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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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GPU TPU

Analog CMOS (or eNVMs)
~ 10-100 TOPS/W

Conventional computing platforms 
~ 0.1 TOPS/W

Digital CMOS ASICs
~ 1-10 TOPS/W

Compute-in-memory (CIM)

Hardware Accelerators for AI/ML

Floating-point Fixed-point Low-precision→ accuracy? 

◼ GPU still dominates the training in cloud, FPGA is good for inference for fast prototyping
◼ TPU (or similar digital ASIC) is ramping up in cloud as well as edge

◼ To further improve energy efficiency (TOPS/W), analog CIM (possibly with eNVMs) is promising 
especially in the edge inference where the model is pre-trained. 

◼ NeuroSim is suitable for early design exploration of device candidates for CIM
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IN/W/OUTprecision Analog/2b/Analog

Clock frequency 
(MHz)

100

Supply voltage (V) 0.9

Energy efficiency
(TOPS/W)

26.97

Throughput (GOPS) 13.93
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CIM Basics: Mixed-Signal Compute
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Key Metrics for Emerging Memories
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Mainstream Charged based Memories Emerging Non-volatile Memories

SRAM DRAM
FLASH

PCM RRAM
STT-

MRAM

SOT-

MRAM
FeRAM FeFET

NOR NAND

Cell area >150F2 6F2 10F2 <4F2 (3D) 4~50F2 4~50F2 6~50F2 12~100F2 6~50F2 6~50F2

Multi-bit 1 1 2 3-4 2-3 2-3 1 1 1 2-3

Voltage <1V <1V >10V >10V <3V <3V <1V <1V <2V <3V

Read time ~1ns ~10ns ~50ns ~10µs <10ns <10ns <10ns ~1ns <100ns <50ns

Write time ~1ns ~10ns 10µs-1ms 100µs-1ms ~50ns <100ns <20ns <3ns <100ns <100ns

Retention N/A ~64ms >10y >10y >10y >10y >1y >1y >10y >1y

Endurance >1E16 >1E16 ~1E5 1E3~1E4 1E6~1E9 1E3~1E9 1E6~1E14 ~1E12 1E9~1E12 1E6~1E9

Write Energy 

(J/bit)
~fJ ~10fJ 100pJ ~10fJ ~10pJ ~pJ ~pJ ~pJ ~100fJ ~fJ

F: feature size of the lithography. 

The energy estimation is on the cell-level (not on the array-level). 

PCM /RRAM/FeFET can potentially achieve less than 4F2 through 3D integration. 

The numbers of this table are representative (not the best or the worst cases).

S. Yu, Semiconductor Memory Devices and Circuits, Publisher: CRC Press/Taylor & Francis, 2022. [Link]

Question: which eNVM is 
good for CIM?

https://www.routledge.com/Semiconductor-Memory-Devices-and-Circuits/Yu/p/book/9780367687076
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NeuroSim: Open-Source Simulator for AI Hardware

https://github.com/neurosim

➢ Pre-RTL simulator for early-stage research
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• 500+ citations
• >100 users including industry researchers from SK Hynix, Samsung, TSMC, and Intel
• IEEE Transactions on Computer-Aided Design (TCAD) Donald O. Pederson Best Paper Award 2023
• European Design and Automation Association (EDAA) Outstanding Dissertation Award 2023
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https://github.com/neurosim
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MLP+NeuroSim

(2-layer MLP)

DNN+NeuroSim V1 
(Inference)

DNN+NeuroSim

V2 (Training)

P.-Y. Chen, IEDM’17, 
P.-Y. Chen, TCAD’18

P.-Y. Chen, S. Yu, “NeuroSim: A 
circuit-level benchmark simulator 
for neuro-inspired architectures,” 
Workshop on Hardware and 
Algorithms for Learning On-a-
chip (HALO) 2015, Austin, TX.

The first appearance:

NeuroSim History

X. Peng, IEDM’19 

X. Peng, TCAD’20

Contributors: 
Pai-Yu Chen, Xiaochen Peng
Shanshi Huang, Yandong Luo
Anni Lu, Junmo Lee, James 
Read, etc...

Interface w/ PyTorch

Interface w/ PyTorch
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Impact of NeuroSim Family
Resulted in publications 400+
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DNN+NeuroSim Methodologies (Python & C++)
➢ End-to-end frameworks for: 1*neural network inference engine [1], 2*online neural network training 

system [2], 3*3D-CIM design [3]
➢ Input parameters: devices →  circuits →  architecture hierarchy and data-flow → algorithms
➢ Output results: inference/training accuracy, TOPS, TOPS/W and TOPS/mm2

Input 
parameters

- Accuracy
- Energy efficiency 

(TOPS/W)
- Throughput (TOPS)
- Area
- Breakdown of metrics

Experimental device 
characterization

(RRAM, FeFET, PCM, etc)

Device parameter
(for CIM core)

Circuit parameter

Algorithm 
parameter

Device parameter
(for Peripheral 

Circuits)

CIM chip-level 
simulation through 
“equation”-based 
python & C++ codes

CIM device specifications 
input by users

Significant reduction of simulation 
time compared to SPICE

[1] X. Peng, et al., IEDM’2019; [2] X. Peng, et al., TCAD’2020; [3] X. Peng, et al., IEDM’2020. 

The rest of the parameters 
decided based on the target 
technology node/neural 
network structure

Technology Node
(22 nm, 7 nm … ) 

Neural Network 
Structure

(dataset, model, weight 
precision )

Output result

Hardware Design
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DNN+NeuroSim Methodologies (Python & C++)
Key Features
• Hardware-aware quantization [4] for weight, activation, gradient, error, as well as partial sum 

quantization based on ADC precision
• Built-in optimized weight/activation mapping flow [5] for maximum memory utilization
• Support various large-scale network models/datasets (ResNet, VGG / CIFAR-10, 100 and ImageNet)
• Compact PPA estimation model exists for every digital/analog circuit component within a chip, e.g. 

ADC, level-shifter, D-flipflop, adder tree, etc. 
• PPA estimation model is calibrated with SPICE simulation at module-level
• Massive options (technology node from 130nm to 1nm, memory device type, RON, ADC option…)
• Interconnect modules (e.g. H-tree) estimated with parasitic RC delay and power
• Off-chip memory access overhead included (e.g. LPDDR access energy per bit)
• Non-ideal device/circuit effects-constrained accuracy estimation (e.g. device variations/noises, ADC 

quantization loss/ADC offset, etc.).
• Extendibility to variants of CIM hardware and various algorithms

[4] S. Wu, et al. ICLR’2018 [5] X. Peng, et al., ISCAS’2019; 
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Area Estimation

SRAMeNVM
2: Auto-define peripheries

According to the synaptic array 
size 128*128
→Define switch matrix or 

decoder specs (e.g. 7-bit)
According to the wire loading cap
→ Define transmission gate (TG) 
size (avoid large IR drop)

3: Other user-defined 
peripheries

e.g. ADC (MLSA/SAR-ADC) User define: 
precision, ADC-mode, ADC-mux-sharing

Align area according to the synaptic array 
(w/ width or height)

1T1R or crossbar ?

1: Get array size
e.g. cell size=4F*4F, 

synaptic array 
size=128*128
→ Array area = 

(128*4F) * (128*4F)

Assume 
RTG=RON*Droptolerance
(default = 0.1)
Define TG size 
according to RTG

Note
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Latency Estimation

WriteRead

1: RC delay 
(digital block)

Tech-file provides 
temperature-dependent 
ION & IOFF → get R (based 
on transistor size)

Similarly, get C (loading 
cap can be wire cap)

1*: Cadence fitting 
function (analog ADC)

Column resistance RCOL 
is calculated based on 
real-trace (mapped 
conductance and input 
vector)

RCOL as input of latency 
fitting function

2: Consider operation 
scheme

Each block needs to 
consider number of 
operations (i.e. T=N*t)

Total latency needs to be 
“∑” or “MAX” according 
to the operation scheme 
(depends on working in 
sequence or in parallel)
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Dynamic Energy Estimation

WriteRead

1: CV2 dynamic energy 
(array)

Loading wire in array:

E += CWL*Vdd
2*#WLSelected

E += CBL*Vread
2*#BLSelected

E *= #op

2: CV2 dynamic energy 
(digital block)

Assume critical operation 
scheme, count number of 
transistors that need to be 
charged-up;

Sum-up CV2 for all charged-
up transistors;

Also times #op (number of 
operation).

3: Cadence 
fitting function 
(analog block)

Column resistance 
RCOL is calculated 
based on real-trace 
(mapped conductance 
and input vector)

RCOL as input of power 
fitting function

Energy is calculated 
based on latency and 
power fitting function
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)

14



....
15

DNN+NeuroSim V1 for Inference Engine

X. Peng, et al., IEDM’2019.
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DNN+NeuroSim V1 for Inference Engine

Fig. 2 System-level benchmark (VGG-8) with various design options (4-
bit/cell).

Fig.1 Architecture hierarchy of CIM accelerator (defined in DNN+NeuroSim V1.0).

Fig.3 Inference accuracy with different ADC quantization: sweep 
subarray size and cell precision.

Sweep array size & cell precision & ADC precision on 
CIFAR-10 accuracy
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S. Yu. et al. CICC 2020
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Weight Mapping and Duplication for Pipelining

18

Conventional mapping Novel mapping

Input reuse in novel mapping

Weight duplication 
for speed up

X. Peng TCAS-I 2020
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NeuroSim Validation with Real Chip Implementation

0.5mm

0.5mm

After calibration, the prediction with post-layout simulation error rate is less than 2%. 

CIM RRAM at TSMC 40nm
(W. Li, et al. CICC’2021) Adjustment factors 

introduced to 
calibrate:
• transistor sizing
• wiring area
• gate switching 

activity
• post-layout 

performance drop

A. Lu, et al. AICAS 2021
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DNN+NeuroSim V1 Example Results for Benchmarking

➢ Memory RON is the critical factor to determine energy efficiency, desirable target: 100k ~ 1MΩ
➢ Compute-in-SRAM is a viable solution for high-performance applications, with outstanding 

energy efficiency and compute density, thanks to the logic scaling. 

VGG-8 (8-bit activation; 8-bit weight) on CIFAR10, evaluated with DNN+NeuroSim V1.3

Technology node (LP) 7nm 22nm

Device 8T-SRAM
TPU-like 

(Google)
8T-SRAM

RRAM      

(Intel)

STT-MRAM 

(Intel)

Si:HfO2 

FeFET (GF)

TPU-like 

(Google)

Flash-ADC precision 4-bit 8-bit digital 4-bit 4-bit 4-bit 4-bit 8-bit digital 

Memory Cell Precision 1-bit MAC 1-bit 1-bit 1-bit 1-bit MAC

Ron (Ω) \ \ \ 6k 1.41k 240k \

Cell area (F2) 1080 \ 280 60 100 40 \

On/Off Ratio \ \ \ 17 2.8 100 \

Area (mm2) 12.52 15.71 61.92 73.58 57.96 70.34 107.05

L-by-L Leakage power (mW) 2.71 75.96 1.73 1.83 1.08 1.08 5.27

Energy Efficiency (TOPS/W) 23.05 2.51 14.91 14.53 7.20 23.06 0.69

Compute Efficiency  (GOPS/mm2) 47.26 75.00 5.54 5.48 0.62 10.43 3.60
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DNN+NeuroSim V1 Reveals Key Factors in CIM
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7nm SRAM • 7nm SRAM CIM TOPS/W is high, but suffers from leakage 
when the standby is frequent at edge.

• eNVM is the best option for edge device!
• 22nm FeFET CIM shows good TOPS/W, but not competitive 

TOPS/mm^2, how to improve? 

7nm SRAM

7nm SRAM

22nm FeFET

22nm FeFET
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Roadmap for Improving FeFET CIM
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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DNN+NeuroSim V2 for Online Training
➢ Extends online training hardware and software analysis
➢ Non-ideal weight-update: asymmetry and non-linearity, device & cycle variation

X. Peng, et al., TCAD’2020.
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DNN+NeuroSim V2 Dataflow and Training HW Support

➢ Transposable synaptic array to support feed-forward & back-propagation (error calculation)
➢ Add weight gradient calculation (by SRAM-CIM), need frequent data reload (from DRAM)

* SRAM-CIM for weight 
gradient calculation 
(need frequent data 
reload)Fig. 2 CIM architecture supports online training.

INPUT
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Layer 1

W1

Layer n-1

Wn-1

Layer n

Wn

Y1 Yn-1 Yn

Error

Label

1. Feed-Forward/Inference

INPUT
DATA
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Layer n
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Trans.Trans.Trans.

δ1 δn-1

Y1 Yn-1 Yn

2. Backpropagation(Error)
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Layer 1

W2
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Layer n

Wn

Yn-1Yn-2 Yn-1 Yn
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ΔW1 ΔWn-1 ΔWn

W1 Wn-1 Wn

3. Weight Gradient Calculation

INPUT
DATA

δ2 Errorδn-1

ΔW1 ΔWn-1 ΔWn

W1 Wn-1 Wn

Layer 1 Layer n-1 Layer n

Y1 Yn-1 Yn

Errorδ1 δn-1

4. Weight update

Fig. 1 DNN training data flow.

For batch size=200, VGG-8 creates 2.6 GB, VGG-16 creates 30.4 GB, ResNet-18 creates 3.1 GB intermediate data
→ Too large intermediate data for on-chip cache, thus DRAM access dominates the energy consumption!!
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Asymmetry and Nonlinearity in Analog Synapse

• Asymmetry makes devices statistically easier to 
converge to the middle range of the conductance than 
approaching Gmax or Gmin.

• Frequent sign flipping causes a large unwanted 
conductance change towards the middle range.
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Online Training: Nonlinearity & Asymmetry

Mommentum optimization: 

Fig. 1 Analysis of nonlinearity and asymmetry (8-bit VGG-8 for CIFAR-10), w/ and w/o momentum optimization. 
Results show at +5/-5, the accuracy is still >80% (w/ momentum optimization).

∆𝑊 𝑡 = 𝛽∆𝑊 𝑡 − 1 + 1 − 𝛽 ∙ (−
𝜕𝐿

𝜕𝑊
)
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Device & Cycle Variation Behavior Model

Norm. Pulse Number
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LTP

LTD

𝐺𝑚𝑎𝑥

𝐺𝑚𝑖𝑛
𝑃𝑚𝑎𝑥0

Device-to-device variation 
introduce different 
nonlinearity (NL). 

Randomly generates NLs to 
different synapse with a 
standard deviation (σ) 
respect to the mean NL (μ).

σ μ Cycle-to-cycle variation 
introduce variation in 
conductance change at 
every weight-update.

Express C2C variation 
standard deviation (σ) 
in terms of percentage 
of entire weight range.
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Online Training: Device & Cycle Variation

Device-to-device variation 
could be tolerated to certain 
degree, but accuracy will drop 
gradually with increasing 
variation.

Cycle-to-cycle variation could 
be tolerated to certain degree, 
but accuracy will drop quickly 
beyond the threshold.
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Online Training: System Performance

Fig. The data shows the 100th epoch of FeFET-
based CIM online training accelerator. (a) area 
breakdown by main components; (b) latency 
and (c) energy breakdown by main 
components; (d) latency and (e) energy 
breakdown by operations; (f) peak latency and 
(g) peak energy breakdown by operations. 

FeFET 

➢ ADC (6-bit) & weight gradient units (SRAM-based) 
dominant in total area

➢ Buffer latency & DRAM energy is the bottleneck of 
performance

➢ Weight gradient computation is the bottleneck in 
the entire learning (require frequent DRAM access)
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Reconfigurable 
NeuroSim [p1]

Monolithic 3D 
NeuroSim [p2]

Heterogeneous 
3D NeuroSim
[p3]

Cryogenic 
NeuroSim [p4]

3D NAND 
NeuroSim [p5]

31

NeuroSim Extension

[p1] A. Lu et al., DATE 2020, Y. Luo et al. IEDM 2021; [p2] X. Peng et al., IEDM, 2020
[p3] X. Peng et al., TED, 2021; [p4] P. Wang el al., ISCAS, 2021; [p5] W. Shim et al., EDL 2021

One custom chip 
supports various 
DNN models that 
may have larger on-
chip memory 
capacity than the 
chip could hold 

3D stacking with multi-
tier memory with 
logic-tier by hybrid 
bonding and micro-
TSV. Thermal modeling 
supported 

Monolithic 3D 
partition between 
memory at legacy 
node with BEOL 
oxide transistors 
and peripheral 
logic at advanced 
7nm node 

77K and 4K cryogenic 
transistor technology 
files calibrated for 
data-center computing 
and quantum 
peripheral control

3D NAND based 
architecture for GB-
level model for 
language, graph, 
genome, and 
recommendation 
system.

WL-PassTr.

Input buffer

XDEC

SSL0-127

HV 

switch

BL MUX / ADC

Adder&Shifter / Output buffer

BL0-1023

Pass Tr.

TM1(BL)

TMZ

3D NAND WLs

CMOS waferNAND wafer

MX

(a) (b)

Accum Unit Switch 

Matrix 
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Reconfigurable CIM Design 
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If chip area is constrained, off-chip weight reloading has two options:
Option 1: reload weights (with sequential processing)
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A. Lu et al., T-VLSI, 2021 & DATE 2020
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Monolithic 3D
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Partition the design into M3D:
• Si FEOL for logic and ADC modules 

at 7nm
• Oxide BEOL for memory and its 
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X. Peng et al., IEDM, 2020
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Heterogeneous 3D

34

➢ TSV and hybrid bonding for 5-tiers
➢ Two Scheme: “Layer-by-Layer” vs. “Pipeline”
➢ SRAM: both logic and memory tier @ 7nm
➢ RRAM: 2-bit/cell, RON is 6kΩ (on/off=150), memory tier 

@ 22nm, logic tier @ 7nm
➢ TSV diameter’s sweet spot: 1~3um

X. Peng et al., TED, 2021
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Cryogenic NeuroSim
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3D NAND based GB model
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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NeuroSim Extension Roadmap
Logic technology is progressing towards angstrom era
Will extend the support from 7nm to beyond 1nm node
Key features to be captured in NeuroSim technology 
libraries:
• Fin depopulation and standard cell height reduction
• DTCO and backside power delivery 
• Transition from FinFET to GAA stacked nanosheet
• Further support 3D CFET (NMOS on top of PMOS)

With continued scaling, NeuroSim could support all Digital-
based CIM (Digital CIM, DCIM) (as proposed by TSMC)

Projection of 
CIM hardware 
towards 
advanced 
technology 
nodes

Technology 
update to 1 
nm node 

[2023 July]

NeuroSim

+Timeloop

[TBD]

NeuroSim

+GEM5 

[TBD]

Chiplet based 
NeuroSim

[TBD] 
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Technology Extension to 1nm node
Standard Cell Dimension Trend

https://semiwiki.com/semiconductor-services/ic-knowledge/281778-iedm-2019-imec/ 

- The standard cell assumptions in 
NeuroSim capture the actual area 
scaling trend in industry.

- Gate pitch (CPP) scaling has 
significantly slowed down in recent 
nodes, being limited by 
lithography/device performance 
requirement (short channel effect).

- Cell height scaling is driven by fin 
depopulation, PN separation scaling in 
recent nodes.

- Moore’s law is extended by Backside 
Power Rail/3D integration techniques 
beyond 1 nm node. 

https://irds.ieee.org/images/files/pdf/2021/2021IRDS_MM.pdf 

Technology Node (nm)

14 10 7 5 3 2 1

# of fins per standard cell

(NMOS + PMOS)
4+4 3+3 2+2 2+2 2+2 1+1 1+1

Cell height (nm) 576 330 240 180 144 114 80

Contacted poly pitch (nm) 78 64 57 51 48 45 40

PN separation length (nm) 136 100 83 64 45 40 15

Fin pitch (nm) 48 36 30 28 24 26 24

Barrier thickness for 

M0-M2 (nm)
2.5 2.5 2.5 2.0 1.5 0.5 0.5

https://semiwiki.com/semiconductor-services/ic-knowledge/281778-iedm-2019-imec/
https://irds.ieee.org/images/files/pdf/2021/2021IRDS_MM.pdf
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Technology Extension to 1nm node
TCAD Simulation Assumptions

Technology Node (nm)

14 10 7 5 3 2 1

Fin height [FH] (nm)
42 45 50 50 48 - -

Fin width [FW] (nm)
8 8 7 6 5 - -

NS thickness [NT] 

(nm)
- - - - - 6 6

NS width [NW]  

(nm)
- - - - - 15 10

NS vertical pitch 

[VP] (nm)
- - - - - 14 12

# of stacked NSs - - - - - 3.0 4.0

Gate length (nm) 26 22 22 20 18 14 12

Equivalent oxide 

thickness [EOT] (nm)
0.9 0.8 0.7 0.65 0.6 0.55 0.5

Gate height over fin 

[GHOF] (nm)
40.0 35.0 30.0 25.0 20.0

10.0

IRDS: 15

5.0

IRDS: 10

Spacer width [SW] 

(nm)
12.0 8.0 8.0 7.0 6.0 6.0 5.0
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Technology Extension to 1nm node

- We allow some exceptions in IRDS 
standard: For 7 nm Current/fin, we decide 
the values based on our own projection to 
maintain current/fin improvement with 
technology scaling

- Effective width = fin height * 2 + fin width

NeuroSim Input Device Parameters (from TCAD simulation)

Technology Node (nm)

14 10 7 5 3 2 1

On current/fin (µA) 54.744 58.725 60.139 61.320 64.788 66.385 59.005

On current density 

(µA/um)
595.045 599.237 562.048 578.495 641.463 526.868 460.980

Off current/fin (pA) 9.856 12.516 15.752 14.676 16.006 9.242 21.747

gm/fin (mS) 0.130 0.177 0.191 0.193 0.204 0.248 0.307

Supply voltage (V) 0.800 0.750 0.700 0.700 0.700 0.650 0.600

Gate capacitance 

(nF/m)
1.128 0.995 0.939 0.772 0.719 0.633 0.523

Junction capacitance 

(F/m2)
0.012 0.013 0.014 0.012 0.013 0.009 0.010
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Technology Extension to 1nm node
BEOL Trend

- Exponential increase in resistivity at advanced nodes (sub 20 nm) due to surface/grain boundary scattering.
- Assume copper interconnect and introduce modified FS-MS model to estimate the copper resistivity as a 

function of aspect ratio, metal width, barrier thickness and grain size.
- Set 0.2fF/um for parasitic capacitance across all technology nodes.

Pyzyna, et al. Resistivity of copper interconnects beyond the 7 nm node

(FS-MS model)

Neurosim Metal Width Assumptions

Technology Node (nm)

14 10 7 5 3 2 1

Metal track in M0

(T)
9 7.5 6 6 6 5.7 5

Metal 

pitch

(nm)

M2 64 44 40 36 32 24 16

M0 64 44 40 30 24 20 16

M1 78 64 57 34 32 23 20

Barrier thickness for 

M0-M2 (nm)
2.5 2.5 2.5 2.0 1.5 0.5 0.5
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DCIM Scaling Trend
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• Circuit-level analysis of DCIM down to 1 nm node is enabled by NeuroSim 1.4 framework.

• Macro-level and chip-level DCIM vs ACIM benchmark at state-of-the-art technology node is performed using the 
updated NeuroSim 1.4 framework.

• Using the nominal chip design parameters for ResNet18-ImageNet workload, 2nm DCIM is found to outperform state-
of-the-art 7nm SRAM-based ACIM. 

DCIM Scaling Trend

FOM=TOPS/WxTOPS/mm2
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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NeuroSim Extension Roadmap

Timeloop: simulator for systolic array-based DNN 
accelerator (TPU-like workloads)

NeuroSim: provide macro-level memory read/write 
latency/energy
Integrate NeuroSim and Timeloop to get system-level 
performance with more diverse memory 
technologies as TPU global buffer 

Projection of 
CIM hardware 
towards 
advanced 
technology 
nodes

Technology 
update to 1 
nm node 

[2023 July]

NeuroSim

+Timeloop

[TBD]

NeuroSim

+GEM5 

[TBD]

Chiplet based 
NeuroSim

[TBD] 

Integrate 
NeuroSim 
and Timeloop 
for TPU 
simulation
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NeuroSim Extension Roadmap

Projection of 
CIM hardware 
towards 
advanced 
technology 
nodes

Technology 
update to 1 
nm node 

[2023 July]

NeuroSim

+Timeloop

[TBD]

NeuroSim

+GEM5 

[TBD]

Chiplet based 
NeuroSim

[TBD] 

Integrate 
NeuroSim 
and Timeloop 
for TPU 
simulation

Build an 
interface 
between 
NeuroSim and 
GEM5 for 
CPU/GPU 
workloads

GEM5: a common simulator for computer 
architecture research (CPU/GPU workloads)

NeuroSim: provide macro-level memory 
read/write latency/energy (similarly as CACTI 
and NVSim, but supporting more advanced and 
emerging technologies)

-> Build an interface between NeuroSim and 
GEM5 to run the IPC (instructions per cycle) 
with more diverse and accurate memory model
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Emerging memories as TPU global buffer

48

SRAM suffers from low density and high leakage
Emerging memory criteria to replace SRAM: 
- high speed access (<10ns)
- high endurance (>1012) 

Emerging memory candidates:
- 2T gain cell
- Ferroelectric memories (e.g., FeFET, FeRAM)
- Magnetic memories (e.g., STT-MRAM, SOT-MRAM)

A. Lu, et al. Nature Review 2023
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TPU global buffer benchmarking settings

49

Edge TPU Cloud TPU
Technology node 22nm 3nm
Clock frequency 200MHz 700MHz

8-bit MAC PE size 16 × 16 256 × 256
Register file size 512-bit/PE

Global buffer size 2MB 24MB
DRAM interface LPDDR4, 1.2pJ/bit

Global buffer 

memory device type

22nm SRAM 3nm SRAM

22nm BEOL 2T gain cell
3D projection: 

22nm BEOL 2T gain cell & 
3nm FEOL peripherals

22nm BEOL FeFET
3D projection: 

22nm BEOL FeFET & 
3nm FEOL peripherals

22nm STT-MRAM 3nm STT-MRAM projection
22nm SOT-MRAM 3nm SOT-MRAM projection

BEOL memory 
(22nm)

FEOL CMOS (3nm)

3D projection
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TPU global buffer benchmark flow
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Step1: Memory system
simulation (with NeuroSim)

Buffer PPA
(Area, latency, Eread, Ewrite, Pleak)

Step2: DNN model mapping
(with TimeLoop)

The action count table
(# memory access, # MAC …)

Step3: System performance evaluation 
(with customized simulator)

System level performance metrics
(Area, energy, TOPS/W)

Metrics of other circuit modules 
(MAC, functional module, DRAM)

Memory cell parameters
(Area, Ron/Roff, Vread/Vwrite …)

DNN workload and TPU 
architecture specifications
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TPU global buffer benchmarking results
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NeuroSim Extension Roadmap

Projection of 
CIM hardware 
towards 
advanced 
technology 
nodes

Technology 
update to 1 
nm node 

[2023 July]

NeuroSim

+Timeloop

[TBD]

NeuroSim

+GEM5 

[TBD]

Chiplet based 
NeuroSim

[TBD] 

Integrate 
NeuroSim 
and Timeloop 
for TPU 
simulation

Build an 
interface 
between 
NeuroSim and 
GEM5 for 
CPU/GPU 
workloads

Reconfigurable 
2.5D 
interconnect on 
interposer 

Extension for 2.5D/3D integration, TSV, I/O link, etc.

...
...

...

...
...

...
...

...

...
...

...
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...
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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Motivation: large language model (transformer)

• Large model size: ~ hundreds GB parameters

• Various types of matrix multiplication (MM) 
workloads

• Dense MM (e. g. WQX), sparse input (e.g. 
AV), dense input & sparse output (e.g. QKT) 

WQ WK WV

MatMul QKT

Scale

Softmax

MatMul

Concat

FC

Qn×dh Kn×dh Vn×dh

Atten_scoren×n 

Atten_probn×n

Xn×d

h

h
Dense MM

Dense MM 
sparse output

Sparse MM

Outputn×d

n: sequence length
d: num. features
dh: num. features 
per head

Feed forward

Add & Norm

Add & Norm

Multi-head 
self-attention

Input 
Embedding

Input

Positional 
encoding

x N

Multi-head 
self-attention

Encoder 

Type of 
workloads Proposed solution

Large model size 
(100MB ~ a few GBs)

Various types of MM workload 
in MHSA module

• 3D Heterogeneous computing platform
• Approximate computing for attention probability

...
...

...

...
...

...
...

...

...
...

...
...

...

...
...

 Interposer links with 
high bandwidth

7nm logic tier 
SpMM: QKT, AV

7nm SRAM CIM 
SpMM: QKT

Si interposer

TSVs

22nm FeFET CIM 
Dense MM: XWQ, XWK, XWV,FC

Technology
Digital MAC

(7nm) 
SRAM CIM

(7nm) 
2-bit FeFET
CIM (22nm)

Energy/8-bit 
MAC

~1pJ ~0.5pJ ~0.2pJ

SpMM Yes No No

Write endurance Unlimited Unlimited ~105

Write speed 1 cycle 1 cycle > 100ns
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• Use low precision (4-bit) CIM computing to determine the small attention scores

• Use 8-bit digital MAC for the attention scores with high magnitude

Approximate computing for attention prob.

Pseudo code: approximate computing
# 4-bit approx. computing with CIM
Slow = Q4b × K4b

T (CIM)
Atten_problow = Softmax(Slow)
Mask = where(Atten_problow > threshold, 1, 0)

# 8-bit digital MAC for large scores
Shigh = Q8b × K8b

T for Mask > 0
S = where(Mask > 0, Shigh, Slow)

# do softmax
S = S/sqrt(dh)
Atten_prob = Softmax(S)
Atten_prob = max(Atten_prob, threshold)

# linear combination with V
Out = SpMM(Atten_prob, V)
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• Mapping: Q, K in the same 
cube

• IFM delivery: broadcast to each 
heads

• By group (input channel)

• Q, K: send to the bottom SRAM 
CIM for storage

• Q, K of the same head will 
be in the same tile

• Send to the other cube if 
it can not store all the 
heads (e.g. 4 heads in this 
case)

3D Dataflow for MHSA computing: Q, K

Fig. the dataflow for IFM delivery (left) and partial sum 
accumulation (right) for Q, K multiplication
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• SRAM CIM for approximate computing

• Send the mask of attention prob of the digital MAC

• 8-bit MAC for attention prob of high magnitude

• Output stationary dataflow

3D Dataflow for MHSA computing: QKT
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Fig. the approximate computing scheme using CIM and digital systolic array
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2.5D/3D Package-Level Benchmark Framework

58

Input: bert model

Partition and mapping

Cube, tier, tile ids for each 

weight block

PPA estimation

E = Ecim+Emac+Etsv+Esi_ip

t = tcim+tmac+ttsv+tsi_ip

Interconnect 

energy and 

latency

NeuroSim 

·22nm FeFET CIM

·7nm SRAM CIM

Systolic array

·J/MAC etc.

Interconnect model 

·TSV and 2.5D link

Mapper Simulator

Technology library
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Design Parameters
TABLE 1. The configurations of the proposed design and baselines

Design name Configuration of a cube (16 tiers)
H3D_Hybrid (Optimal) 7nm systolic + 7nm SRAM CIM + 22nm FeFET CIM × 14

H3D_MAC 7nm systolic + 7nm SRAM buffer + 22nm FeFET buffer× 14
H3D_FeFET 22nm 1-bit FeFET CIM × 2 + 22nm 2-bit FeFET CIM × 14
H3D_SRAM 7nm SRAM CIM× 16

TABLE 2. The device and circuit parameters in the simulation

Device Tech. node Cell bit Cell size ADC-bit
Parallel 

read
Write

8T SRAM F=7nm 1-bit 1080F2 3-bit 8 rows 0.8V/1cycle
FeFET F=22nm 1 or 2-bit 54F2 3-bit 8 rows 3V/50ns (1-bit)

TABLE 3. The interconnect parameters for simulation

Name Pitch Diameter Height CTSV

Band
width

Energy

TSV 20μm 10μm 100μm ~360fF
256-
bit

0.35pJ/bit

Name Length Pitch Width Height Cwire

Band
width

Energy

Si interposer 500μm 10μm 2μm 2μm ~73fF
256-
bit

0.17pJ/bit

TABLE 4. The projected performance of a 7nm systolic array (32×32)

Name MAC energy Throughput (dense)
Throughput 

(sparse)
Area

Sparse engine 0.34pJ/MAC 1024 MACs/cycle
675 

MAC/cycle
0.89mm2
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Interconnect Modeling and Validation
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Transmitter Receiver
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TSV, given the 
height/diameter and distance 
of keep-out-zone

2.5D links modeled as RC 
network
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Impact of 2.5D/3D Technology Parameters

Fig. (a) The interposer area (form factor) and energy efficiency with different number of 
tiers stacked in a 3D cube. Energy efficiency reduces in more stacked tiers due to parasitics; 
(b) The interposer area and latency with different TSV bandwidth. The latency is reduced by 
21.5% with 256-bit TSV bandwidth.
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• 4-bit weight and activation is needed for QK multiplication

• Negligible accuracy loss using Bert-base (~110M parameters) or GPT-2 (~1.7G parameters)

Results: approximate computing accuracy

Fig. (a) The F1 score and sparsity of attention score with different threshold values to zero out small attention 
scores.(b) The accuracy w. and w/o. hardware effects of SRAM CIM array when calculating the attention scores 
for Bert-base and GPT-2

Microsoft Research Paraphrase Corpus (MRPC)
Corpus of Linguistic Acceptability (CoLA)

(a) (b)

Bert

Bert

GPT-2
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Results: Hardware PPA Breakdown 

Energy breakdown for 
different workloads

A layer-by-layer computing scheme is adopted to 
achieve low power consumption for edge device. With 
such as low total power (~30mW), the temperature 
rise is small.
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Technology/Packaging Scaling Perspective

64

N1 N2 N3 N4 N5

TSV pitch (μm) 20 14 9 6 4.5

Si-interposer
Pitch (μm)

10 7 4.5 3 2

FeFET Tech. 
node (nm)

22 22 14 14 14

FeFET chip freq. 
(MHz)

200 200 300 300 300

• Two scaling schemes are considered, one with packaging scaling only while the other with both packaging 
and transistor technology scaling. 

• It is observed that both the energy efficiency and the latency could be bounded by computing if there is 
only packaging technology scaling. 

• Therefore, it is important to synchronize the scaling of the packaging technology and transistor technology. 
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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Bioinformatics Challenges
• Motivation:

• Mass spectrometry (MS) and genome analysis are two foundational workloads for 

proteomics, drug discovery, and genetic diagnosis

66

1. Karimi, M. R., Karimi, A. H., Abolmaali, S., Sadeghi, M., & Schmitz, U. (2022). Prospects and challenges of cancer 
systems medicine: From genes to disease networks. Briefings in Bioinformatics, 23(1), bbab343.

• Challenges:
• MS and genome data are booming, e.g. Over 521 

TB MS data in UCSD MassIVE database (as of 

05/27/2022)

• MS and genome analysis are memory-intensive 

workloads that take long time (a few hours to days)
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Motivation & Goals
• State of the art:

• Mass spectrometry: Ann-Solo1 and HOMS-TC2 for peptide identification and 
HyperSpec3 for clustering

• Genome analysis: BioHD4 for pattern matching

• Metrics:
• Algorithm: Accuracy and identification rate for identification/matching
• Hardware: Power, performance, area (PPA) for proposed designs

67

1. W. Bittremieux. et al. Extremely fast and accurate open modification spectral library searching of high-resolution mass spectra using feature hashing and graphics 
processing units. Journal of Proteome Research 18, 3792–3799 (2019)

2. Kang, Jaeyoung, et al. "Accelerating open modification spectral library searching on tensor core in high-dimensional space." Bioinformatics 39.7 (2023): btad404.
3. Xu, Weihong, et al. "HyperSpec: Ultrafast Mass Spectra Clustering in Hyperdimensional Space." Journal of Proteome Research (2023).
4. Zou, Zhuowen, et al. "Biohd: an efficient genome sequence search platform using hyperdimensional memorization." ISCA, 2022.

Ann-Solo HyperSpec BioHD
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Motivation & Goals

• Proposed solution:
• Algorithm: Use hyperdimensional computing (HDC) to present/process bio workloads
• Hardware: Develop AIMS architecture based on 3D NAND Flash incorporated with 2.5D/3D heterogeneous 

integration to reduce the latency and improve the energy efficiency of current Mass Spectrometry (MS) 
analysis on CPU/GPU by 10-100x

• Success criteria:
• Demonstrate accuracy of HDC-aided bio algorithms on CPU/GPU
• Present 3D NAND-based accelerator or memory system
• Evaluate the hardware feasibility using electrothermal simulation. Compare the PPA metrics with SOA GPU or 

in-memory solutions
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Hyperdimensional Computing (HDC)
• Hyperdimensional Computing consists of two phases: training(store) phase 

and inference phase. 
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Proposed 3D NAND HDC Engine

• The peripheral circuits are adapted from common 3D NAND 
periphery and adding additional ADC and comparator for 
hyperdimensional computing

3D NAND Array
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3D NAND Associative Memory
• The query hypervector is sent in as BL voltage and times the 

conductance representing the corresponding class hypervector. 
The summed current is the dot product used for similarity check.
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Heterogeneous Integration
• Two heterogeneous integration techniques for 3D NAND, Cu-Cu 

hybrid bonding and CMOS under array (CuA), are incorporated to 
achieve a compact form factor.

Pass Tr.
HV 

Switch

SL ADC

Comparator   

I/O Buffer

XDEC   
EncoderBL MUX w/ LS

Metadata Buffer   

CMOS Wafer NAND Wafer

3D NAND
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Simulation Parameters
• Dataset

• Training dataset [1]:10,575 microorganism 
genome sequences with an average length of 3 
million nitrogen bases per sequence.

• Testing dataset: Artificially generate mutated 
sequences with the mutation rate of 10-3 per 
generation for classification.

• 3D NAND Parameters from industry [2].

• Digital circuits are synthesized using ASAP 7 [3].

• 3D NAND Peripherals are extracted from NeuroSim [4].

[1] “WoL: Reference Phylogeny for Microbes” https://biocore.github.io/wol/
[2] Hang-Ting Lue et al. 2019. Optimal Design Methods to Transform 3D NAND Flash into a 
High-Density, High-Bandwidth and Low-Power Nonvolatile Computing in Memory (nvCIM) 
Accelerator for Deep-Learning Neural Networks (DNN). In IEEE International Electron Devices 
Meeting (IEDM). 38.1.1–38.1.4.
[3] L. T. Clark et al.,“ASAP7: A 7-nm FinFET predictive process design kit,” Microelectronics 
Journal, vol. 53, pp. 105-115, July 2016.
[4] Xiaochen Peng et al. 2019. DNN+NeuroSim: An End-to-End Benchmarking Framework for 
Compute-in-Memory Accelerators with Versatile Device Technologies. In 2019 IEEE 
International Electron Devices Meeting (IEDM). 32.5.1–32.5.4.
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ADC Precision Requirement
• The simulation result indicates that the minimum requirement of ADC bit is 

4-bit.

• The summed current distribution of each SL before sending to ADC with ON 
current of 2nA [1] is also simulated. The range of summed currents is in few 
μA which is reasonable for sensing.
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[1] Hang-Ting Lue et al. 2019. Optimal Design Methods to Transform 3D NAND Flash into a High-Density, High-Bandwidth and Low-Power Nonvolatile 
Computing in Memory (nvCIM) Accelerator for Deep-Learning Neural Networks (DNN). In IEEE International Electron Devices Meeting (IEDM). 38.1.1–38.1.4.
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3D NAND Device Non-ideal Effects
• The 3D NAND parameters [1] are ON current = 2nA, OFF current = 1pA, ADC bit precision = 10-bit, 

VBL = 0.2V and Vpass,r = 4.5V. 

• From the silicon data, the current variation (σ/μ) is 0.1 and current shift (δ/μ) is ±0.05 which is 
tolerable from the simulation results.
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[1] Hang-Ting Lue et al. 2019. Optimal Design Methods to Transform 3D NAND Flash into a High-Density, High-Bandwidth and Low-Power Nonvolatile 
Computing in Memory (nvCIM) Accelerator for Deep-Learning Neural Networks (DNN). In IEEE International Electron Devices Meeting (IEDM). 38.1.1–38.1.4.
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Performance
• Peak performance and average performance with 

different lengths of the genome sequences are 
calculated.

• Throughput is estimated to produce more than 100 
genome sequences classification per second and the 
average energy consumption for a single genome is 
16.86 mJ.• Comparing with commercial 3D NAND 

which requires >16 mJ to transfer the 
class hypervectors, the 3D NAND read 
energy of 11.7 μJ in the proposed system 
is >1000x smaller.
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Outline
• Introduction to AI hardware and CIM paradigm

• NeuroSim V1 inference methodologies: area, latency, and energy estimation

• NeuroSim V2 training methodologies: supporting quantization and other non-ideal device 
effects.

• NeuroSim extension 1: technology updates to 1 nm node and DCIM support

• NeuroSim extension 2: TPU-like architecture benchmark with novel global buffer memory 
designs

• NeuroSim extension 3: chiplet based integration for ultra-large-scale transformer model

• NeuroSim extension 4: 3D NAND based CIM for hyperdimensional computing

• Demo of running inference engine benchmarking (DNN+NeuroSim V1.4)
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Examples of Running DNN+NeuroSim V1.4

79

• NeuroSim core: consists of multiple .cpp/.h files

• .cpp files in the Neurosim core can be classified into 4 categories:

(1) Parameter files: ex) Param.cpp, Technology.cpp

(2) Circuit module files: ex) Adder.cpp, Buffer.cpp, Comparator.cpp … 

(3) Subarray/ProcessingUnit/Tile/Chip.cpp: Describes the circuit operation in each level of chip 
hierarchy

(4) main.cpp: description of the overall chip computation flow, final performance metrics 
calculation

• Parameter files should be accessed to set the device/hardware parameters

• Subarray.cpp, ProcessingUnit.cpp, Tile.cpp, and Chip.cpp include parameter files, circuit 
module files to estimate the power/area/latency of CIM hardware. 
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Examples of Running DNN+NeuroSim V1.4 
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• NeuroSim core: device parameters input in param.cpp

• Type:

• SRAM:

• eNVM:
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Examples of Running DNN+NeuroSim V1.4 
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• NeuroSim core: V1.4 update - SRAM scaling to 1nm node
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• NeuroSim core: circuit parameters input in param.cpp

• Technology:

• Sub-array size:

• ADC type/sharing/resolution:

Examples of Running DNN+NeuroSim V1.4 
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• NeuroSim core: V1.4 update – improved interconnect models & scaling

• Wire width:

• Metal0:

• Metal1:

Examples of Running DNN+NeuroSim V1.4 
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• NeuroSim core: technology parameters in Technology.cpp

-> contains comprehensive device specifications for logic transistors down to 1 nm node.

technology 
parameters

Examples of Running DNN+NeuroSim V1.4 
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• Python wrapper that interfaces with PyTorch
• inference.py: accuracy estimation w/ hardware effects

• Input non-ideality effects of characterized devices + algorithmic parameters (dataset, 
weight/bit resolution)

    Model/dataset/mode

Resolution

Hardware properties

Nonideal effects

(variation, retention)

Examples of Running DNN+NeuroSim V1.4 

V1.4 update: user defines number of rows read 
  in parallel in the sub-arrays
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• Circuit Modules in NeuroSim

    

Examples of Running DNN+NeuroSim V1.4 
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• Circuit Modules in NeuroSim

    Basic setting of the circuit is initialized 
at the beginning of the simulation 
based on the input parameters

-> transistor sizing/adder bit etc. are 
determined based on the input 
arguments

Examples of Running DNN+NeuroSim V1.4 
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• Circuit Modules in NeuroSim

    Basic setting of the circuit is initialized 
at the beginning of the simulation 
based on the input parameters

-> transistor sizing/adder bit etc. are 
determined based on the input 
arguments

Examples of Running DNN+NeuroSim V1.4 

Each circuit module include area, 
latency and power calculations.

V1.4 update: calculations support GAA 
special layout
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• Circuit Modules in NeuroSim

    

Area estimation code

Examples of Running DNN+NeuroSim V1.4 

Uses the typical CMOS layout rule for 
estimating the area and special rule for GAA.

-> Given the number of NMOS/PMOS & the 
maximum possible width/fin number of 
NMOS/PMOS of standard cell, the area is 
calculated. 

-> Folding in the CPP direction is applied to 
support various circuit topologies considering 
the area efficiency. 

V1.4: Area for GAA special layout 
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• Circuit Modules in NeuroSim

    

Examples of Running DNN+NeuroSim V1.4 

Gustavo, et al. Toward Better Layout Design in ASTRAN CAD
Tool by Using an Efficient Transistor Folding 
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• Circuit Modules in NeuroSim

    

Latency estimation code

Examples of Running DNN+NeuroSim V1.4 

Horowitz delay estimation model is 
adopted for latency estimation.
-> Given the input ramp rate/Elmore 
delay, the propagation delay/output 
ramp rate is calculated.

Bharadwaj S, et al. Speed and Power Scaling of SRAM’s

Input/output 
pulse has a 
certain ramp rate

V1.4: Latency for GAA special layout 
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• Circuit Modules in NeuroSim

    

Examples of Running DNN+NeuroSim V1.4 

Bharadwaj S, et al. Speed and Power Scaling of SRAM’s

1. Circuit RC parasitic 
modeling

2. Elmore delay (D) 
calculation

3. Propagation 
delay/output ramp rate 
estimation through 
Horowitz delay modelPai-Yu Chen, et al. NeuroSim: A Circuit-Level Macro Model 

for Benchmarking Neuro-Inspired Architectures
in Online Learning 

Bharadwaj S, et al. Speed and Power Scaling of SRAM’s
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• Circuit Modules in NeuroSim

    

Power estimation code

Examples of Running DNN+NeuroSim V1.4 

1. Dynamic Energy
-> CnodeVdd

2 * (switching factor) per each 
cycle is summed up for all nodes.
-> switching factor considers the average 
switching event during a cycle.

2. Leakage Energy
-> Ioff * Vdd * (averaging factor) * (Idle time) 
is summed up for all gates.
-> the averaging factor considers the 
average leakage energy of the transistors in 
a gate. It is dependent on the type of 
gate/number of inputs.

V1.4: Power for GAA special layout 
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• Optional: self-defined network models
• Create your own file in “models” folder: Replace nn.Conv2d / nn.Linear as QConv2d / QLinear

• make_layers function (just call it, no need to change)

Examples of Running DNN+NeuroSim V1.4 
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• Optional: self-defined network models
• Create your own NetWork.csv 

Example: VGG-8

Examples of Running DNN+NeuroSim V1.4 
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• Workflow:

Run inference.py

Create model file

Run train.py

Create 
NetWork.csv

Change param.cpp

Compile c++ files

optional

• Output example:

• Accuracy

• Floorplan

Examples of Running DNN+NeuroSim V1.4 
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• Output example: 
• each layer performance breakdown Latency & energy of:

➢ Whole layer
➢ Buffer
➢ Interconnection 
➢ ADC
➢ Accumulation
➢ Other
Leakage

Examples of Running DNN+NeuroSim V1.4 
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• Output examples:

• System-level summary

Latency & energy of:
➢ Whole chip
➢ Buffer
➢ Interconnection 
➢ ADC
➢ Accumulation
➢ Other peripheries
Leakage

Area

➢ Energy efficiency
➢ Throughput
➢ Compute efficiency

Examples of Running DNN+NeuroSim V1.4 
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