158	202.3	30	34.7	12.5	436	
anssifrp	133381	955	127.3	63	60.1	11.8	712	224574	1199	269.2	36	43.1	20.4	882	
bn(2,254)	133850	944	126.3	60	56.6	10.9	621	211212	1139	240.5	36	41.0	18.2	750	
brainpool256	140497	935	131.3	63	58.9	12.2	722	230367	1176	270.9	36	42.3	23.0	977	
brainpool348	178034	914	162.7	87	79.5	19.2	1534	308665	1213	374.4	48	58.2	34.2	1992	