V-GR: 3D Global Routing with Via Minimization and Multi-Strategy Rip-up and Rerouting

Ping Zhang*, Pengju Yao*, Xing uan Liⁱ, Bei Yuⁱⁱ, Wenxing Zhu^{*}

* **Fuzhou University, China;** ⁱ Pengcheng Laboratory, China, China; ⁱⁱ The Chinese University of Hong Kong.

Global routing

Nets are routed on a coarse-grained grid, and the routing location is determined while minimizing wire lengths, vias, and overflows.

Detailed routing

Detailed routing uses the routing scheme determined by the global routing as a routing guide to obtain specific routing paths.

Global Routing and Detailed Routing

Vias: provide connections for segments between different layers.

1. A large number of vias reduces manufacturing yields, leads to degraded circuit performance, and increases the area required for interconnections.

2. DFM (Design for Manufacturability) in physical design has strict requirements for vias. And satisfying DFM is necessary for physical design.

Global routing :

Given a grid and a set of nets consisting of pins, find a routing scheme for each net that connects all pins to minimize the total overflow $: \min \sum_{e \in E} of_e$, Minimizing the wire length and minimizing the number of vias are also important goals for global routing optimization.

Fig. 1: Two 3D global routing results with the same 2D routing path.

2DRouting+layer assignment

Router: NTHU-Route 2.0 [Chang et al., 2010], SPRoute 2.0 [He et al., 2010], NCTU-GR 2.0 [Liu et al., 2013] and FastRoute 4.0 [Xu et al., 2009].

Advantages : Fast

Disadvantages: Only the number of bend points is available before layer assignment, and the ability to obtain accurate via information is not available.

3D Routing

Router: FGR [Roy et al., 2008], GRIP[Wu et al., 2009], MGR[Xu etal., 2011], CUGR[Liu et al. 2020]

Advantages : Ability to overcome problems with 2D strategies and better quality of solutions

Disadvantages: slow.

V-GR Global Routing Flow

Modified Via-Aware Routing Cost Function:

Rectangular Uniform wire Density (RUDY) is used in routability prediction, in which the wire density is defined as the wire length per unit area of its bounding-box. We use the length of the RSMT estimate the wire density:

$$wd_n(u,v) = \begin{cases} \frac{rl}{area}, & (u,v) \in bdb(n); \\ 0, & (u,v) \notin bdb(n), \end{cases}$$

An edge with higher wire density consumes more capacity. When the capacity of edge is exhausted, the tendency is to use the corresponding edges of other layers, which leads to an increase in the number of vias. We consider the effect of wire density on via and make improvements to the via cost:

$$cost_v(u,u') = uvc imes (1 + \lg(u) + \lg(u'))$$

$$cost_v(u,u') = rac{\gamma imes uvc imes (1 + \lg(u) + \lg(u'))}{(1.0 + \exp(wd_N(u) + wd_N(u'))^{-1})},$$

Local rip-up and rerouting

After initial routing, 3D monotonic routing is used within the bounding box of net to reduce the number of vias and overflow without increasing the wire length.

Global rip-up and rerouting

The 3D 3-via-stack routing and the RSMT-Aware ESMR are used globally to rip-up and reoute congested net while ensuring the least possible growth in wire lengths and number of vias.

3D monotonic routing:

After initial routing, there are still many overflow nets to deal with. We propose a 3D monotonic routing, aiming to reduce overflow and minimize the number of vias without increasing the wire length.

The algorithm is executed inside the bounding box of net and requires that the next path node found must **satisfy a decreasing or constant 3D Manhattan distance** during the routing process.

The edge costs in this paper are consistent with the CUGR definition of edge costs:

$$cost_w(u,v) = wl(u,v) + eo(u,v) \times \lg(u,v)$$

3D monotonic routing:

cost(u,v): the cost of an edge or via (u,v). d(u): The minimum cost from the source to u. prev(u): The predecessor node of node u.

procedure:

- **step 1.** Calculate d(u) for nodes with the same x or y or z coordinates as the source point.
- **step 2.** The idea of dynamic programming is used to calculate d(u) .
- step 3. Search prev(u) from the sink until the source .

The algorithm complexity is O(|B|) and B is the size of the 3D bounding box.

3D 3-via-stack routing:

Completes the connection of two pins with up to a 3-via-stack. It has a greater ability to reduce congestion compared to 3-D pattern routing. In addition, it has the advantage of generating fewer vias and is faster compared to 3D monotonic routing and 3D maze routing.

3D 3-via-stack path consists of three parts: Two 3D L-paths and a viastack, such as s -> mid_1, mid_2 -> t, and mid_1 -> mid_2.

Effectiveness of 3D Monotonic Routing and 3D 3-Via-Stack Routing

Effect Comparison:

The first set of experiments used: 3D monotonic routing, 3D 3-via-stack routing and RSMT-aware ESMR after initial routing.

The second set of experiments used: the RSMT-aware ESMR after initial routing.

Benchmarks	Ours with	out the Algo	orithms	Ours with the Algorithms				
Deneminarks	Wire Length	#Via	Overflow	Wire Length	#Via	Overflow		
18test5	27019100	816721	0	27029600	761579	0		
18test5m	27329100	804629	3216	27343000	759084	3221		
18test8	64225300	2062620	0	64235200	1895530	0		
18test8m	63155300	1970615	5593	63195000	1855570	5500		
18test10	66635400	2194560	0	66720800	2019910	0		
18test10m	69689400	2117990	1495	69695800	1979430	645		
19test7	118296000	3218160	0	118377000	3041740	0		
19test7m	106591000	3234286	4318	106508000	3034040	3989		
19test8	181935000	5594214	0	181836000	5213620	0		
19test8m	179116000	5553435	6986	179229000	5263920	6551		
19test9	273311000	9126440	60	273237000	8617980	0		
19test9m	271199000	9438193	3689	271278000	8853840	3782		
Avg.	120708466	3844321	2113	120723700	3608020	1974		
Norm.	99.9%	106.5%	107.1%	100%	100%	100%		

The table shows that using 3D monotonic routing and 3D 3-via-stack routing was able to reduce vias by 6.5%, and overflow by 7.1%.

Global Rip-Up and Rerouting

RSMT-Aware ESMR:

The main idea of ESMR is that tree edges in a net with completed routing can be reused.

step1. One pin is randomly selected to join the priority queue and the source set, the remaining pins are added to the sink set.

step 2. Take the first node from the priority queue and traverse the neighboring nodes. Perform different operations based on neighboring nodes.

step 3. Add the source point set nodes to the priority queue and repeat step 2 until the sink set is empty.

RSMT-Aware ESMR:

RSMT has a shorter wire length, and combining this property to ESMR proposes the RSMT-Aware ESMR.

Each G-cell that RSMT passes through is labeled, and the cost of the edge varies according to the number of times it is labeled.

$$cost(e) = \begin{cases} wl(e) * \frac{C}{2} + eo(e) \times \lg(e), & \text{e is marked twice;} \\ wl(e) * C + eo(e) \times \lg(e), & \text{e is marked once,} \end{cases}$$

Comparison of the effectiveness of routing solutions produced using different maze algorithms:

Fig. 6: Comparison of different maze algorithms. (a) Traditional maze routing. (b) ESMR. (c) RMST for Net N. (d) RSMT-aware ESMR.

Effect Comparison:

The first set of experiments used: traditional maze routing algorithm. The second set of experiments used: RSMT-aware ESMR.

Benchmarks	Traditiona	al MR	RSMT-Aware ESMR			
Deneminarks	Wire Length	#Via	Wire Length	#Via		
18test5	27326925	766148	27029600	761579		
18test5m	27589087	762879	27343000	759084		
18test8	64819740	1905955	64235200	1895530		
18test8m	63763755	1864840	63195000	1855570		
18test10	67287926	2032231	66720800	2019910		
18test10m	70323062	1989327	69695800	1979430		
19test7	119442393	3056948	118377000	3041740		
19test7m	107466572	3049210	106508000	3034040		
19test8	183472524	5239688	181836000	5213620		
19test8m	180842061	5290239	179229000	5263920		
19test9	275696133	8661069	273237000	8617980		
19test9m	273719502	8898109	271278000	8853840		
Avg.	121812473	3626386	120723700	3608020		
Norm.	100.9%	100.5%	100%	100%		

The table shows that the use of RSMT-aware ESMR was able to reduce the wire length by 0.9% and the via by 0.5%.

Results

Danahmarla	GR Wire Length		GR #Via		GR Overflow		GR CPU(s)		DR	Score
Denchinarks	CUGR	V-GR	CUGR	V-GR	CUGR	V-GR	CUGR	V-GR	CUGR	V-GR
18test5	26997000	27029600	855742	761579	0	0	33.6	25.8	15609059	15557607
18test5m	27915200	27343000	802643	759084	3201	3221	32.0	29.0	15902609	15580356
18test8	64380000	64235200	2174530	1895530	0	0	105.5	95.4	37831617	37076170
18test8m	64697100	63195000	1955940	1855570	5587	5500	122.0	91.0	36973756	36268485
18test10	66778500	66720800	2308290	2019910	0	0	123.2	90.6	39640768	39218365
18test10m	72840100	69695800	2200010	1979430	1575	645	218.0	109.0	41514624	41342376
19test7	118701000	118377000	3124640	3041740	0	0	243.2	236.4	78239626	77623552
19test7m	106977000	106508000	3070990	3034040	4332	3989	221.0	195.0	72627528	71846934
19test8	181912000	181836000	5748110	5213620	0	0	208.4	198.7	120660152	119610521
19test8m	177674000	179229000	5599140	5263920	7061	6551	388.0	405.0	118730552	116784975
19test9	274113000	273237000	9598230	8617980	75	0	335.5	284.8	185445043	184104089
19test9m	267622000	271278000	9342640	8853840	3652	3782	455.0	418.0	183776050	180753328
Avg.	120883908	120723700	3898408	3608020	2123	1974	207.1	181.5	78912615	77980563
Norm.	100.13%	100%	108.05%	100%	107.58%	100%	114.08%	100%	101.20%	100%

GR results

Results of GR + DR reported by innovus

	Wire Length			#Via			Non-preferred Usage			Design Rule Violations		
Benchmarks	CUGR +	CUGR +	V-GR +	CUGR +	CUGR +	V-GR +	CUGR +	CUGR +	V-GR +	CUGR +	CUGR +	V-GR +
	Dr. CU 2.0	TritonRoute	TritonRoute	Dr. CU 2.0	TritonRoute	TritonRoute	Dr. CU 2.0	TritonRoute	TritonRoute	Dr. CU 2.0	TritonRoute	TritonRoute
18test5	13755664	13701011	13717353	1854248	1687442	1614934	159196	306749	225320	335018	0	0
18test5m	14001665	13891767	13702732	1843696	1699774	1643168	120374	311067	234455	280744	0	0
18test8	32980410	32778214	32526979	4827046	4399240	4040724	254658	654162	508467	140621	0	0
18test8m	32407308	32099091	31651745	4522450	4112254	4033852	326961	762411	582889	238783	0	0
18test10	34054967	33887670	33874618	4991064	4617196	4345714	885532	1135902	998033	662037	0	0
18test10m	35711640	35370581	35303348	4899802	4545166	4516894	1244888	1541692	1468608	1634185	57183	53525
19test7	61002413	60490812	60272448	16276308	15155620	14488772	1423304	2593194	2839479	9779552	0	0
19test7m	54858539	54237117	54147005	16386864	15275220	14518402	1604677	3115191	3181526	9933662	0	0
19test8	93471561	92736584	92963254	26290792	25323176	23799936	1290976	2600391	2847331	7466225	0	0
19test8m	91154538	90262544	89888979	25999844	25141952	23858036	899052	2983055	3037959	8345362	0	0
19test9	141254192	140047181	139666849	42973076	41053404	39620000	2181813	4169857	4817240	15091717	0	0
19test9m	138028089	136440857	135856004	43195156	41605100	39795704	2474472	5729092	5101619	15487862	1000	0
Avg.	61890082	61328619	61130942	16171695	15384628	14689678	1072158	2158563	2153577	2894823	2423.5	2229.5
Norm.	101.24%	100.32%	100%	110.09%	104.73%	100%	49.79%	100.23%	100%	129841.80%	108.70%	100%

Thank You !