Toward Robust Neural Network Computation on Emerging Crossbar-based Hardware and Digital Systems

Yiyu Shi, Masanori Hashimoto Jan. 22, 2024 Toward Robust Neural Network Computation on Emerging Crossbar-based Hardware and Digital Systems

Yiyu Shi, Masanori Hashimoto

Jan. 22, 2024

Organization

Yiyu Shi

- Efficient worst-case analysis for neural network inference using emerging device-based CiM,
- Enhancement of worst-case performance through noiseinjection training,
- Co-design of software and neural architecture specifically for emerging device-based CiMs.

Masanori Hashimoto

- Identification of vulnerabilities in neural networks,
- Reliability analysis and enhancement of AI accelerators for edge computing,
- Reliability assessment of GPUs against soft errors.

Toward Robust Neural Network Computation on *Emerging Crossbar-based* Hardware and Digital Systems

Yiyu Shi Dept. of CSE, University of Notre Dame yshi4@nd.edu Jan. 22, 2024

□ Introduction: Crossbar-based Hardware and their Robustness Issues

- Remedy Methods: Cross-Layer Co-Design
 - Device: Device Programming Techniques
 - Circuit/Arch: Worst-case Analysis
 - Software: HW-Aware Training
 - Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

DNN on Edge: Memory Wall Issue

Goal: Deploy DNN on Edge

Handle Various Tasks Gets SOTA Performances Promising for Edge Apps. Limited Power Budget

Memory Wall issue for Efficient DNN Acceleration

[1] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE journal of solid-state circuits 52.1 (2016)

Hardware Solution: Compute-in-Memory

□ CiM DNN Accelerator using Crossbar Arrays: Advantages

nput vector

Crossbar Array: VMM Engine

- Input: Voltage
- Weight: Conductance
- **Output:** Current

Output vector

A/D Conversion Needed

[2] Zheyu Yan, X. Sharon Hu and Yiyu Shi, "On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks", chapter in System Dependability and Analytics: Approaching System Dependability from Data, System and Analytics Perspectives, Springer, 2023.

Emerging Technology: Pros and Cons

Emerging NVM Devices Advantages

- Non-volatile: used as storage & memory
- Compact: more data on chip
- Read: Fast & Low energy

Emerging NVM Devices

[3] Yan, Zheyu, et al. "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural architecture search." 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.

Device Variations: Evaluations

□ Existing Evaluation Workflows

Device Modeling

Circuit/Arch Abstraction

Monte Carlo Simulation

Issues of Existing Methods

Device Variations: Remedies

Our Approach: Cross-Layer Co-Design

□ Al Acceleration Design Levels

Contributions of Different Layers Advantages for Co-Design Ε Ε Ε E R R R QUANTITY OF ITEM **Device/Circuit System Software** Multi-object Opt. **Joint Optimal**

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Remedy Methods: Overview

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Selective Write-Verify (1)

Selective Write-Verify (2)

□ Overview

- Write-verify a portion of the devices
- Write the other device once
- Accelerate the deployment process

Use Write-Verify

Write only once

W-V a portion of the devices

[4] Z. Yan, X. S. Hu, and Y. Shi, "SWIM: Selective write-verify for computing-in-memory neural accelerators," 2022 59th ACM/IEEE Design Automation Conference (DAC)

Selective Write-Verify (3)

Results

Published in EDA top

Conference **DAC** [3]

Cited by Nature Paper from Ju Li, MIT [4]

90% Sensitivity Measurement Acc

10x Deployment Speedup

nature

Thousands of conductance levels in memristors integrated on CMOS Memristive-switching devices are known for their relatively large e number of dynam Can achieve accurate ndeveloped discret programming to accu es with fewer

than 200 conductance levels have been reported so far^{22,32}. There are

[3] Yan, Zheyu, Xiaobo Sharon Hu, and Yiyu Shi. "SWIM: Selective write-verify for computing-in-memory neural accelerators." DAC 2022 (CCF-A). [4] Rao, Mingyi, et al. "Thousands of conductance levels in memristors integrated on CMOS." Nature 615.7954 (2023): 823-829.

[4] Z. Yan, X. S. Hu, and Y. Shi, "SWIM: Selective write-verify for computing-in-memory neural accelerators," 2022 59th ACM/IEEE Design Automation Conference (DAC)

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques: Technical Details

- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Weight Sensitivity Evaluation

- Target: statistically evaluate the influence of device variations
- Method: Taylor series of the DNN loss function
- Annotation:
 - f: loss function
 - $w = \widetilde{w} + \Delta w$: weight
 - $H(\widetilde{w})$: Hessian matrix
 - *E*: expectance (average)
- Conclusion: write-verify weights with high 2nd derivatives

$$f(\boldsymbol{w}) = f(\widetilde{\boldsymbol{w}}) + \frac{\partial f}{\partial \widetilde{\boldsymbol{w}}} \Delta \boldsymbol{w} + \frac{1}{2} \Delta \boldsymbol{w}^T H(\widetilde{\boldsymbol{w}}) \Delta \boldsymbol{w} + o(\Delta \boldsymbol{w}^3)$$
$$\Delta f(\boldsymbol{w}) \approx \frac{1}{2} \Delta \boldsymbol{w}^T H(\widetilde{\boldsymbol{w}}) \Delta \boldsymbol{w}$$
$$= \frac{1}{2} \sum_{i=1}^n H_{ii} (\Delta w_i)^2 + \frac{1}{2} \sum_{i \neq j}^n H_{ij} \Delta w_i \Delta w_j$$
$$\Delta w_i \sim N(0, \sigma)$$
$$E[\Delta f(\boldsymbol{w})] \approx \frac{1}{2} \sum_{i=1}^n H_{ii} E[(\Delta w_i)^2] = \frac{\sigma^2}{2} \sum_{i=1}^n H_{ii}$$

Weight's sensitivity to device variations can be represented by its second derivative

Effectiveness of Using Second Derivative

- Annotations
 - Y axis for both figures: accuracy drop when changing a weight (MNIST)
 - X axis for figure up: Weight magnitude
 - X axis for figure down: Weight second derivative
- Conclusions
 - Accuracy drop and weight magnitude are poorly co-related
 - Accuracy drop and second derivatives are strongly co-related
 - Second derivative is a good metric for sensitivity estimation

SWIM Vs Baselines on Different Datasets

- Baselines: use weight magnitude or random as weight selection + on device training
- Solid line: average performance, Shadow: ranges for standard deviation
- SWIM much better than all baselines
- Achieves low enough (less than 2%) accuracy drop by writing-verifying less than 10% of the weights

Summary

• Proposed a framework that requires writing-verifying only a small portion of weights

- The framework can maintain DNN accuracy
- In the meantime, programming time drastically reduced
- Specifically, the proposed framework achieves up to 10x speedup

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques: Technical Details

- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Worst-Case Analysis (1)

Background: Reliability of nvCiM DNN Accelerators

Device Variations

Safety Critical Apps

Weight value

Worst-Case Analysis

Safety Critical Apps. & Worst-Case

0.8

[5] Z. Yan, X. S. Hu, and Y. Shi, "Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?" 2022 International Conference on Computer-Aided Design (ICCAD)

Worst-Case Analysis (2)

□ What if Ignoring Worst-Case Analysis

Target: Find Cancer Cells

Average Only

99% Find All Cells 1% Find NO Cell

Ideally

100% Find Some Cells 0% Find NO Cell

□ Findings: Very Low Reliability!

- 3% conductance deviation → Miss-classify all inputs
- Existing protection methods are not effective
- Published in ICCAD 22 [5]

[5] **Z. Yan**, X. S. Hu, and Y. Shi, "Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?" 2022 International Conference on Computer-Aided Design (ICCAD)

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis: Technical Details
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Formulating Worst-Case using Optimization

- $f(\boldsymbol{W} + \Delta \boldsymbol{W}, \boldsymbol{x})$
 - $(\boldsymbol{x},t)\in D$
- $\underset{\Delta W}{\text{minimize}} \left| \left\{ f(\boldsymbol{W} + \Delta \boldsymbol{W}, \boldsymbol{x}) == t | (\boldsymbol{x}, t) \in D \right\} \right|$

s.t. $L(\Delta W) \leq th_g$

- Neural architecture f, weight W and weight perturbation ΔW
- Input *x*, label *t* and dataset *D*
- Minimize the size of the set of correctly classified inputs → minimize accuracy
- Subject to the constraint that perturbation distance smaller than
 - th_g

Solving Optimization using Relaxation

- Goal: minimize $|\{f(W + \Delta W, x) == t | (x, t) \in D\}|$
- The goal is discrete and difficult to optimize, relaxation needed
- Relax to a continuous function for each input:
 - minimize $\sum_{\boldsymbol{x} \in D} p(\boldsymbol{x}, \{f, \boldsymbol{W} + \Delta \boldsymbol{W}\})$
 - $p(\mathbf{x}, \{f, \mathbf{W} + \Delta \mathbf{W}\}) > 0$, if and only if, $f(\mathbf{W} + \Delta \mathbf{W}, \mathbf{x}) == t$
 - Function that satisfies the requirement $p(\mathbf{x}, \{f, \mathbf{W} + \Delta \mathbf{W}\}) = \max\{O_t - \max_{i \neq t}(O_i), 0\}$
- Constraint $L(\Delta W) \leq th_g$: Lagrange multiplier c
- minimize $(c \cdot \sum_{x \in D} p(x, \{f, W + \Delta W\}) + (L(\Delta W) th_g))$
- Gradient descent can be used to solve this problem

Major Results for Worst-Case DNN Performance

- Baselines: Monte-Carlo Simulation (MC) & Projected Gradient Descent (PGD)
- Proposed method discovers models with lower accuracy (tighter lower bound)
- MC method failed to find models with low enough accuracy
- The proposed method finds wors-case performance efficiently

Dataset	Model	Ori. Acc.	Worst-case Accuracy (%)			Time (Minutes)		
			МС	PGD	Proposed	MC	PGD	Proposed
MNIST	LeNet	99.12	97.34	13.44	7.35	900	3.3	5.5
CIFAR-10	ConvNet	85.31	60.12	10.00	4.27	2700	4.2	6.0
CIFAR-10	ResNet-18	95.14	88.77	10.00	0.00	5400	13.3	20.0
Tiny ImageNet	ResNet-18	65.23	25.33	0.50	0.00	14400	40.0	60.0
ImageNet	ResNet-18	69.75	43.98	0.10	0.00	231000	1980	2880
ImageNet	VGG-16	71.59	66.43	0.10	0.06	313800	2530	3820

Summary

- Proposed an efficient framework to examine worst-case performance of DNNs
- Showed that the accuracy of a well-trained DNN can drop drastically to almost zero with very subtle perturbations
- Existing methods are either too costly (for stronger writeverify) or ineffective (for training-based methods)
- Further research is needed to find a solution to this issue

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
 - Overview
 - Detailed Solution
 - Experimental Results
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Realistic Worst-Case (1)

□ New Challenge: Very Low Reliability!

- 3% conductance deviation → Miss-classify all inputs
- Existing protection methods not effective
- End of the world?

Issues for Absolute Worst-Case

Realistic Worst-Case (2)

□ New Metric: K-th Percentile Performance (KPP)

□ Improving KPP

[6] **Z. Yan**, Y. Qin, X. S. Hu, and Y. Shi, "Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian noise," 2023 International Conference on Computer-Aided Design
Outline

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
 - Overview
 - Detailed Solution
 - Experimental Results
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Detailed Solution Overview

• Goal: improve realistic worst-case accuracy (KPP) of DNN under device variations

Link KPP with Model Properties

• Use loss to represent performance, find its Taylor series (the smaller the better)

$$f(w_0 + \Delta w) = f(w_0) + \Delta w f'(w_0) + \frac{(\Delta w)^2}{2} f''(w_0) + o((\Delta w)^3) (1)$$

Dev. Var.

- KPP estimation
 - Given: a DNN model, device variation distribution, and probability k%
 - Find: KPP
 - Key: write KPP in the form of an equation with model properties and k

Desired Model Properties

• Use loss to represent performance, find its Taylor series (the smaller the better)

$$f(w_0 + \Delta w) = f(w_0) + \Delta w f'(w_0) + \frac{(\Delta w)^2}{2} f''(w_0) + o((\Delta w)^3)$$

Dev. Var.

• *KPP* estimation $-KPP \approx -\frac{f'(w_0)^2}{2f''(w_0)} + f(w_0) + \frac{f''(w_0)\pi k^2 E[(\Delta w)^2]}{4}$ (3) • **Requirements:** $f''(w_0) \downarrow$, $f(w_0) \downarrow$, and $|f'(w_0)| \uparrow$

Noise Injection Training Process Analysis

Noise injection training weight update

• Taylor Series:

$$w_{t+1} = w_t - \alpha \left(f'(w_t) + w_n f''(w_t) + \frac{w_n^2}{2} f'''(w_t) + o\left((w_n)^3\right) \right)$$

• Averaged effect: $w_{t+1} = w_t - \alpha E[f'(w_t + w_n)]$

$$w_{t+1} = w_t - \alpha \left(f'(w_t) + \mathbf{E}[w_n] f''(w_t) + \frac{\mathbf{E}[(w_n)^2]}{2} f'''(w_t) \right)$$
(1)

In paper, w_n is denoted as Δw . We change this terminology to avoid ambiguity in the slides.

Findings: How Noise-Injection Training Improves KPP

- How noise-injection training fulfills the requirements
 - Requirements: $f(w_0) \downarrow$, $|f'(w_0)| \uparrow$, and $f''(w_0) \downarrow$

•
$$w_{t+1} = w_t - \alpha \left(f'(w_t) + E[w_n] f''(w_t) + \frac{E[(w_n)^2]}{2} f'''(w_t) \right)$$

- Desired noise properties $E[w_n] \neq 0$, $E[(w_n)^2] > 0$
- Gaussian does not hold this property!
- Propose four candidates
- <u>Training with RIght-Censored Gaussian NoisE</u> (TRICE)

Outline

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
 - Overview
 - Detailed Solution
 - Experimental Results
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

Experimental Setups

- Baselines:
 - Training w/o noise
 - CorrectNet [7]
 - Injecting Gaussian noise in training
- Evaluation method:
 - Metric: KPP, k = 1 (p = 1%).
 - Monte Carlo runs: 10,000

• Device mapping model

Device conductance (g): $0 - 150 \ \mu S^*$

0	100	150
0	3.0	4.5

Weight value (w): $0 - 4.5^{**}$

- Device variation model
 - Conductance follows Gaussian dist.

$$g = N\left(\frac{g_t}{\max(g)}, \sigma_d\right) \times \max(g)$$

* Absolute 0 μ S is impossible so here it means a very high resistance ** Negative weights are mapped to another array

^[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

Results on MNIST Dataset

Dev. var. (σ_d)	w/o noise	Training Mo CorrectNet	ethod Gauss.	TRICE	
0.00 0.10 0.20	99.01 70.72 19.81	97.99 90.66 39.54	98.86 95.59 66.04	98.94 95.99 77.82	 ↑ 58%, 38%
0.30 0.40	08.58 06.05	14.26 09.23	23.09 10.38	38.51 17.94	↑ 14%

- Model: LeNet, 4-bit quantization
- Metric: K-th Percentile Performance (KPP) \rightarrow 1-st percentile accuracy
- Columns: comparing three baselines with the proposed method TRICE
- Rows: over different device variation magnitude (σ_d)
- Following experiments: CorrectNet [4] \times

^[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.

Results on CIFAR-10 Dataset

- (a) VGG-8 model and (b) ResNet-18 model, 6-bit quantization
- X-axis: device variation magnitude (σ_d)
- Y-axis: KPP: 1-st percentile accuracy

Results when using Different devices

- Previous two experiments: **RRAM** devices ٠ vs. this experiment: FeFET devices
- Model: LeNet, 4-bit quantization ۲
- Dataset: MNIST •

Summary

- Advocate the use of a realistic worst-case performance metric (KPP)
- Propose a novel noise-injection training method to improve KPP
- Show that injecting right-censored Gaussian noise can effectively improve KPP

- The proposed framework improves KPP by up to 25%
- Published in ICCAD 23
- Received **Best Paper Award**

Outline

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

HW-SW Co-Design Algorithm (1)

Existing Methods

- Given: a task and a design space
- Find: the optimal HW-SW design pair

Differentiable Methods

Child Network-Based

Using Existing Methods

$\sigma = 0.01$ $\sigma = 0.02$ $\sigma = 0.03$ $\sigma = 0.04$ 40% Fairness -0.0014 -0.0012 -0.0010 -0.0008 -0.0005 -0.0004 -0.0002 EOpp0 **Image Segmentation**

Issues for Existing Methods

[8] W. Jiang, Q. Lou, Z. Yan, et al., "Device-circuit-architecture co-exploration for computing-in-memory neural accelerators," IEEE Transactions on Computers, 2020 [9] Y. Guo, Z. Yan, X. Yu, et al., "Hardware design and the fairness of a neural network". Nature Electronics (under review)

HW-SW Co-Design Algorithm (2)

□ Why Existing Methods are Not Efficient

- Cold start: Random initialization
- Search space explosion

Cold Start

Search Space Explosion

Dealing with These Issues

Combine RL with Differentiable Methods

[10] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, "On the viability of using Ilms for sw/hw co-design: An example in designing cim DNN accelerators," SoCC 2023 [11] Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, "Radars: Memory efficient reinforcement learning aided differentiable neural architecture search," ASP-DAC 2022

Our Solution: Summary

Outline

Introduction: Crossbar-based Hardware and their Robustness Issues

Remedy Methods: Cross-Layer Co-Design

- Device: Device Programming Techniques
- Circuit/Arch: Worst-case Analysis
- Software: HW-Aware Training
- Co-Design: HW-SW Co-Design Algorithm

Outlook & Conclusions

Outlooks

- □ Incremental Future Works
 - Using LLM to improve HW-SW Co-Design for robustness

Accommodating SWIM to more types of devices

□ Future Directions

- Hardware backdoors for CiM platforms
- Physical verifications for CiM techniques
- Mix-precision designs for robust DNN models

Hardware Backdoor

Conclusions

Introduction: Crossbar-based Hardware and their Robustness Issues

- Remedy Methods: Cross-Layer Co-Design
 - Device: Device Programming Techniques
 - Circuit/Arch: Worst-case Analysis
 - Software: HW-Aware Training
 - Co-Design: HW-SW Co-Design Algorithm
- Outlook & Conclusions

References

- 1. Z. Yan, X. S. Hu, and Y. Shi, "Swim: Selective write-verify for computing-in-memory neural accelerators," 2022 59th ACM/IEEE Design Automation Conference (DAC)
- 2. Z. Yan, X. S. Hu, and Y. Shi, "Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?" 2022 International Conference on Computer-Aided Design (ICCAD)
- **3. Z. Yan**, Y. Qin, X. S. Hu, and Y. Shi, "Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian noise," 2023 International Conference on Computer-Aided Design (ICCAD) (Best Paper Award)
- 4. Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, "Radars: Memory efficient reinforcement learning aided differentiable neural architecture search," in 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)
- 5. Z. Yan, D.-C. Juan, X. S. Hu, and Y. Shi, "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural architecture search," in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)
- 6. Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, "When single event upset meets deep neural networks: Observations, explorations, and remedies," in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)
- 7. Z. Yan, X. S. Hu, and Y. Shi, "On the reliability of computing-in-memory accelerators for deep neural networks," in System Dependability and Analytics: Approaching System Dependability from Data, System and Analytics Perspectives
- 8. Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, "On the viability of using Ilms for sw/hw co-design: An example in designing cim DNN accelerators," in Proceedings of the 36th IEEE International System-on-chip Conference
- 9. L. Yang, **Z. Yan**, M. Li, et al., "Co-exploration of neural architectures and heterogeneous asic accelerator designs targeting multiple tasks," in 2020 57th ACM/IEEE Design Automation Conference (DAC), IEEE, 2020

10. W. Jiang, Q. Lou, **Z. Yan**, et al., "Device-circuit-architecture co-exploration for computing-in-memory neural accelerators," IEEE Transactions on Computers, 2020

Thank You & Questions

Toward Robust Neural Network Computation on Emerging Crossbar-based Hardware and Digital Systems

Masanori Hashimoto

Dept. Informatics, Kyoto University hashimoto@i.kyoto-u.ac.jp Jan. 22, 2024

Abstract

Deep Neural Networks (DNNs) are currently operated on GPUs in both cloud servers and edge-computing devices, with recent applications extending to safety-critical areas like autonomous driving. Accordingly, the reliability of DNNs and their hardware platforms is garnering increased attention. This talk will focus on soft errors, predominantly caused by cosmic rays, a major error source during an intermediate device's lifetime. While DNNs are inherently robust against bit flips, these errors can still lead to severe miscalculations due to weight and activation perturbations, bit flips in AI accelerators, and errors in their interfaces with microcontrollers, etc. The latter part of this tutorial will discuss:

- Identification of vulnerabilities in neural networks,
- Reliability analysis and enhancement of AI accelerators for edge computing,
- Reliability assessment of GPUs against soft errors.

Neutrons and muons are falling into VLSI³ chips 111 CPU FPGA

Example of nuclear reaction

Example of reaction in VLSI chip

Fig. 3. Cross section view of the initial charge distribution by the nuclear reaction, $n + {}^{28}Si \rightarrow 3n + 2p + 2\alpha + {}^{16}O$, at the incident energy of 233 MeV. The track of ${}^{16}O$ ion with its kinetic energy of 4.23 MeV is not depicted because the direction of motion is nearly parallel to the y-axis [1].

[1] S. Abe, et. al, "Multi-scale Monte Carlo simulation of soft errors using PHITS-HyENEXSS code system," *IEEE Trans. Nuclear Science*, 2012

Incident in aircraft (Oct. 2008)

A steep dive due to flyby-wire system failure

1/3 customers and 3/4 crews injured

ATSB TRANSPORT SAFETY REPOR Aviation Occurrence Investigatio AO-2008-07

In-flight upset 154 km west of Learmonth, WA 7 October 2008 VH-QPA Airbus A330-303

Table 26:	Evaluation	of	potential	triggers

Trigger	Key points	Assessment
Software	ADIRU software was verified as intact after the occurrences.	Very unlikely
corruption	Unit 4167's software was reloaded and verified between the two occurrences involving this unit.	
Software 'bug'	Would not be expected to occur twice on one unit without many other occurrences on other units.	Very unlikely
	Functional testing of software found no problems.	
	No unique circumstances identified with the occurrence flights that could trigger a rare bug.	
Hardware	Extensive unit and module testing found no problems.	Very unlikely
fault	Visual examination of the units did not identify any physical damage or other abnormalities.	
	Not consistent with a 'soft fault'.	
Physical	Unit testing beyond relevant standards found no problems.	Very unlikely
environment	Visual examination of the units did not identify any physical damage or other abnormalities that could result in a relevant equipment fault when exposed to normal or abnormal environmental conditions.	
	The physical environment was normal during the three flights.	
	Nothing unusual found with aircraft environment during testing.	
EMI from	Extensive unit testing found no problems.	Unlikely
aircraft systems	Measurement of the electromagnetic environment within the aircraft during ground and flight tests showed nothing unusual or excessive.	
	It was not possible to reproduce the exact conditions of the occurrence flights during testing.	
	Wiring integrity tests found no problems.	
	The aircraft configuration was not unique or unusual.	
	No problems with the other ADIRUs installed on same aircraft.	
EMI from	No sources of concern were identified.	Very unlikely
other onboard sources	Extensive unit testing found no problems.	
	Measurement within the aircraft while PEDs were in use showed very minor effects on the electromagnetic environment.	
EMI from external sources	No sources of concern were identified.	Very unlikely
	Extensive unit testing found no problems.	
	The electromagnetic environment during flight tests showed nothing unusual or excessive.	
	No problems with other systems during the occurrence flights.	I
SEE	The intensity of high-energy particles for the three occurrences was not unusual.	Insufficient evidence to
	The ADIRU had limited mechanisms to detect and manage SEE (that is, no EDAC).	estimate likelihood
	No SEE testing was performed on the occurrence units.	
	SEE testing on another unit did not induce the data-spike failure mode (although the testing was limited in scope).	
70 ndf	Difficult to accurately estimate the likelihood of two SEEs	

Other factors (Very) unlikely

Soft error Insufficient evidence since reproduction is very difficult

https://www.atsb.gov.au/media/3532398/ao2008070.pdf

Multi-physics multi-layer phenomena with diverse temporal and spatial scales

Real-time & accelerated test

Many devices are operated

 Months to years are necessary to get enough # of errors

https://ars.els-cdn.com/content/image/1-s2.0-S0026271414000882-gr3.jpg

Demonstration

Linux is running on Raspberry Pi

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.

Our life depends on AI applications running on integrated systems

11

http://rtc.nagoya.riken.jp/ROBEAR/

High reliability is demanded for AI-based safetycritical applications. Rad-hard components sufficiently powerful to execute DNNs are not available, yet.

Preliminary experiment irradiating object detection running on GPUs

- Yolov3-tiny
- GPU cards
 - NVIDIA Quadro P2000
 - NVIDIA GeForce GTX960
 - Aligned in series on the beam track

Y. Zhang, K. Ito, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, "Fault Mode Analysis of Neural Network-based Object Detection on GPUs with Neutron Irradiation Test," *RADECS*, 2020.

Definitions of DUE, SDC and critical SDC

- Impact of soft error on computation includes
- wrong computation result (SDC; Silent Data Corruption)
 - Harmful for all applications
- hang or halt (DUE; Detectable Uncoverable Error)
 - Harmful for real-time applications
- no effect (Mask)
 - Depends on both hardware and software

Critical SDC in Object Detection

- SDCs that are critical to object detection
- IoU (intersection-over-union) is used to evaluate critical SDC

IoU: IoU of faulty and golden output *IoU* > thresh: normal SDC (thresh: 0.8 in exp.) *IoU* < thresh: critical SDC

Temporal patterns of observed SDCs

15

- Each row corresponds to one sequence of error occurrence
- Some faulty outputs last for hundreds of seconds probably due to weight data corruption

Fault mode categorization

Classify errors into two-by-two categories:

- Identical errors repeat or not
- SDC critical or not

Category	Identical	Variant
	errors	errors
Critical SDC	2	2
Non- critical	8	6

of faulty events

Not all SDCs are critical.

NNs are inherently redundant and robust to parameter perturbation.

Error rate depends on underlaying hardware.

Current research status

- Some data in literature suggests radiation impact on DNN is so high, hindering safe large-scale use.
- COTS AI products exhibit a high error rate due to radiation [2][3], attributed to their large size and critical resource density.
- Effective hardening strategies against radiation is necessary.

[2] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen, "Soft error resilience of deep residual networks for object recognition," *IEEE Access*, 2020.
[3] D. A. G. Goncalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech, "Evaluation and mitigation of radiation-induced soft errors in graphics processing units," *IEEE Trans. Computers*, 2016.

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU
- Countermeasures in literature

NN robustness evaluation (FP case)

- DNN robustness is important for soft error, hard error and security.
 - Malicious attack to DNN is another concern.
- Maximum impact of single event upset in network parameters.
 - Among all the parameters, only one bit of one parameter is with fault and the others are fault-free.

Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou and C. Zhuo, "When Single Event Upset Meets Deep Neural Networks: Observations, Explorations, and Remedies," *ASP-DAC*, 2020.

Observations in ResNet56

- Observation 1: the highest exponent bit has the highest impact across different layers while fraction bits have is very limited impact. $x = (-1)^{Sign} \times (1 + Fraction)^{Exponent-Bias}$
- Observation 2: the first layer, which directly deals with the input stream, has higher impact.

IV	laximum	accurac	y arop in	Resnet	00
SSIPP	Input	Stack 1	Stack 2	Stack 3	FC
Sign Ex1 Frac1	28.09% 70.19% 0.43%	6.43% 70.19% 0.29%	2.08% 70.19% 0.41%	0.27% 70.19% 0.25%	0.90% 70.19% 0.30%

and a converse of draw in Decklette

Results in other networks

- Impact of bits are: exponent > sign >> fraction
- Impact of sign bit varies layer by layer.

	NIN	/Sign	NIN	I/Ex	NIN/Fr		Res56	5/Sign	Res5	6/Ex	Res56/Fr	
Layer	W	В	W	В	W	В	W	В	W	В	W	В
1	1.0%	2.2%	80%	80%	0.2%	0.4%	28.1%	16.9%	70%	70%	0.4%	0.4%
2	0.2%	4.4%	80%	80%	0.1%	0.2%	6.4%	1.2%	70%	70%	0.3%	0.2%
3	0.3%	2.4%	80%	80%	0.2%	0.1%	2.1%	1.2%	70%	70%	0.4%	0.5%
4	0.1%	0.1%	80%	80%	0.1%	0.1%	0.3%	1.1%	70%	70%	0.3%	0.4%
5	0.3%	0.2%	80%	80%	0.2%	0.1%	-	-	-	-	-	-
Last	2.4%	0.2%	80%	80%	0.7%	0.1%	1.0%	0.1%	70%	70%	0.3%	0.1%

	VGG1	6/Sign	VGG	16/Ex	VGG16/Fr		
Layer	W	B	W	В	W	В	
1	4.2%	2.4%	70%	70%	0.9%	0.9%	
2	0.1%	0.4%	70%	70%	0.1%	0.2%	
3	0.1%	0.1%	70%	70%	0.1%	0.1%	
4	0.1%	0.1%	70%	70%	0.1%	0.1%	
5	0.1%	0.1%	70%	70%	0.1%	0.1%	
Last	0.0%	0.0%	70%	70%	0.1%	0.1%	

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU
- Countermeasures in literature

Fault injection is too time-consuming

- Fault injection(FI) is a common method for estimating vulnerability of a network due to nonlinearity of NN. However, FI costs time prohibitively because NN has too many parameters.
- Contributions: propose constructing a vulnerability model (VM) to predict vulnerability of DNN with fewer FIs in an acceptable time.
 - FI reproduces a bit flip supposing soft error and malicious attack.

Y. Zhang, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, "Estimating Vulnerability of All Model Parameters in DNN with a Small Number of Fault Injections," *DATE*, 2022. Y. Zhang, H. Itsuji, T. Uezono, T. Toba, M.Hashimoto, "Vulnerability Estimation of DNN Model Parameters with Few Fault Injections," *IEICE Trans. Fundamentals*, 2023.

Features of proposed VM construction

Machine learning is used to construct VM.

- Vulnerability definition:
 - sum of accuracy degradation for individual bit flips.
- Feature identification :
 - e.g., absolute value of parameters, gradient, calculation times, etc.
- Fast training:
 - Only conduct FI on important bits, e.g., exponent bits with value 0.
 - Iterative training to prepare minimum FI data for required accuracy

VM construction flow

Input:

- Trained NN
- Image dataset

Conventional method: FI to **all/important** bits of **all parameters.**

Proposed method: FI to **important bits of some parameters** and predict others' vulnerabilities

Output:

- Trained VM
- Vulnerability of all params.

Definition of vulnerability

$$V_i = \frac{1}{N_b} \sum_{j=1}^{N_b} (\Delta acc_{i,j})$$

For 32-bit floating point case:

Neural network

$$V_{i} = \frac{1}{32} \left(\Delta acc + \sum_{j=1}^{8} \Delta acc + \sum_{j=1}^{23} \Delta acc \right)$$

Efficient vulnerability calculation

Approximation of vulnerability

$$V_{i} = \frac{1}{N_{b}} \sum_{j=1}^{N_{b}} (\Delta acc_{i,j}) \longrightarrow V'_{i} = \frac{1}{N_{b}} \sum_{j \in bits_{i}} (\Delta acc_{i,j})$$

bits: a set that may contain integer numbers from 1 to N_b

- *bits* selection
 - Floating-point format
 - exponent bits whose values are 0.
 - Fixed-point format
 - '0' bits locating on the left side of the • Positive number: '1' to '0'; the value change is at most 100% topmost '1' bit
 - Negative number: '1' bits locating on the left side of the topmost '0' bits '0' to '1'; the value change is at most 100%

(0)(0)(1)(1)(0)(1)(1)(0)

(a) 8 exponential bits of 32 bit floating-point

1 1 0 1 1 0 (b) 8 bit positive number

0 1 1 0 (c) 8 bit fixed-point

negative number

Feature extraction

- Absolute value of param (A)
- Number of dangerous bits (D)
 - Number of *bits*
- Gradient (G)
 - Larger gradient means larger impact on NN output
 - Available in NN training process
- Calculation time (CT)
 - How many times each param is used during one NN inference
- Layer location (ID, OD)
 - Location of each layer.

Setup

- Networks
 - ResNet-18, quantized ResNet-18, yolov3-tiny
- Datasets
 - CIFAR10: ResNet-18, quantized ResNet-18
 - COCO: yolov3-tiny
- VM algorithm
 - Random forest
 - Definition of *accuracy*
 - Top-k accuracy: ResNet-18, quantized ResNet-18
 - Mean average precision (mAP): yolov3-tiny

Validating bits selection

Vulnerability distribution on different bits

- Assume for unimportant bits outside *bits*, $\Delta acc = 0$
 - ResNet-18:
 - 99.9996% unimportant bits attain $\Delta acc=0$.
 - # of fault injection is reduced by 54.5%
 - Quantized ResNet-18:
 - 99.995% unimportant bits attain $\Delta acc=0$
 - # of fault injection reduces 27.1%

Accuracy & time comparison with traditional FI

- VM can predict vulnerability accurately for resnet-18 and yolo-v3
- >3000x speed-up (733 to 0.21 hours) can be achieved compared with tradition FI.

- Traditional fault injection: flip all bits for all parameters
- BF0: only flip important bits for all parameters

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
 - Countermeasures in literature
- Robustness of hardware
 - Edge AI accelerator
 - GPU
 - Countermeasures in literature

Neural architecture search (NAS) for multi-bit-width (MBW) NNs

Thanks to approximate and quantizationcompatible features of CNNs, NAS is used for precision reduction with limited accuracy loss.

Examples of MBW LeNet5 generation

[4] M. Huang et al., "A high performance multi-bit-width booth vector systolic accelerator for NAS optimized deep learning neural networks," *IEEE Trans. CAS-I*, 2022.

Reliability concern regarding MBW NNs

- In highly precision-reduced NNs, each bit needs to carry more information.
- Important to analyze the reliability of these multi-precision networks.

	Lenet5 Backbo	ne	INT	8 model	INT4/	/8 model	INT2/4/8 model		
Layer	Activation (NCHW)	Weight (OIHW)	Precision (Bit)	Weight Size (Byte)	Precision (Bit)	Weight size (Byte)	Precision (Bit)	Weight size (Byte)	
Conv1	1×1×32×32	6×1×5×5	8	150	8	150	2	37.5	
Pooling1	1×6×28×28	-	8	-	8	-	2	-	
Conv2	1×6×14×14	16×6×5×5	8	2400	4	1200	4	1200	
Pooling2	1×16×10×10	-	8	-	4	-	4	-	
FC1	1×16×5×5	120×16×5×5	8	48000	4	24000	4	24000	
FC2	1×120×1×1	84×120×1×1	8	10080	4	5040	8	10080	
FC3	1×84×1×1	10×84×1×1	8	840	4	420	4	420	
Total	-	-	-	61470	-	30810	-	35737.5	
Accuracy	-	-	98	3.48%	95	.42%	90	.25%	

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for Multi-Precision Deep Neural Networks," *IEEE Trans. CAS-I*, 2023,

_		D:4		INTO MO	dol	INT4/8 model			INT2/4/8 model		
Increase	Layer	Position	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio
		0	15K	0	0%	15K	0	0%	15K	120	0.8000%
•		1	15K	0	0%	15K	7	0.0467%	15K	217	1.4467%
IN		2	15K	1	0.0067%	15K	13	0.0867%	-	-	-
		3	15K	0	0%	15K	57	0.3800%	-	-	-
• • • • • •	ConvI (I)	4	15K	1	0.0067%	15K	94	0.6267%	-	-	-
misclassiti		5	15K	0	0%	15K	127	0.8467%	-	-	-
		6	15K	0	0%	15K	150	1.0000%	-	-	-
-		7	15K	5	0.0333%	15K	143	0.9533%	-	-	-
cation	LAVS(esb) / I	Dur ^l (ns) / RT(ns)	8.2220e-	5 / 117457	0 / 299562.5	6.9417e	3 / 117457	/0 / 299562.5	3.9583e-	3 / 117457	0 / 301937.5
		0	240K	0	0%	240K	408	0.1700%	240K	90	0.0375%
		1	240K	0	0%	240K	610	0.2542%	240K	206	0.0858%
		2	240K	1	0.0004%	240K	893	0.3721%	240K	302	0.1258%
		3	240K	11	0.0046%	240K	1415	0.5896%	240K	486	0.2025%
	Conv2 (2)	4	240K	35	0.0146%	-	-	-	-	-	-
		5	240K	75	0.0313%	-	-	-	-	-	-
		6	240K	95	0.0396%	-	-	-	-	-	-
		7	240K	78	0.0325%	-	-	-	-	-	-
	LAVS(esb) / I	Dur ^l (ns) / RT(ns)	5.8437e	-4 / 19809	0 / 155250.0	6.5885e	-3 / 19809	0 / 155375.0	2.1473e	-3 / 19809) / 156562.5
		0	4800K	0	0%	4800K	347	0.0072%	4800K	1394	0.0290%
		1	4800K	0	0%	4800K	766	0.0160%	4800K	2320	0.0483%
		2	4800K	0	0%	4800K	1778	0.0370%	4800K	4784	0.0997%
		23	4800K	0	0%	4800K	2688	0.0560%	4800K	03/0	0.1048%
	FC1 (3)	3	4800K	0	0%	40001	2000	0.050070	40001	-	0.194070
		5	4800K	0	0%	_	_	_	_	_	_
		6	4800K	1	0.0000%	_	_	_	_	_	_
		7	4800K	46	0.0000%	_	_	_	_	_	_
	LAVS(esb) / I	/ Dur ^l (ns) / RT (ns)	4 23(00	/163937 5	5 021	1e-6 / 90 /	164562 5	1 606	20-5 / 90	165625 0
			10001		0~	10001	10-07 507	104302.5	1000		0.0007
		0	1008K	0	0%	1008K	64	0.0063%	1008K	7	0.0007%
		1	1008K	0	0%	1008K	200	0.0198%	1008K	38	0.0038%
		2	1008K	0	0%	1008K	436	0.0433%	1008K	67	0.0066%
	FC2 (4)	3	1008K	0	0%	1008K	699	0.0693%	1008K	81	0.0080%
		4	1008K	0	0%	-	-	-	1008K	93	0.0092%
		5	1008K	0	0%	-	-	-	1008K	102	0.0101%
		6	1008K	0	0%	-	-	-	1008K	178	0.0177%
			1008K	0	0%	-	-	-	1008K	3/8	0.0375%
	LAVS(esb) / I	Dur [°] (ns) / RT(ns)	0	0 / 90 / 114	812.5	1.208	52e-6 / 90 /	10/062.5	8.152	/e-//90/	115457.5
		0	84K	0	0%	84K	22	0.0262%	84K	28	0.0333%
		1	84K	0	0%	84K	40	0.0476%	84K	42	0.0500%
		2	84K	0	0%	84K	74	0.0881%	84K	74	0.0881%
	FC3 (5)	3	84K	0	0%	84K	140	0.1667%	84K	161	0.1917%
		4	84K	0	0%	-	-	-	-	-	-
		5	84K	0	0%	-	-	-	-	-	-
		6	84K	2	0.0024%	-	-	-	-	-	-
		7	84K	56	0.0667%	-	-	-	-	-	-
	LAVS(esb) / I	$Dur^{l}(ns) / RT(ns)$	3.480	0e-8 / 90 /	101500.0	1.65	6e-7 / 90 /	100062.5	1.830	0e-7 / 90 /	101437.5
	ONAVS(esb)) / Total RT(ns)	6.6	667e-4 / 8	35062.5	1.3	3537e-2 / 8	26625.0	6.1	227e-3 / 84	41000.0

-		Bit		INT8 Mo	del		INT4/8 m	odel	I	NT2/4/8 m	odel 77
Increase	Layer	Position	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio
		0	15K	0	0%	15K	0	0%	15K	120	0.8000%
•		1	15K	0	0%	15K	7	0.0467%	15K	217	1.4467%
in		2	15K	1	0.0067%	15K	13	0.0867%	-	-	-
	O = == 1 (1)	3	15K	0	0%	15K	57	0.3800%	-	-	-
• • • • •	ConvI (1)	4	15K	1	0.0067%	15K	94	0.6267%	-	-	-
misclassiti		5	15K	0	0%	15K	127	0.8467%	-	-	-
		6 🛨	15K	0	0%	15K	150	1.0000%	-	-	-
- •		7	15K	5	0.0333%	15K	143	0.9533%	-	-	-
cation	LAVS(esb) / Du	$r^{l}(ns) / RT(ns)$	8.2220e-	5 / 117457	0 / 299562.5	6.9417e-	3 / 117457	0 / 299562.5	3.9583e-	3 / 117457	0 / 301937.5
		0	240K	0	0%	240K	408	0.1700%	240K	90	0.0375%
		1	240K	0	0%	240K	610	0.2542%	240K	206	0.0858%
Lichor hit	a hava	2	240K	1	0.0004%	240K	893	0.3721%	240K	302	0.1258%
nigner bit	s nave	3	240K	11	0.0046%	240K	1415	0.5896%	240K	486	0.2025%
U	COIVZ(2)	4	240K	35	0.0146%	-	-	-	-	-	-
		5	240K	75	0.0313%	-	-	-	-	-	-
larger imp	acts.	6	240K	95	0.0396%	-	-	-	-	-	-
0		7	240K	78	0.0325%	-	-	-	-	-	-
77 10/ CD	AVS(esb) / Du	$\mathbf{r}^{l}(\mathbf{ns}) / \mathbf{RT}(\mathbf{ns})$	5.8437e	-4 / 198090	0 / 155250.0	6.5885e	-3 / 19809	0 / 155375.0	2.1473e-	-3 / 198090) / 156562.5
	CS COII	160	4800K	0	0%	4800K	347	0.0072%	4800K	1394	0.0290%
		1	4800K	0	0%	4800K	766	0.0160%	4800K	2320	0.0483%
from high	two h		4800K	0	0%	4800K	1778	0.0370%	4800K	4784	0.0997%
trom nign		ITS.	4800K	0	0%	4800K	2688	0.0560%	4800K	9349	0.1948%
0	FCI (5)	4	4800K	0	0%	-	-	-	-	-	-
		5	4800K	0	0%	-	-	-	-	-	-
		6 🚽	4800K	1	0.0000%	-	-	-	-	-	-
		7	4800K	46	0.0010%	-	-	-	-	-	-
	LAVS(esb) / Du	$\mathbf{r}^{l}(\mathbf{ns}) / \mathbf{RT}(\mathbf{ns})$	4.230	0e-8 / 90 /	/163937.5	5.021	1e-6 / 90 /	164562.5	1.606	2e-5 / 90 /	165625.0
		0	1008K	0	0%	1008K	64	0.0063%	1008K	7	0.0007%
		1	1008K	0	0%	1008K	200	0.0198%	1008K	38	0.0038%
		2	1008K	0	0%	1008K	436	0.0433%	1008K	67	0.0066%
	FC2 (4)	3	1008K	0	0%	1008K	699	0.0693%	1008K	81	0.0080%
	102 (4)	4	1008K	0	0%	-	-	-	1008K	93	0.0092%
		5	1008K	0	0%	-	-	-	1008K	102	0.0101%
		6	1008K	0	0%	-	-	-	1008K	178	0.0177%
		7	1008K	0	0%	-	-	-	1008K	378	0.0375%
	LAVS(esb) / Du	$\mathbf{r}^{\iota}(\mathbf{ns}) / \mathbf{RT}(\mathbf{ns})$	0	/ 90 / 114	812.5	1.208	2e-6 / 90 /	107062.5	8.152	7e-7 / 90 /	115437.5
		0	84K	0	0%	84K	22	0.0262%	84K	28	0.0333%
		1	84K	0	0%	84K	40	0.0476%	84K	42	0.0500%
		2	84K	0	0%	84K	74	0.0881%	84K	74	0.0881%
	FC3 (5)	3	84K	0	0%	84K	140	0.1667%	84K	161	0.1917%
	\-/	4	84K	0	0%	-	-	-	-	-	-
		5	84K	0	0%	-	-	-	-	-	-
			84K	2	0.0024%	-	-	-	-	-	-
			84K	30	0.0667%	-	-	-	-	-	-
:	LAVS(esb) / Du	$r^{\circ}(ns) / RT(ns)$	3.480	ue-8 / 90 /	101500.0	1.650	be-7 / 90 /	100062.5	1.830	ue-7 / 90 /	101437.5
	ONAVS(esb) /	ONAVS(esb) / Total RT(ns)		667e-4 / 83	35062.5	1.3537e-2 / 826625.0			6.1227e-3 / 841000.0		

	T	Bit		INT8 Mo	del		INT4/8 m	odel	I	NT2/4/8 m	nodel 70
Increase	Layer	Position	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio
		0	15K	0	0%	15K	0	0%	15K	120	0.8000%
		1	15K	0	0%	15K	1	0.0467%	15K	2.1	1.4467%
IN		2	15K	1	0.0067%	15K	13	0.0867%	-	-	-
	Conv1 (1)	3	15K	0	0%	15K	57	0.3800%	-	-	-
		4	15K	1	0.0067%	15K	94	0.6267%	-	-	-
misciassiti		5	15K	0	0%	15K	127	0.8467%	-	-	-
		6	15K	0	0%	15K	150	1.0000%	-	-	-
cation	LAVE(ash) / D	/ http://DT(no)	15K) <u>5 / 117457</u>	0.0333%	15K	143	0.9533%	-	-	-
Cation	LAVS(esb) / D	$ur^{\circ}(ns) / K1(ns)$	8.2220e-	5/11/45/	07299562.5	6.941/e-	5 / 11/45/	0 / 299562.5	3.9583e	5/11/45/	0 / 301937.5
		0	240K	0	0%	240K	408	0.1700%	240K	90	0.0375%
		1	240K	0	0%	240 K	610	0.2542%	240K	206	0.0858%
		2	240K	1	0.0004%	240K	1415	0.5721%	240K	186	0.1258%
	Conv2 (2)	3 4	240K 240K	35	0.0046%	240K	1415	0.3890%	240 K	400	0.2023%
		5	240K 240K	55 75	0.0313%	-	-	-	_	-	-
		6	240K	95	0.0396%	-	_	_	_	_	_
		7	240K	78	0.0325%	-	-	-	-	-	-
	LAVS(esb) / D	$ur^{l}(ns) / RT(ns)$	5.8437e	-4 / 198090	0 / 155250.0	6.5885e	3 / 19809	0 / 155375.0	2.1473e-	3 / 198090) / 156562.5
		0	4800K	0	0%	4800K	347	0.0072%	4800K	1394	0.0290%
		ů 1	4800K	0	0%	4800K	766	0.0160%	4800K	2320	0.0483%
		2	4800K	Ő	0%	100011	1770	0.027070	100011		0.0997%
		3	4800K	Õ	0%	4800K	2688	0.0560%	4800K	9349	0.1948%
	FC1 (3)	4	4800K	0	0%				• - •	-	-
		5	4800K	0	0%	Oual	ntiza	ation	indu	ces	-
		6	4800K	1	0.0000%		-	-	-	-	-
		7	4800K	46	0.0010%		-		-		-
	LAVS(esb) / D	ur ^l (ns) / RT(ns)	4.230	0e-8 / 90 /	/163937.5	large	e 6 7 9 0	npacts	1.606	2e-5 / 90 /	165625.0
		0	1008K	0	0%	1008K	64	0.0063%	1008K		0.0007%
		1	1008K	0	0%	1008K	200	0.0198%	1008K	38	0.0038%
		2	1008K	0	0%	1008K	436	0.0433%	1008K	67	0.0066%
	FC2(4)	3	1008K	0	0%	1008K	699	0.0693%	1008K	81	0.0080%
	102 (4)	4	1008K	0	0%	-	-	-	1008K	93	0.0092%
		5	1008K	0	0%	-	-	-	1008K	102	0.0101%
		6	1008K	0	0%	-	-	-	1008K		0.0177%
	LAVE(ach) / D	/	1008K	$\frac{0}{100 / 114}$	0%	-	-	-	1008K	J/8	0.0375%
			0.412	/ 90 / 114	012.5	1.200	20-07 907	10/002.5	0.152	20	0.022201
		0	84K	0	0%	84K	22	0.0262%	84K	28	0.0333%
		1	84K	0	0%	84K 84V	40	0.04/0%	84K 84V	42	0.0500%
		2	04K 84V	0	0%	84K	140	0.1667%	8/1V	161	0.0001%
	FC3 (5)	4	84K	0	0%	-	-	-	-	-	-
		5	84K	0	0%	-	-	-	-	-	-
		6	84K	2	0.0024%	-	-	-	-	-	-
		7	84K	56	0.0667%	-	-	-	-	-	-
	LAVS(esb) / D	$ur^{l}(ns) / RT(ns)$	3.480	0e-8 / 90 /	101500.0	1.656	6e-7 / 90 /	100062.5	1.830	0e-7 / 90 /	101437.5
	ONAVS(esb)	/ Total RT(ns)	6.6	667e-4 / 8	35062.5	1.3	537e-2 / 8	26625.0	6.1	227e-3 / 84	41000.0
	01.11.0(050)					210					

Increase
in
misclassifi
cation

Bit INT8 Model INT4/8 model				I	NT2/4/8 n	nodel 70				
Layer	Position	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio	Samples	Errors	Error Ratio
	0	15K	0	0%	15K	0	0%	15K	120	0.8000%
	1	15K	0	0%	15K	7	0.0467%	15K	217	1.4467%
	2	15K	1	0.0067%	15K	13	0.0867%	-	-	-
Conv1 (1)	3	15K	0	0%	15K	57	0.3800%	-	-	-
$\operatorname{Conv}(\mathbf{I})$	4	15K	1	0.0067%	15K	94	0.6267%	-	-	-
	5	15K	0	0%	15K	127	0.8467%	-	-	-
	6	15K	0	0%	15K	150	1.0000%	-	-	-
	7	15K	5	0.0333%	15K	143	0.9533%	-	-	-
LAVS(esb) /	Dur ^l (ns) / RT(ns)	8.2220e-	5 / 117457	/0 / 299562.5	6.9417e-	3 / 117457	0 / 299562.5	3.9583e-	3 / 117457	0 / 301937.5
	0	240K	0	0%	240K	408	0.1700%	240K	90	0.0375%
	1	240K	0	0%	240K	610	0.2542%	240K	206	0.0858%
	2	240K	1	0.0004%	240K	893	0.3721%	240K	302	0.1258%
	3	240K	11	0.0046%	240K	1415	0.5896%	240K	486	0.2025%
Conv2(2)	4	240K	35	0.0146%	-	-	-	-	-	-
	5	240K	75	0.0313%	-	-	-	-	-	-
	6	240K	95	0.0396%	-	-	-	-	-	-
	7	240K	78	0.0325%	-	-	-	-	-	-
LAVS(esb) /	Dur ^l (ns) / RT(ns)	5.8437e	-4 / 19809	0 / 155250.0	6.5885e	-3 / 19809	0 / 155375.0	2.1473e	-3 / 198090	0 / 156562.5
	0	4800K	0	0%	4800K	347	0.0072%	4800K	1394	0.0290%
	ĩ	4800K	Õ	0%	4800K	766	0.0160%	4800K	2320	0.0483%
	2	4800K	Ő	0%	4800K	1778	0.0370%	4800K	4784	0.0997%
	3	4800K	Õ	0%	4800K	2688	0.0560%	4800K	9349	0.1948%
$\mathbf{FC}\mathbb{L}(3)$		4800K		-0%				-	-	-
•	LONV.	lave	rsir	lauce	larg	er II	mpaci	LS -	-	-
	6	4800K	1	0.0000%				-	-	-
		4800K	46	0.0010%					-	-
LAVS(esb) /	DUGUEITC) mu	ΙΤΙΟ	ie usa	ge.021	1e-6 / 90 /	164562.5	1.606	2e-5 / 90 /	/165625.0
	0	1008K	0	0%	1008K	64	0.0063%	1008K	7	0.0007%
	Colory		_ لم ا		100816	- Mi	06 98%	1008K	38	0.0038%
•	CONV.	vvei	2nt	size is	SIN	d	(2133%)	1008K	67	0.0066%
	3	1008K	0	0%	1008K	699	0.0693%	1008K	81	0.0080%
FC2 (4)		1008K	ů.					- 008K	93	0.0092%
	Select	IVerc	Drot	ectior	i is n	nea	ningti	1008K	102	0.0101%
	6	1008K	0	0%		_		1008K	178	0.0177%
	7	1008K	0	0%	-	-	-	1008K	378	0.0375%
LAVS(esb) /	Dur ^l (ns) / RT(ns)	0	/ 90 / 114	812.5	1.208	2e-6 / 90 /	107062.5	8.152	7e-7 / 90	/115437.5
	0	84K	0	0%	84K	22	0.0262%	84K	28	0.0333%
	ĩ	84K	õ	0%	84K	$\frac{1}{40}$	0.0476%	84K	42	0.0500%
	$\overline{2}$	84K	õ	0%	84K	74	0.0881%	84K	74	0.0881%
	3	84K	õ	0%	84K	140	0.1667%	84K	161	0.1917%
FC3 (5)	4	84K	õ	0%	-	-	-	-	-	-
	5	84K	õ	0%	-	-	-	_	-	-
	6	84K	2	0.0024%	-	-	_	_	-	-
	7	84K	56	0.0667%	-	-	-	-	-	-
LAVS(esh) /	$\frac{1}{\mathbf{Dur}^{l}(\mathbf{ns}) / \mathbf{RT}(\mathbf{ns})}$	3.480	0e-8 / 90 /	101500-0	1.65	6e-7 / 90 /	100062.5	1.830	0e-7 / 90 /	101437.5
ONAVS(col	\rightarrow / Total DT (na)	6.4	6670 4 / 9	35062 5	1 2	5370.2 / 9	26625.0	£ 1	22702/0	11000 0
UNAV S(est	i i i i i i i i i i	0.0	00/e-4/ð	33002.5	1.3	557e-278.	20025.0	0.1	227e-378	+1000.0

_		D:4		тыто м	ماما	1	INTA/0	ماما	Т	NT7///0	
Increase	Layer	Dit Desition	Somplos		Error Datio	Somplos	IN 14/0 III Errore	Error Datia	Somples	Errors	Erroz Data
mercase		0	15K			15K	0		15K	120	0.8000%
•		1	15K	0	0%	15K	7	0.0467%	15K	217	1 4467%
in		2	15K	1	0.0067%	15K	13	0.0867%	-	-	-
•••		-3	15K	Ô	0%	15K	57	0.3800%	-	-	-
	Conv1 (1)	4	15K	1	0.0067%	15K	94	0.6267%	-	-	-
misclassiti		5	15K	0	0%	15K	127	0.8467%	-	-	-
		6	15K	0	0%	15K	150	1.0000%	-	-	-
. •		7	15K	5	0.0333%	15K	143	0.9533%	-	-	-
cation	LAVS(esb) / I	Dur ^l (ns) / RT (ns)	8.2220e-	5 / 11745'	70 / 299562.5	6.9417e-	3 / 117457	0 / 299562.5	3.9583e-	3 / 117457	0 / 301937.5
		0	240K	0	0%	240K	408	0.1700%	240K	90	0.0375%
		1	240K	0	0%	240K	610	0.2542%	240K	206	0.0858%
		2	240K	1	0.0004%	240K	893	0.3721%	240K	302	0.1258%
	Conv2 (2)	3	240K	11	0.004 <mark>6</mark> %	240K	1415	0.5896%	240K	486	0.2025%
	$\operatorname{CORV}_2(2)$	4 🔴	Chr	nña	red w	// FD	rad		-	-	-
		5		iibo			Las		-	-	-
		6	240K	95	0.0396%	_	-	-	-	-	-
		7	tho	im	nact i	s lim	itor	-	-	-	-
	LAVS(esb) / I	$\mathbf{Dur}^{l}(\mathbf{ns}) / \mathbf{RT}(\mathbf{ns})$	GRAC	4 🖡 🛯 🥵 🗐	pacer			155375.0	2.1473e	-3 / 19809	0 / 156562.5
		0	4800K	0	0%	4800K	347	0.0072%	4800K	1394	0.0290%
		1 🔴		'8 'm	Indel	is rn	hiic	0.0160%	4800K	2320	0.0483%
		2	4800K		IUGCI	4800R	N M3	0.0370%	4800K	4784	0.0997%
	FC1 (3)	3	4800K	0	0%	4800K	2688	0.0560%	4800K	9349	0.1948%
	rer (5)	4	M/h	en -	nreve	ntin	σer	ror	-	-	-
		5	4 00 K		picvc		5 6		-	-	-
		6	4800K	1	0.0000%	-			-	-	-
		7	acc	um	ulatio	n th		-	-	-	-
	LAVS(esb) / I	Dur ^{ι} (ns) / $RT(ns)$	au		ulatio	11, 501	66/90/	164562.5	1.606	52e-5 / 90	/165625.0
		0	1008K	0	0%	1008K	64	0.0063%	1008K	7	0.0007%
		1	acc	IIra	rv deg	rad	atin	nº.18%	1008K	38	0.0038%
		2		u bu				0.0493%	1008K	67	0.0066%
	FC2 (4)	3	1008K	0	0%	1008K	699	0.0693%	1008K	81	0.0080%
	(•)	4	not	' sig	nitica	nt ev	len	in -	1008K	93	0.0092%
		5							1008K	102	0.0101%
		6	1008K	0	0%				1008K	178	0.0177%
			-MR		NNc	- 1.000	-	-	1008K	3/8	0.0375%
	LAVS(esb) / 1	Jur^e(ns) / R T(ns)				1.208	2e-6 / 90 /	107062.5	8.152	/e-//90/	/115437.5
		0	84K	0	0%	84K	22	0.0262%	84K	28	0.0333%
		1	84K	0	0%	84K	40	0.0476%	84K	42	0.0500%
		2	84K	0	0%	84K	74	0.0881%	84K	74	0.0881%
	FC3 (5)	3	84K	0	0%	84K	140	0.1667%	84K	161	0.1917%
		4	84K	0	0%	-	-	-	-	-	-
		5	84K	0	0%	-	-	-	-	-	-
		0	04K 81V	2 56	0.0024%	-	-	-	-	-	-
	I AVS(ach) / T	$\frac{1}{1}$	04K	00 8 / 00	/ 101500.0	- 1 654	-	-	- 1 020	-	-
	LAVS(est) / L	(IIS) / K1(IIS)	5.480		101500.0	1.050	Je-// 90/	100002.5	1.030	00-7 / 90 /	101437.5
	ONAVS(esb)	/ Total RT(ns)	6.6	667e-4 / 8	35062.5	1.3	537e-2 / 8	26625.0	6.1	227e-3 / 84	41000.0

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU
- Countermeasures in literature

Demands of Edge AI chips

- Reduced Latency: Real-time data processing locally is crucial for applications like autonomous vehicles and robotics.
- Improved Privacy and Security: Local data processing on the device enhances data privacy and security, reducing the risk of data interception.
- Lower Bandwidth Requirements: The decrease in the need for data transmission to the cloud benefits areas with limited internet access and reducing connectivity dependence.

Edge AI SoCs

- For AI applications, the hardware AI accelerator can be integrated into the SoC as a peripheral.
- Edge AI SoCs can be used for mission-critical and reliability-demanding applications.

• Essential to analyze weak points of the entire SoC with AI accelerator.

Case study: Reliability assessment of an edge AI SoC

- We perform a case study using a SOTA SoC design that accepts NAS optimized LeNet5 with MNIST data set and implemented into a flash-based FPGA.
- We analyze the reliability of our SoC by fault injection (FI) and neutron irradiation experiments, aiming to provide valuable insights and serve as crucial references for future reliability-aware designs.
 - CRAM in the flash-based FPGA is robust to neutron irradiation compared with SRAM-based FPGA.
 - This FPGA-based SoC implementation reproduces the susceptibility of any dedicated SoC chips.

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for Multi-Precision Deep Neural Networks," *IEEE Trans. CAS-I*, 2023,

Chip architecture

- SoC consists of 1) MBW accelerator, 2) lightweight 32-bit RISC-V processor, and 3) DDR4 DRAM.
- RISC-V core has 2-stage pipeline, instruction tightly coupled memory (ITCM) and data tightly coupled memory (DTCM).

MBW accelerator

- MBW vector systolic accelerator [4] w/ a 16x8 array
 - #inputs is 16, 32, and 64 for INT8, INT4, and INT2 respectively
 - # of output channel is 8.
- MAC is based on a multi-precision Booth multiplier.

SoC implementation

- SoC is implemented for MPF300T Eval Kit.
- CRAM in this flashbased FPGA is robust to radiation, reproducing the susceptibility of SoC chips.

Comp	onent	Fabric 4LUT	Fabric DFF	Interface 4LUT	Interface DFF	Math (18×18)	uSRAM	LSRAM		
	Conv Unit	31339	21839	13032	13032	136	54	208		
Accolonation	Pool Unit	33250	26064	408	408	4	22	0		
(100 MH_{-})	DMA	375	75	336	336	0	28	0		
(100 MHZ)	Interface	71	55	0	0	0	0	0		
	Total	65035	48033	13776	13776	140	104	208		
RISCV E20.	3 (16 MHz)	18591	9414	2448	2448	0	12	64		
PF_DDR4	(400 MHz)	18404	15219	1272	1272	0	43	21		
AXI4 Inte	erconnect	3458	3138	636	636	0	53	0		
Oth	ers	61	36	0	0	0	0	0		
Tot	al	105549	75840	18132	18132	140	212	293		
* ITCM Size:	* ITCM Size: 64KB LSRAM; DTCM Size: 64KB LSRAM; Accelerator Buffer Size: 512KB LSRAM; CSR Size: 79*32Bits uSRAM									

Experiments

- Fault injection
 - Reproduces single bit upset in weights, activations, state registers of the controller, and CNN config. params.
 - Logs results and saves them via host software for analysis

- Neutron irradiation
 - Neutron beam is given to 3 FPGA boards at CYRIC, Tohoku Univ.

Details in FI process

FI results (control state registers (CSR)) 50

- "Error Ratio": misclassification ratio in overall errors.
- "Acceptable": SoC can output the results
- "Unacceptable": SoC fails to complete CNN calculation, i.e. DUE

CSR	Description	Error Ratio / Acceptable (%)	Unacceptable (%)
STCONV	Start conv operation	0 / 0	100.00
CBWIN	Bit-width of input data	91.7557 / 100.000	0
CFADDR	Activation base address	75.5439 / 100.000	0
CFSHP	Shape of activation	76.8271 / 83.0952	16.9048
CCONF	Padding, Stride and Kernel	28.6260 / 35.0000	65.0000
CWADDR	Weight base address	69.8139 / 100.000	0
COADDR	Output data base address	77.5191 / 100.000	0
CDONE	If conv operation done	0 / 0	100.00
STPOOL	Start pooling operation	0 / 0	100.00
PCONF	Pad, Stride and Kernel	0 / 0	100.00
PIADDR	Input data address	66.0663 / 100.000	0
POADDR	Output data address	79.0672 / 100.000	0
PIOSHP	Shape of activation	59.3511 / 100.000	0
PBWIN	Bit-width of input data	88.5496 / 100.000	0
PDONE	If pool operation done	0 / 0	100.00
Observations in FI to CSR

- The bit-flip of CSRs is far more sensitive than that of weights in NNs.
- Data errors in the acceptable range can lead to a high probability of misclassification.
- Error values in the unacceptable range cause the accelerator to enter into a deadlock or hang the AXI bus.
- Fortunately, the size of state registers is limited.
- Protecting state registers requires small overhead, but significantly contributes to reliability improvement.

Reliability configurations in irradiation experiments

- Config. 1: Not refresh the contents of ITCM and DTCM frequently, resulting in error accumulation
- Config. 2: reset the after each round, preventing error accumulation in ITCM and DTCM
- Config. 3: replace normal SRAMs in RISC-V with TMRed SRAM
- Config. 4: replace CSRs with TMRed ones

	Reset	TMR_I/DTCM	TMR_CSR
Config. 1	No	No	No
Config. 2	Yes	No	No
Config. 3	Yes	Yes	No
Config. 4	Yes	Yes	Yes

	Reset	TMR_I/DTCM	TMR_CSR	53
Config. 1	No	No	No	
Config. 2	Yes	No	No	
Config. 3	Yes	Yes	No	
Config. 4	Yes	Yes	Yes	_

- Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect NN application
- Tolerable Accelerator Event (TAE): classification is correct, but the middle outputs are not as expected
- Critical Core Event (CCE): RISC-V core runs away or crashes
- Critical Accelerator Event (CAE): accelerator has no correct response or correct classification result

	Reset	TMR_I/DTCM	TMR_CSR 5/
Config. 1	No	No	No
Config. 2	Yes	No	No
Config. 3	Yes	Yes	No
Config. 4	Yes	Yes	Yes

- Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect NN application
- Tolerable Accelerator Event (TAE): classification is correct, but the middle outputs are not as expected
- Critical Core Event (CCE): RISC-V core runs away or crashes
- Critical Accelerator Event (CAE): accelerator has no correct response or correct classification result

RISC-V core is more sensitive to accumulated errors than accelerator. When the data in I/DTCM is flipped and errors are accumulated, SoC could crash easily.

	Reset	TMR_I/DTCM	TMR_CSR 55
Config. 1	No	No	No
Config. 2	Yes	No	No
Config. 3	Yes	Yes	No
Config. 4	Yes	Yes	Yes

- Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect NN application
- Tolerable Accelerator Event (TAE): classification is correct, but the middle outputs are not as expected
- Critical Core Event (CCE): RISC-V core runs away or crashes
- Critical Accelerator Event (CAE): accelerator has no correct response or correct classification result

After deploying TMRed I/DTCM in RISC-V core, CCEs almost decrease to zero and the other events also have a significant decrease. Errors in accelerator become dominant.

	Reset	TMR_I/DTCM	TMR_CSR 56
Config. 1	No	No	No
Config. 2	Yes	No	No
Config. 3	Yes	Yes	No
Config. 4	Yes	Yes	Yes

- Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect NN application
- Tolerable Accelerator Event (TAE): classification is correct, but the middle outputs are not as expected
- Critical Core Event (CCE): RISC-V core runs away or crashes
- Critical Accelerator Event (CAE): accelerator has no correct response or correct classification result

After deploying TMRed, errors generated at accelerator decreased.

Overall cross section is reduced by 78.05% compared with Config. 1.

Comparison to SRAM FPGA

	Reset	TMR_I/DTCM	TMR_CSR	
Config. 1	No	No	No	
Config. 2	Yes	No	No	
Config. 3	Yes	Yes	No	
Config. 4	Yes	Yes	Yes	

- **Tolerable Core Event (TCE)**: RISC-V core has some misbehavior, but not affect NN application
- **Tolerable Accelerator Event (TAE)**: classification is correct, but the middle outputs are not as expected
- Critical Core Event (CCE): RISC-V core runs away or crashes
- Critical Accelerator Event (CAE): accelerator has no correct response or correct classification result

CRAM errors limit the reliability improvement in configs. 2, 3, and 4.

What we learned

- RISC-V core is more vulnerable than accelerator.
- Implementing mitigation techniques (e.g., Error Correcting Codes (ECC), TMR) is necessary for instruction and data memory to strengthen the SoC.
- After this, the vulnerability of the interface b/w processor and accelerator becomes visible.
- Impact of precision differences in NNs is limited.
- After deploying the above-mentioned countermeasures, the accelerator errors are dominant. Now, weight protection needs consideration.
- Specific application requirements decide whether to deploy the mitigation techniques above. Depending on the system criticality and required reliability level, a combination of these techniques are necessary to ensure the SoC's overall reliability to potential faults.

Related work in edge AI SoCs

- EdgeAI devices, e.g., Google's Tensor Processing Unit [5] and NeuroShield [6], have undergone testing.
- Experiments with the NeuroShield and TPU indicate they have fewer errors compared to GPUs, along with a more straightforward error pattern where fewer outputs are affected and the erroneous values closely resemble the correct ones.
- Consequently, the rate of misclassification in neural networks on EdgeAI hardware is less than that on other platforms.

[5] R. L. Rech Junior, et al., "High energy and thermal neutron sensitivity of google tensor processing units," *IEEE Trans. Nuclear Science*, 2022.
[6] S. Blower et al., "Evaluating and mitigating neutrons effects on COTS Edge AI accelerators," *IEEE Trans. Nuclear Science*, 2021.

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU
- Countermeasures in literature

Problem of application-level soft error evaluation in GPU

- Circuit structure is not disclosed
 - Scheduler, dispatcher, etc.
 - A corruption in, e.g., scheduler, can impact multiple parallel processes.
- Instruction cache is invisible to users
 - Cache is accessed from multiple parallel processes.

- Target of fault injection is limited.
- Difficult to know part-wise SER contribution

61

not disclosed — difficult to measure SER —

Assessing contribution from undisclosed components

- Carried out irradiation test for
 - Error rates of disclosed memory components
 - SDC error rates of matrix multiplication programs
- Compare measured SDC error rate and the one predicted only w/ disclosed memory components
- Difference is expected to come from undisclosed components

K. Ito, et al., "Characterizing Neutron-Induced SDC Rate of Matrix Multiplication in Tesla P4 GPU," *RADECS*, 2019.

GPU error rate measurement

Matrix multiplication programs w/ different resource usages were run

(a) Program 1

(b) Program 2

(c) Program 3

Comparison between measured and ⁶⁴ **estimated error rates**

- Estimated error rates using measured memory error rate and usage
 - Worst-case estimation assuming all errors induce SDC.
- Even with the worst-case estimation, there is a large discrepancy coming from errors in internal undisclosed hardware

Difficulties in fault injection and radiation experiment

Difficulties in fault injection

- In high-level fault injection, faults can be injected only on that subset of resources which is visible to the programmer.
- Considering faults in computing resources (such as the pipelines, the control units, functional units, or scheduler), evaluating the impact on the software is not trivial.

Difficulties in radiation experiments

- Radiation experiments do not allow to track faults propagation, preventing us from associating observed behaviors with the fault source and, thus, identifying the most vulnerable resources.
- Results are valid only for the particular codes and configurations that have been tested.

Example of fault injection to control flow

- Inject error into one warp by editing PTX Normal code.
 - PC in one of active warps is changed
 - Faulty jump can go to any labels
 - Jump flag is for jumping only once
 - Loops are unrolled

PTX: pseudo assembly language for CUDA

#Check Jump Flag JUMP NOJUMP if R0 = 1**#Set Jump Flag SET R0 1** #Insert Jump Code **Faulty jump** JUMP L3 **NOJUMP: NOP** L2: ADD R1 R6 R7 L3: MUL R1 R8 R9

66

K. Ito, et al., "Analyzing DUE Errors on GPUs with Neutron Irradiation Test and Fault Injection to Control Flow," *IEEE Trans. Nuclear Science*, 2021.

6/

Possible direction for reliability assessment

- Low-level fault injection to RTL could reproduce the hardware behavior.
- However, COTS devices do not provide RTL designs. Also, considering the slow RTL simulation, various hardware configurations and many software applications, the low-level fault injection suffers from simulation time.

• Fault injection complemented with beam experiments is one possible direction when dealing with complex hardware.

Constructing a model capable of estimating various GPU applications

Target model: $y = \sum_{k=1}^{n} a_k x_k + b$

y: SER (response variable) x_k : app. info. (Explanatory variable) a_k , b: constants to be obtained **68**

Irradiation exp. w/ various apps. Prepare a number of app. metrics

Select primary x_k according to correlation b/w x_k and measured SER (y)

Regression to obtain a_k (k=1,2,..,n), and b

K. Ito, et al., "Constructing Application-Level GPU Error Rate Model with Neutron Irradiation Experiment," *RADECS*, 2021.

AVF/PVF

- The probability for an error to propagate from memory elements to software visible state and modify the software execution (thus becoming a failure, such as an SDC or DUE) is called Architectural/Program Vulnerability Factors (AVF/PVF).
 - Depending on papers, AVF and PVF are differently defined.
- AVF/PVF from errors in memory visible to programmers can be easily obtained via highlevel fault injection.

Programs used in experiments

Prepared applications w/ different behaviors

(e.g., mem. size, #blocks, #threads, instructions)

Instruction proportion

Exp. site: Tohoku Univ. CYRIC GPU: NVIDIA Quadro P2000

	INT/FLOAT	LDG/STG	LDS/STS	BRANCH	CONTROL	MOVE
Mmu32 (matrix multiplication)	46.4%	2.2%	43.5%	1.1%	3.3%	0.4%
Quicksort (sort)	43.1%	11.6%	0.0%	14.2%	8.6%	19.7%
Mergesort (sort)	27.7%	0.5%	13.1%	15.9%	10.8%	11.4%
Sha256 (hash)	72.7%	10.2%	0.0%	4.7%	7.2%	4.8%
Vectoradd (parallel add)	52.2%	13.0%	0.0%	4.4%	8.7%	4.4%
Mmucublas (mat. mul. library)	88.3%	2.2%	7.6%	1.3%	0.5%	0.1%

Measured error rates

- SDC (silent data corruption)
 - Wrong output
 - Detection is difficult
- DUE (detectable but uncorrectable error)
 - Crash, hang, etc.
 - Necessary to reboot GPU or host PC

Single-variable model

- "Warps per block" is primary explanatory variable
- $y = a_1 \times (Warps \ per \ block) + b$
- Error for SDC is up to 39.7%
- Error for DUE is up to **221.0%**

	Corr.	Corr.
	Coeff.	Coeff.
	(SDC)	(DUE)
Warps per block	0.98	0.96
Dispatched warps	0.80	0.89
Gld_efficiency	0.76	0.80
Gst_efficiency	0.75	0.80
Warp exec. efficiency	0.75	0.80
Sorted by corr.	coeff. (S	DC)

Two-variable model

- $y = a_1 \times (Warps \, per \, block) + a_2 \times (new \, var.) + b$
- SDC model does not improve w/ any new variables
- DUE model improves w/ AVF (DUE) and L2 hit
 - L2 hit reduced the maximum error to **43.3%**

Related work in GPUs (1/2)

- ECC (Error-Correcting Code) can lower the GPU error rate by an order of magnitude, but it is less effective at decreasing the number of radiation-induced misclassifications in CNNs [7], [8].
- Reducing execution speed does not affect the Fault In Time (FIT) rate, whereas utilizing more parallel resources or larger hardware cores can increase the FIT rate, albeit with a possible performance advantage. Metrics such as Mean Executions Before Failure (MEBF), could be suitable to balance error rate with performance [9], [10], [11].
- Neutron beam experiments in [9] indicate that a higher # of parallel processes can overburden the scheduler, leading to increased error rates in GPUs [45]. The use of GPU resources more intensively raises the susceptibility to errors [12].

[7] F. F. d. Santos, et al., "Analyzing and increasing the reliability of convolutional neural networks on GPUs," *IEEE Trans. Reliability*, 2019.

[8] D. A. G. Goncalves de Oliveira, et al., "Evaluation and mitigation of radiation-induced soft errors in graphics processing units," *IEEE Trans. Computers*, 2016.

[9] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, "Impact of GPUs parallelism management on safety-critical and HPC applications reliability," *DSN*, 2014.

[10] C. Weaver, et al., "Techniques to reduce the soft error rate of a high-performance microprocessor," *ISCA*, 2004.[11] G. Reis, et al., "Design and evaluation of hybrid fault-detection systems," *ISCA*, 2005.

[12] J. M. Badia, et al., "Reliability evaluation of LU decomposition on GPU-accelerated system-on-chip under proton irradiation," *IEEE Tran. Nuclear Science*, 2022.

Related work in GPUs (2/2)

- Algorithms that are slower and memory-bound tend to be more susceptible to errors, whereas the most efficient algorithms exhibit a smaller error cross section [13].
- Corruption of shared resources such as caches or the scheduler can disrupt multiple parallel processes [14][15].
- The severity of corruption (value difference) is influenced by the parallel architecture and the specific algorithm being run [16], [17], [18].

[13] J. M. Badia, et al., "Comparison of parallel implementation strategies in GPU-accelerated system-on-chip under proton irradiation," *IEEE Trans. Nuclear Science*, 2022.

[14] P. Rech, et al., "An efficient and experimentally tuned software-based hardening strategy for matrix multiplication on GPUs," *IEEE Trans. Nuclear Science*, 2013.

[15] L. L. Pilla, et al., "Software-based hardening strategies for neutron sensitive FFT algorithms on GPUs," *IEEE Trans. Nuclear Science*, 2014.

[16] D. Oliveira, et al., "Experimental and analytical study of Xeon Phi reliability," SC, 2017.
 [17] D. A. G. D. Oliveira, et al., "Radiation-induced error criticality in modern HPC parallel accelerators," *HPCA*, 2017.

[18] V. Fratin, et al., "Code-dependent and architecture-dependent reliability behaviors," *DSN*, 2018.

Agenda

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU

• Countermeasures in literature

Software countermeasure

- Implement cheap concurrent replication with idle hardware
 - Selective replication for protecting only the most critical layers or portion of the neural network [19], [20]–[22].
- Stop errors propagating in CNNs by checking whether the propagated values during MaxPooling layers, detecting up to 85% of critical errors in CNNs [7].

[19] F. Libano, et al., "Selective hardening for neural networks in FPGAs," *IEEE Trans. Nuclear Science*, 2019.

[20] L. Weigel, et al., "Kernel vulnerability factor and efficient hardening for histogram of oriented gradients," *DFT*, 2017.

[21] A. Ruospo, et al., "Selective hardening of critical neurons in deep neural networks," *DDECS*, 2022.

[22] C. Bolchini, et al., "Selective hardening of CNNs based on layer vulnerability estimation," *DFT*, 2022.

Algorithm-Based Fault-Tolerant (ABFT)

- ABFT for matrix multiplication [23] detects and corrects more than 80% of errors. When applied to CNNs, ABFT outperformed ECC and duplication [7]. Smart light-ABFT [24] further reduces the overhead for GPUs.
- Concurrent signature calculations and signature comparison for matrix multiplication [25]

[23] P. Rech, et al., "An efficient and experimentally tuned software-based hardening strategy for matrix multiplication on GPUs," IEEE Trans. Nuclear Science, 2013.

[24] S. Hari, et al., "Making convolutions resilient via algorithm-based error detection techniques," IEEE Trans. Dependable and Secure Computing, 2022.

[25] H. Itsuji, et al., "Concurrent Detection of Failures in GPU Control Logic for Reliable Parallel Computing," ITC, 2020.

Algorithm countermeasure

- Assess and contrast consecutive input frames against their corresponding detection outputs. Similar frames should yield similar detection results. A discrepancy may raise an error alert. 70% of critical errors are detected though producing some false positives [26].
- Reduced Precision Duplication With Comparison (RD-DWC) has been applied to GPUs and has demonstrated error detection rates of 75% in average with acceptable additional overhead [27].

[26] L. K. Draghetti, et al., "Detecting errors in convolutional neural networks using inter frame spatio-temporal correlation," *IOLTS*, 2019.

[27] F. F. dos Santos, et al., "Reduced precision DWC: An efficient hardening strategy for mixedprecision architectures," *IEEE Trans. Computers*, 2022.

Fault aware training

 If the DNN is trained to classify objects correctly even w/ transient faults, it is possible to produce a more reliable model while maintaining the original accuracy.

Training is performed by injecting transient faults.

 The model is expected to autonomously learn how to properly deal with faults to reduce mispredictions [28][29].

Proposed vulnerability model can improve the noise injection efficiency during the training.

[28] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano and M. Blott, "Accelerated Radiation Test on Quantized Neural Networks trained with Fault Aware Training," *AERO*, 2022.
[29] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi and P. Rech, "Transient-Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead," *IOLTS*, 2022.

Conclusions

- Robustness of NNs
 - Case study (FP)
 - Identifying vulnerable weight parameters
 - Quantization
 - Multi-bit-width neural networks
- Robustness of hardware
 - Edge AI accelerator
 - GPU
- Countermeasures in literature

For your reference

- Some excellent and complete surveys of the available reliability studies have been published.
 - F. Su, C. Liu, and H.-G. Stratigopoulos, "Testability and dependability of ai hardware: Survey, trends, challenges, and perspectives," *IEEE Design & Test*, vol. 40, no. 2, pp. 8– 58, 2023.
 - Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and G. Guo, "Soft errors in DNN accelerators: A comprehensive review," *Microelectronics Reliability*, vol. 115, p. 113969, 2020.
 - P. Rech, "Artificial Neural Networks for Space and Safety-Critical Applications: Reliability Issues and Potential Solutions," *IEEE Trans. Nuclear Science*, to appear.