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DNN on Edge: Memory Wall Issue

U Goal: Deploy DNN on Edge

sssssssssssssss

[ ]
ImageNet-1K Trained ImageNet-22K Pre-trained

Handle Various Tasks Gets SOTA Performances Promising for Edge Apps. Limited Power Budget

O Memory Wall issue for Efficient DNN Acceleration
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[1] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE journal of solid-state circuits 52.1 (2016) 4
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Hardware Solution: Compute-in-Memory
0 CiM DNN Accelerator using Crossbar Arrays: Advantages
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CiM Architecture [2] Emerging NVM Devices Lower Memory Cost Higher Efficiency

Q Crossbar Array: VMM Engine DL i LA O
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[2] Zheyu Yan, X. Sharon Hu and Yiyu Shi, "On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks", chapter in 5
System Dependability and Analytics: Approaching System Dependability from Data, System and Analytics Perspectives, Springer, 2023.
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Emerging Technology: Pros and Cons

O Emerging NVM Devices Advantages

Top
electrode
Ferroelectric
layer

 Non-volatile: used as storage & memory

Bottom
electrode

« Compact: more data on chip
RRAM MRAM FeFET

« Read: Fast & Low energy Emerging NVM Devices

O Challenges from Device Variations
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[3] Yan, Zheyu, et al. "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural 6
architecture search." 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.
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Device Variations: Evaluations

O Existing Evaluation Workflows
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U Issues of Existing Methods
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Device Variations: Remedies

0 Device Variation: Existing Solution

Write Mcomponton ™1 [ Matcning ] [comenon]
|
v |
Verify
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Done Encoding Logic Decoding Logic

Write-Verify (W-V) Error Correction/Denoising

(J Drawbacks of These Solutions
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O S
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Input Update
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Noise

Noise-Aware Training
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Device Type Dependent
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Our Approach: Cross-Layer Co-Design

( Metrics for Al Acceleration O Al Acceleration Design Levels
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Remedy Methods: Overview
Background: CiM for DNN Solution: Cross-Layer Co-Design

A
W .
SRR Device Detect Sensitive ~ _ Co-Design
R Devices [DAC 22]
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[Trans on Computers]
. & Worst-Case Analysis
NVM Devices = ... [ICCAD 22]
T Circuit/ L, :
RRAM MRAM FeFET Al = Img Segmentation
AutoML [Nature Electronics]
Key Problem: [ASPDAC 22]
Device Variation & Acc. Drop
Img Classification
= [SoCC 23]

-im e Train Robust DNN
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Selective Write-Verify (1)

0 Device Variation: Existing Solution Wite
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Selective Write-Verify (2)

0 Overview
[Tl Use Write-Verify

= Write-verify a portion of the devices

[C] Write only once
= \Write the other device once

= Accelerate the deployment process W-V a portion of the devices

(J Solution: Detect Sensitive Device
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[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC) 1 4
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Selective Write-Verify (3)

0 Results N wo' o . Only 10%Devices
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[3] Yan, Zheyu, Xiaobo Sharon Hu, and Yiyu Shi. "SWIM: Selective write-verify for computing-in-memory neural accelerators." DAC 2022 (CCF-A).
[4] Rao, Mingyi, et al. "Thousands of conductance levels in memristors integrated on CMOS." Nature 615.7954 (2023): 823-829.
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[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC) 1 5
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Welght Sen3|t|V|ty Evaluation

* Target: statistically evaluate the

influence of device variations

 Method: Taylor series of the
DNN loss function

* Annotation:
= f:loss function
"w =W+ Aw: weight
= H(W): Hessian matrix
= E': expectance (average)

* Conclusion: write-verify weights
with high 2"? derivatives

f

fw) = f(w) + —Aw + ;AWTH(W)AW + o(Aw?)

1 N
Af(w) ~ ZAWTH(W)AW

Z H; (Aw;)? + Z H;;Aw;Aw;

Awl N(OLZJ)
2 n
E[Afw)] ~ ZHHEKAWLH =) Hi
=1

Weight's sensitivity to device variations can be
represented by its second derivative

17
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Effectiveness of Using Second Derivative

« Annotations ]
= Y axis for both figures: accuracy drop when \E )
changing a weight (MNIST) 8"
= X axis for figure up: Weight magnitude g “
= X axis for figure down: Weight second g7 ° °
derivative L = _° _
e Conclusions . Weight Magnitude _
= Accuracy drop and weight magnitude are S o °
poorly co-related S ®
= Accuracy drop and second derivatives are %
strongly co-related S
= Second derivative is a good metric for <
sensitivity estimation S

Second Derivative
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SWIM Vs Baselines on Different Datasets
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of the weights

Baselines: use weight magnitude or random as weight selection + on device training
 Solid line: average performance, Shadow: ranges for standard deviation
*  SWIM much better than all baselines

Achieves low enough (less than 2%) accuracy drop by writing-verifying less than 10%
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Summary

* Proposed a framework that requires writing-verifying

only a small portion of weights
e The framework can maintain DNN accuracy
* Inthe meantime, programming time drastically reduced

* Specifically, the proposed framework achieves up to 10x

speedup
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Worst-Case Analysis (1)

0 Background: Reliability of nvCiM DNN Accelerators

Weight w/o var
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O Safety Critical Apps. & Worst-Case
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[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022 22
International Conference on Computer-Aided Design (ICCAD)
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Worst-Case Analysis (2)

O What if Ignoring Worst-Case Analysis
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Worst-Case Analysis (3)

O Solution: Define it as Constrained Optimizations

S — Weigh L
el . e eight w/o var minimize z p(x, {f,W})
.. Device Circuit o on | WVorst-case S
s Model Design @ | !
5 © = I I
L I 3 s.t. L(AW) < th
(a) Resistance (Ohm) | | | < 1 g
_ N : x,{f,W}) = max{0, — max(0;),0
w—th; <Ww <w+th e vElLE p(x, {f,W}) {0 4 (0y),0}
Build a Noise Model Def. Constrained Relax to Differentiable
Opt. Problem Objective
. . . . . 100% 90% 95% 100%
d Findings: Very Low Reliability! o a0
0 np . . . X 60%
= 3% conductance deviation > Miss-classify all inputs 5 9
i : : m 20% | 19
= Existing protection methods are not effective 0%

0% 1% 2% 3%
= Published in ICCAD 22 [5] Very fgrﬁu&zrici:;l[))ﬁ\;itayﬁon

T T LT LAY
[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022 24
International Conference on Computer-Aided Design (ICCAD)
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Formulating Worst-Case using Optimization

f(W + AW, x) .

(x,t) €D .

minAiwize Hf(W + AW, x) == t|(x,t) € D}|

s.t. L(AW) < th,

Neural architecture f, weight W and
weight perturbation AW

Input x, label t and dataset D
Minimize the size of the set of
correctly classified inputs =
minimize accuracy

Subject to the constraint that

perturbation distance smaller than

thy

L N R L L TR TR A AR ANTA
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Solving Optimization using Relaxation
* Goal: minAiwize H{f(W + AW, x) == t|(x,t) € D}|

 The goal is discrete and difficult to optimize, relaxation needed
* Relax to a continuous function for each input:

. minAiWize Yxep P, W + AW})

= p(x, {f,W+ AW}) > 0, ifand only if, f(W + AW, x) ==

= Function that satisfies the requirement
p(x,{f,W + AW}) = max{0; — max(0;), 0}
i#t
Constraint L(AW) < thy: Lagrange multiplier c

. minAiwize(c - Yxep P, W + AW}) + (L(AW) — thy))

* Gradient descent can be used to solve this problem

L N R L L TR TR A AR ANTA

[5] Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE symposium on security and 27
privacy (sp). IEEE, 2017.




Major Results for Worst-Case DNN Performance

* Baselines: Monte-Carlo Simulation (MC) & Projected Gradient Descent (PGD)

* Proposed method discovers models with lower accuracy (tighter lower bound)
e MC method failed to find models with low enough accuracy

 The proposed method finds wors-case performance efficiently

: Worst-case Accuracy (%) Time (Minutes)

Dataset Model Orl. Acc. MC PGD Proposed MC PGD Proposed
MNIST LeNet 99.12 97.34 13.44 7.35 900 3.3 5.5
CIFAR-10 ConvNet 85.31 60.12 10.00 4.27 2700 4.2 6.0
CIFAR-10 ResNet-18 95.14 88.77 10.00 0.00 5400 133 20.0
Tiny ImageNet ResNet-18 65.23 25.33 0.50 0.00 14400  40.0 60.0
ImageNet ResNet-18 69.75 43.98 0.10 0.00 231000 1930 2880
ImageNet VGG-16 71.59 66.43 0.10 0.06 313800 2530 3820

L N R L L TR TR A AR ANTA
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Summary

* Proposed an efficient framework to examine worst-case

performance of DNNs

 Showed that the accuracy of a well-trained DNN can drop
drastically to almost zero with very subtle perturbations

e Existing methods are either too costly (for stronger write-
verify) or ineffective (for training-based methods)

e Further research is needed to find a solution to this issue

L N R L L TR TR A AR ANTA
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d Remedy Methods: Cross-Layer Co-Design

e Software: HW-Aware Training
= Overview
= Detailed Solution

= Experimental Results
* Co-Design: HW-SW Co-Design Algorithm
O Outlook & Conclusions
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Realistic Worst-Case (1)

0 New Challenge: Very Low Reliability!
= 3% conductance deviation > Miss-classify all inputs

= Existing protection methods not effective

= End of the world?

U Issues for Absolute Worst-Case

Number of ik encounters

A
S
-3

A sy

e "<l e < ‘ ('\l

0o Ty il .. 20

r"ﬁ. : EEZ: 2 n§ im ﬁ § A

FC Net ResNet56 VGG19
del

Low Probability Partially Verified Too Costly
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Realistic Worst-Case (2)

0 New Metric: K-th Percentile Performance (KPP)
. b

88 |89 189 189 89 9 |90 90 |90 | 91 91

i \ 1 1

Min | | 30-th pctl Median 80-th pctl

4 4 === 5th percentile
—== 50th percentile (median)
1 ==~ 90th percentile

0.45

1
N
0 T T T

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

1
I
]
50% 1 90% |

1 1

Distribution Density
N

O Improving KPP

s k% worst-case Robust Model 0
performance I o
W .
g "\ (200-40% better /2 '” v _ 02
o4 performance f Tf Gaussian only | f”
02 | 1 I 0.1
0 v o0 = \ 2
‘ -1.00 -0.75 -0.50 -0.25 Zt:: 025 050 075 100 GauSS|an NOT Opt (a) RC GaUSS|an

Statistical Model for KPP Gaussian Noise Injection is not Optimal Design New Noise

T T LT L LAY
[6] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian 33
noise,” 2023 International Conference on Computer-Aided Design
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d Remedy Methods: Cross-Layer Co-Design

e Software: HW-Aware Training

= Detailed Solution

= Experimental Results
* Co-Design: HW-SW Co-Design Algorithm
O Outlook & Conclusions
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Detailed Solution Overview

 Goal:improve realistic worst-case accuracy (KPP) of DNN under device variations

DNN Dev. var. Analyze Noise-Injection Training
that inject Gaussian noise

Requirements

Estimate KPP for DNN

1 2nd derivative T 15t derivative Gaussian noise only | f”

| | J
v

Gaussian NOT optimal
\/
Novel RCG-noise

35
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Link KPP W|th Model Properties

 Use loss to represent performance, find its Taylor series (the smaller the better)

()2

fwo + Aw) = f(wp) + Awf'(wy) +

£ (wo) + o(@Bwh?) (1)

Dev. Var.

e KPP estimation

= Given: a DNN model, device variation distribution, and probability k%
® Find: KPP

= Key: write KPP in the form of an equation with model properties and k

36
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KPP Estimation: Details

T H§ )? y
f(wo + Aw) = f(wy) _|_4Ag/]tjl,?:5(l‘}\}})|€31t;0) ;v " (we) + Pi(\@ﬁfybla@rl?ty k% of Aw in this range
»Yd
|

Let KPP be an Find the range of Aw
unknown variable that loss > KPP (100 — k)% = cdf;(wy) — cdfs;(wy)
|
|/
Eq. (1): _ 1
Aw < wy orAw = w,

- Represent KPP with k%

:

Quadratic function _ _
Roots of Quadratic function

104

k% worst-case

st H H o
/ 15t order approximation:

0s ] performance . i . .
KPP next slide Closed-form impossible
& 0.6 W1 0 WZ l
o] (100-k)% bettey 3rd order approximation:
erformance — A o
more than 4 A4 pages ] pproximations
0.04 1 1 5 $3 1‘5 m2n+1
71t00 70‘.75 -0.50 -0.25 0.00 0.’25 0.‘50 0.‘75 1.00 @ xr) = — + . e—il' /2 i + —_— _I_ —_— + e +
Aw () 2 o 3 3-5 (2n + 1)

L N R L L TR TR A AR ANTA
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Deswed Model Properties

* Use loss to represent performance, find its Taylor series (the smaller the better)

fwo + Aw) = f(wo) + Awf"(wo) +

e KPP estimation

—KPP =~ —

* Requirements:

|7 ’(Wo)z

21" (wg)
f”(WO) ‘LI

_l_

f(wo)|+

f (wo)

()2

Percentile

4

s o)
4

and ||f"(wo)|

£ (wo) + o((;lﬁ)

Dev. Var.

(3)

38



TOEEEEEREREER e Hun 1T T 1 LI TEEEEEEE R R R T TOEEREREERERTee T TILEEEREET LT e e e e e e e e e

N0|se Injectlon Tralnlng Process AnaIyS|s

* Noise injection training weight update

v;,#_l:W‘t—@ f (Wt‘l'@

Updated w Original w LR Loss fn | | Gradient Noise

* Taylor Series:
2

Wesr =W — @ (f'<wt> W (we) + 7 (we) + o((wn)?’))

* Averaged effect: wypq = wy — aE[f' (W + wy)]

E[(w,)?
Wess =wt—a<f'<wt>+E[wn]f”(wt>+ ) ]f"'<wt)) (1)

L N R L L TR TR A AR ANTA
In paper, w,, is denoted as Aw. We change this terminology to avoid ambiguity in the slides. 39
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Flndlngs How Noise-Injection Training Improves KPP

* How noise-injection training fulfills the requirements

= Requirements: f(wg) d, |f'wy)|T, and f""(wy) !

T 1 1

Wi =w,—a (f'<wt> + E[wy]f" (we) + E[(V;—")Z]f”%wt))

 |Desired noise properties E[w,] # 0, E[(wn)z] >0

* Gaussian does not hold this property!
* Propose four candidates

* Training with RIlght-Censored Gaussian NoisE (TRICE)

(*
0.31

0.2

0.1

0.0

0.4 1

0.31

0.2

0.11

0.0

-2 0
(a) RC-Gaussian

2

2 0
(c) RT-Gaussian

2

0.4
0.3
0.2
0.1

R S
(b) LC-Gaussian
0.4 4

0.3
0.2

0.1

0.0 —

-2

0 2
(d) LT-Gaussian
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Outline

d Remedy Methods: Cross-Layer Co-Design

e Software: HW-Aware Training

= Experimental Results
* Co-Design: HW-SW Co-Design Algorithm
O Outlook & Conclusions




Experimental Setups

* Baselines:

= Training w/o noise

= CorrectNet [7]

® |njecting Gaussian noise in training
* Evaluation method:

= Metric: KPP, k=1 (p = 1%).

= Monte Carlo runs: 10,000

L N R L L TR TR A AR ANTA

* Device mapping model

Device conductance (g): 0 — 150 uS”

0 100 150
|
0 30 45

Weight value (w): 0 — 4.5™
e Device variation model

=  Conductance follows Gaussian dist.

- _ Jt
g=N (max(g),ad) X max(g)

* Absolute 0 uS is impossible so here it means a very high resistance
** Negative weights are mapped to another array

[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression 42
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.



Results on MNIST Dataset

Dev. var. Training Method
(oq) w/o noise  CorrectNet  Gauss. TRICE
0.00 99.01 97.99 08.86 98.94
0.10 70.72 90.66 95.59 95.99 1 58%, 38%
0.20 19.81 39.54 66.04
0.30 08.58 14.26 23.09 38.51
0.40 06.05 09.23 10.38 17.94

Model: LeNet, 4-bit quantization

Metric: K-th Percentile Performance (KPP) = 1-st percentile accuracy
Columns: comparing three baselines with the proposed method TRICE
Rows: over different device variation magnitude (g;)

Following experiments: CorrectNet [4] X

L N R L L TR TR A AR ANTA

[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023.
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Results on CIFAR-10 Dataset

> > -
- -#-- W/o Noise o -#-- W/o Noise
— 0
é 0.8 1 -®-- Gaussian S 087 -#- Gaussian
< o6l —— TRICE < o6l RN —— TRICE
o \\ N v .\\ \‘
_ (v) \ = AN
20, 1T 25% Z o4 1T 26%
v 0 N g L SN
o \\ ~
9 02 T1T 50% . go21 11T 45% o- g
» T~e---IP=z==g % Ty
—
0.0 T T T T T T T T T 0-0 T T T T T T T T T
0.00 005 010 0.15 0.20 025 0.30 0.35 0.40 0.00 005 010 0.15 0.20 025 0.30 0.35 0.40
Device Value Variation gy Device Value Variation oy

VGG-8 ResNet-18

 (a) VGG-8 model and (b) ResNet-18 model, 6-bit quantization
e X-axis: device variation magnitude (o)

e Y-axis: KPP: 1-st percentile accuracy
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Results when using Different devices

>1.01 -®-- W/o Noise >1.01 -®-- W/o Noise
g —-#-- Gaussian © -#-- Gaussian
f 08 “w —— TRICE S 081 —— TRICE
@06 \\\ Z 0.6 \\
é 0.4 TT 16% .‘\ § 0.4 T 12% \'\
w — \\\
o2 111 60% 3 So2{ 111 60% >
- TTe----e--_o - *N~’"“"--::=
%0000 005 010 015 020 025 030 035 040 00 80 005 010 015 020 025 050 055 o040
Device Value Variation o4 Device Value Variation og4
FeFET-1 FeFET-2
. . . 2 28
* Previous two experiments: RRAM devices 2 ] 2 ]
o [a)
vs. this experiment: FeFET devices s | §4
2 22
* Model: LeNet, 4-bit quantization S0 I VAR VA VA N - S [V . O N |
0 1 2 3 0 1 2 3

Device Value Device Value

* Dataset: MNIST RRAM FeFET
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Summary

* Advocate the use of a realistic worst-case performance metric (KPP)
* Propose a novel noise-injection training method to improve KPP

 Show that injecting right-censored Gaussian noise can effectively
improve KPP

e The proposed framework improves KPP by up to 25%
e Published in ICCAD 23

* Received Best Paper Award
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HW-SW Co-Design Algorithm (1)

———————

O Existing Methods il B 8 —
—
== i &8
Super Network 7 1
= Given: a task and a design space —L— i E=
Arch Model
= Find: the optimal HW-SW design pair o < s

[ Using Existing Methods

@ Design Specifications  + Explore

Differentiable Methods

Child Network-Based

O Issues for Existing Methods

2 6000 | G=0 ‘II LTJ
;gﬂ.’ 2 i\ 0=0.02 .o - oo o @ z TN\
b | /
- Acc 120% 30 - g s000 [\ 0=0.03 :
25 % a [ £ 0=0.04 M M
O e — 20> 4000 . ' v ] 2 \
. . s=C o .0 o
€ o ~—* 15 & TTT o . %
B >
e e i s ST e 40% Fairness 5 TBs
— ¢ & . 0.5 “
* [CIFAR-10: 92.85% 5 2000 \ i T
% Nuclei (I0U): 0.8374| o ) i, A L—I
—= 2.00, O 1000 2
R 150 3 | U 2~
{Nuclei ( ): 0.642 i o N
les 2 - 050 e‘q\\ 0.0014 -0,0012 —0.0010 —0.0008 —0.0006 —0,0004 —0,0002
Laten,, 6 <« EOpp0
Y (eyey, g 000 (@) (b)

Object Detection Image Segmentation

Search Time

Memory Cost

[8] W. Jiang, Q. Lou, Z. Yan, et al., “Device-circuit-architecture co-exploration for computing-in-memory neural accelerators,” IEEE Transactions on Computers, 2020 48
[9]1Y. Guo, Z. Yan, X. Yu, et al., “Hardware design and the fairness of a neural network”, Nature Electronics (under review)
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HW-SW Co-Design Algorithm (2)
0 Why Existing Methods are Not Efficient

= Cold start: Random initialization

= Search space explosion

Cold Start Search Space Explosion

 Dealing with These Issues

275

oG —=— LCDA ---- LCDA (Projected) 25.0 o : gﬁ::ti;s
—+— NACIM —— NACIM § s
225
nr |\
o || |||

n
-Q.I B x X% x X

g Pareto Optimal on
3 25x Speedup .
Constramed Memory
M V M ‘.'-ll X x|
-0.2 LBetter —_— :x . T‘ . g
" episodenumber " Episode number 0 o 1z 1a
(a) Rewards in early episodes

(b) Rewards in later episodes AOPS 1e10
(zoomed out)

Use Large Language Models Combine RL with Differentiable Methods
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[10] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using lims for sw/hw co-design: An example in designing cim DNN accelerators,” SoCC 2023 49
[11] Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, “Radars: Memory efficient reinforcement learning aided differentiable neural architecture search,” ASP-DAC 2022




Our Solutlon Summary
Background: CiM for DNN Solution: Cross-Layer Co-Design

45 )
T _ Detect Sensitive Co-Design
AN Device Devices ]
L__A 10x Protection
e — Object Detection

W1l 10x EDP

.6., nnnnnnnn i, .. , .,:'; Worst-Case Analysis
ig
\ NVM Dewces aaa 100% Error

eeeeeee Circuit/

RRAM MRAM FeFET Arch 1T Img Segmentation

AutoML ™11 40% Fairness

Problem: 10x Speedup

Device Variation & Acc. Drop Ima Classificati
mg Classification

o - Train Robust DNN 25x Speedup
51 | J ‘ 1 0 m Software models —

11 33% Acc

Relative Frequency (%)
cadadB8E
§ a9
3z
Iy
o

ok
sistance (Ohm)

ISata Difference Accuracy Drop
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Outlooks

O Incremental Future Works

= Using LLM to improve HW-SW Co-Design for robustness

= Accommodating SWIM to more types of devices
U Future Directions

= Hardware backdoors for CiM platforms 7
= Physical verifications for CiM techniques

Original image Pattern Backdoor

= Mix-precision designs for robust DNN models DNN result: 7 3

Hardware Backdoor

L L L L T A T LR A RN
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Conclusions

U Introduction: Crossbar-based Hardware and their Robustness Issues
d Remedy Methods: Cross-Layer Co-Design

* Device: Device Programming Techniques

* Circuit/Arch: Worst-case Analysis

* Software: HW-Aware Training

* Co-Design: HW-SW Co-Design Algorithm

d Outlook & Conclusions

L N R L L TR TR A AR ANTA
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Abstract

Deep Neural Networks (DNNs) are currently operated on GPUs in both
cloud servers and edge-computing devices, with recent applications
extending to safety-critical areas like autonomous driving. Accordingly,
the reliability of DNNs and their hardware platforms is garnering
increased attention. This talk will focus on soft errors, predominantly
caused by cosmic rays, a major error source during an intermediate
device's lifetime. While DNNs are inherently robust against bit flips,
these errors can still lead to severe miscalculations due to weight and
activation perturbations, bit flips in Al accelerators, and errors in their
interfaces with microcontrollers, etc. The latter part of this tutorial will
discuss:

e |dentification of vulnerabilities in neural networks,

* Reliability analysis and enhancement of Al accelerators for edge
computing,

e Reliability assessment of GPUs against soft errors.



Neutrons and muons are falling into/VLSI ’
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Example of nuclear reaction




Example of reaction in VLSI chip

electron density (1/cm°)

Z (Mm) 1.00e+21
. | ’ | . | J | i
1.2 . l
_ proton ' 6.31e+18 ,
alpha 9.3 MeV Injected charge
10.5 - .
b _ | 398e+16 ), MAY result in

bit flip called

Jeiania soft error.

I 1.58e+12
Fig. 3. Cross section view of the mitial charge distribution by the nuclear reac-
tion,n+**Si — 3n+2p+2a+ 190, at the incident energy of 233 MeV. The
track of '°O ion with its kinetic energy of 4.23 MeV is not depicted because
the direction of motion 1s nearly parallel to the y-axis [1].

[1] S. Abe, et. al, ”Multi-scale Monte Carlo simulation of soft errors using PHITS-
HYENEXSS code system,” IEEE Trans. Nuclear Science, 2012



Incident in aircraft (Oct. 2008)

Table 26: Evaluation of potential triggers

Trigger Key points Assessment

|
A Stee d Ive d u e tO fI - Software ADIRU software was verified as intact after the occurrences. Very unlikely
corruption Unit 4167’s software was reloaded and verified between the two

occurrences involving this unit.

u L}
- Software Would not be expected to occur twice on one unit without many Very unlikely
‘bug’ other occurrences on other units

Functional testing of software found no problems.

No unique circumstances identified with the occurrence flights

P 1 ; t d that could trigger a rare bug
C u S 0 I I I e rS a I l Hardware Extensive unit and module testing found no problems Very unlikely

fault Visual examination of the units did not identify any physical
damage or other abnormalities.

3/4 crews injured

Physical Unit testing beyond relevant standards found no problems. Very unlikely
environment

Visual examination of the units did not identify any physical
damage or other abnormalities that could result in a relevant
equipment fault when exposed to normal or abnormal
environmental conditions.

Other factors
(Very) unlikely

" Australian Government

~ The physical environment was normal during the three flights.
Australian Transport Safety Bureau

Nothing unusual found with aircraft environment during testing.

EMI from Extensive unit testing found no problems. Unlikely

aircraft Measurement of the electromagnetic environment within the

systems aircraft during ground and flight tests showed nothing unusual or
excessive.
It was not possible to reproduce the exact conditions of the
occurrence flights during testing.
Wiring integrity tests found no problems.
The aircraft configuration was not unique or unusual.
No problems with the other ADIRUs installed on same aircraft.

EMI from No sources of concern were identified. Very unlikely

other Extensive unit testing found no problems.

onboard .

Y sources Measurement within the aircraft while PEDs were in use showed
— very minor effects on the electromagnetic environment.

EMI from No sources of concern were identified. Very unlikely

external Extensive unit testing found no problems.

sources ) ) ) )

In-flight upset The electromagnetic environment during flight tests showed S Oft e r ro r
154 k (L h W nothing unusual or excessive.
2 m west of Learmonth, WA No problems with other systems during the occurrence flights. e o
7 October 2008 | ff t
= SEE The intensity of high-energy particles for the three occurrences Insufficient n S u I C I e n
VH-QPA was not unusual. evidence to
- [ e
Airbus A330-303 The ADIRU had limited mechanisms to detect and manage SEE [ stimate d

(that is, no EDAC). likelihood e‘II ence Slnce

No SEE testing was performed on the occurrence units.

SEE testing on another unit did not induce the data-spike failure
mode (although the testing was limited in scope).

reproduction
is very difficult

Difficult to accurately estimate the likelihood of two SEEs

httpS'//WwwatSbgova U/m ed |a/3532398/302008070 pdf occurring on the same ADIRU twice in its operational life.




Multi-physics multi-layer phenomena
with diverse temporal and spatial scales

Incident particle
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Real-time & accelerated test
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Many devices are operated

* Months to years are necessary to
get enough # of errors
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Demonstration

Linux is running on Raspberry Pi

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.

0 M0 0 © -

Airbus: Brexit chaos threatens ou
UK




Wed Jun 27 10:51:25 2018

PUORL

Airbus: Brexit chaos threatens ou

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.



11

Our life depends on Al applications
running on mtegrated systems

\
]
l“. V“‘ &\
.~\\. .
. \ P
N \
4

http://rtc.nagoya.riken.jp/ROBEAR/

High reliability is demanded for Al-based safety-

critical applications.
Rad-hard components sufficiently powerful to

execute DNNs are not available, yet.
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Preliminary experiment irradiating
object detection running on GPUs

* Yolov3-tiny

* GPU cards
— NVIDIA Quadro P2000
— NVIDIA GeForce GTX960
— Aligned in series on the beam track == _'

Y. Zhang, K. Ito, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, P
"Fault Mode Analysis of Neural Network-based Object Detection  ° Quasi-monoenergetic
on GPUs with Neutron Irradiation Test," RADECS, 2020. g neutron beam at CYRIC




Definitions of DUE, SDC and critical SDC

Impact of soft error on computation includes
* wrong computation result (SDC; Silent Data
Corruption)
 Harmful for all applications
* hang or halt (DUE; Detectable Uncoverable
Error)
* Harmful for real-time applications
* no effect (Mask)
* Depends on both hardware and software
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Critical SDC in Object Detection

* SDCs that are critical to object detection
* loU (intersection-over-union) is used to evaluate

critical SDC

loU : l1oU of faulty and golden output
loU > thresh: normal SDC (thresh: 0.8 in exp.)

loU < thresh: critical SDC
Area of Overlap l !
Area of Union .

loU =




Temporal patterns of observed SDCs

* Each row corresponds to one sequence of error
occurrence

e Some faulty outputs last for hundreds of seconds
probably due to weight data corruption

Normal SDC starts
\\:::;1 x///// \\\\

1237

291
4
-
01 547
unit: second
03
/[E /

Critical SDC starts Repeating identical errors
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Fault mode categorization

Classify errors into two-by-two categories:
* |dentical errors repeat or not
e SDC critical or not

# of faulty events

Category | ldentical Variant
errors errors

Critical 2 2

SDC

Non- 8 6

critical

Not all SDCs are critical.
NNs are inherently redundant and robust to
parameter perturbation.

Error rate depends on underlaying hardware.



Current research status

* Some data in literature suggests radiation impact on
DNN is so high, hindering safe large-scale use.

* COTS Al products exhibit a high error rate due to
radiation [2][3], attributed to their large size and
critical resource density.

* Effective hardening strategies against radiation is
necessary.

[2] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,“Soft error resilience of
deep residual networks for object recognition,” IEEE Access, 2020.

[3] D. A. G. Goncalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation and mitigation
of radiation-induced soft errors in graphics processing units,” IEEE Trans. Computers, 2016.
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NN robustness evaluation (FP case)

* DNN robustness is important for soft error, hard
error and security.

— Malicious attack to DNN is another concern.

* Maximum impact of single event upset in network
parameters.

100% -+

90% gg9 7 Original & Perturb Sign bit & Perturb Exp bits
— Among all the parameters, v
. 7506 | 2//f — 72% 71% 7%
only one bit of one | 7 //
. : 5 = r _
parameter is with fault and & s | ;/ | %//
S B =
the others are fault-free. = = =
25% + | ////
=
=R %_
A .
0% ? ; 1 % 0.1%
NIN ResNet56 VGG16

Z.Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou and C. Zhuo, "When Single Event Upset Meets
Deep Neural Networks: Observations, Explorations, and Remedies," ASP-DAC, 2020.
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Observations in ResNet56

* Observation 1: the highest exponent bit has
the highest impact across different layers
while fraction bits have is very limited impact.

r = (_1)-1911 % (1 4 FT"(L(‘TNZO??)Elponent Bias

* Observation 2: the first layer, which directly
deals with the input stream, has higher impact.

Maximum accuracy drop in ResNet56
SSIPP [nput Stack 1  Stack 2 Stack 3 FC

Sign 28.09% 6.43% 2.08% 0.27% 0.90%
Ex1 70.19%  70.19%  70.19%  70.19%  70.19%
Fracl 0.43% 0.29% 0.41% 0.25% 0.30%




Results in other networks

* I[mpact of bits are:
exponent > sign >> fraction

* Impact of sign bit varies layer by layer.

21

NIN/Sign NIN/Ex NIN/Fr Res56/Sign ResS6/Ex Res56/Fr
Layer Y B W B W B W B W B W B
1 1.0% 22% | 80% 80% | 02% 04% | 28.1% 169% | 710% T70% | 04% 0.4%
2 02% 44% | 80% 80% | 0.1% 0.2% 6.4% 1.2% | 710% 70% | 03% 0.2%
3 03% 24% | 80% 80% | 02% 0.1% 2.1% 1.2% 0%  70% | 0.4%  0.5%
4 0.1% 0.1% | 80% 80% | 0.1% 0.1% | 0.3% 1.1% | 710% 70% | 03% 0.4%
5 03% 02% | 80% 80% | 02% 0.1% - - - - - -
Last | 24% 02% | 80% 80% | 0.7%  0.1% 1.0% 01% | 70% 70% | 03% 0.1%
VGG 16/Sign VGGI16/Ex VGG16/Fr
Layer A% B W B Y B
1 42% 2.4% | 710% T70% | 09%  0.9%
2 01% 04% | 70% 70% | 0.1%  0.2%
3 01% 01% | 70% 70% | 0.1%  0.1%
4 01% 01% | 70% 70% | 0.1%  0.1%
5 01% 01% | 70% 70% | 0.1%  0.1%
Last | 0.0% 0.0% | 70% 70% | 0.1%  0.1%
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Fault injection is too time-consuming

* Fault injection(Fl) is a common method for
estimating vulnerability of a network due to
nonlinearity of NN. However, Fl costs time
prohibitively because NN has too many parameters.

* Contributions: propose constructing a vulnerability
model (VM) to predict vulnerability of DNN with
fewer Fls in an acceptable time.

* Fl reproduces a bit flip supposing soft error and
malicious attack.

Y. Zhang, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, "Estimating Vulnerability of All
Model Parameters in DNN with a Small Number of Fault Injections," DATE, 2022.

Y. Zhang, H. Itsuji, T. Uezono, T. Toba, M.Hashimoto, "Vulnerability Estimation of DNN
Model Parameters with Few Fault Injections," IEICE Trans. Fundamentals, 2023.



Features of proposed VM construction

Machine learning is used to construct VM.

*Vulnerability definition:
e sum of accuracy degradation for individual bit flips.

e Feature identification :

* e.g., absolute value of parameters, gradient, calculation
times, etc.

* Fast training:
* Only conduct Fl on important bits, e.g., exponent bits
with value O.

* [terative training to prepare minimum Fl data for
required accuracy
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VM construction flow

Input:
* Trained NN
* Image dataset

Output:
* Trained VM

Start VM construction

v

Select DNN parameters p and
calculate vulnerability V with
fault injection

v
Extract features X for selected
DNN para‘,'meter p

Train/test VM with X, V

M accuracy
improve?
No
Predict vulnerability

of all parameters

e Vulnerability of all params.

25

Conventional method:
FI to all/important bits
of all parameters.

Proposed method:

Fl to important bits of
some parameters and
predict others’
vulnerabilities



Definition of vulnerability

1
Vi = N_b Z(AGCCi,j)
Jj=1

Aacc: accuracy deviation between the original clean DNN and dirty DNN
Ny:  the number of bits for vulnerability analysis in one DNN parameter

For 32-bit floating point case:

/ parameter

sign exponent  mantissa

Neural network

1
Vi = 5 (AClCC + + )
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Efficient vulnerability calculation

* Approximation of vulnerability OO 10): 1(9)
;M i"""_l_"""""": (a) 8 exponential bits

V, = N Z(Aacci,j) E— = N_b z (Aacc ;) ! of 32 bit floating-point
b= ! jEbits; |

. |
|

b I @@110110
|

flts: i setl\’;hat may contain integer numbers (b) & bit fixed-point
rom 1to iVp positive number

*bits selection @@@@% -
* Floating-point format '
* exponent bits whose values are 0.

* Fixed-point format

* Positive number: 0’ bits locating on the left side of the
topmost ‘1’ bit ‘1’ to ‘0’; the value change is at most 100%

(c) 8 bitlfixed—point
negative number

* Negative number: ’1’ bits locating on the left side of the
topmost "0’ bits ‘0’ to ‘1’; the value change is at most 100%



Feature extraction

* Absolute value of param (A)

 Number of dangerous bits (D)
 Number of bits

* Gradient (G)
e Larger gradient means larger impact on NN output
* Available in NN training process

e Calculation time (CT)
* How many times each param is used during one NN inference

e Layer location (ID, OD)

* Location of each layer.

28



Setup

* Networks
* ResNet-18, quantized ResNet-18, yolov3-tiny

* Datasets

* CIFAR10: ResNet-18, quantized ResNet-18
* COCO: vyolov3-tiny

*\VM algorithm
 Random forest

* Definition of accuracy
* Top-k accuracy: ResNet-18, quantized ResNet-18
* Mean average precision (mAP): yolov3-tiny

29



Validating bits selection

*Vulnerability distribution on different bits

0.008
0.006 - I

18]
@ 0.004-
[=

*Vulnerability is
centralized on MSB

bility

ul

0.002+

0000751 3 3 2 5 6 7

bit index

(a) resnet-18 (b) quantized resnet-18

* Assume for unimportant bits outside bits, Aacc = 0

* ResNet-18:
* 99.9996% unimportant bits attain Aacc=0.

e ## of fault injection is reduced by 54.5%

* Quantized ResNet-18:
* 99.995% unimportant bits attain Aacc=0
* ## of fault injection reduces 27.1%



Accuracy & time comparison with 3

traditional FI

VM can predict vulnerability accurately for resnet-18 and yolo-v3

>3000x speed-up (733 to 0.21 hours) can be achieved compared
with tradition Fl.

0.010 ——
= Conventional
)
c . o0.008{ Fl-based

)

> O
E 5 Much smaller error can

0.006 1 s
© 8 t be obtained by fewer
v =
< & 0004l Fls.
>0 O
> © — BFO Proposed

I wm .
0.002 1 i *

0 le-05 0.0001 0.001 0.01
Ratio of fault-injected parameters

* Traditional fault injection: flip all bits for all parameters
e BFO: only flip important bits for all parameters
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Neural architecture search (NAS) for
multi-bit-width (MBW) NNs

Thanks to approximate and quantization-
compatible features of CNNs, NAS is used for
precision reduction with limited accuracy loss.

Neural Architecture Search for Multi-bit-width NNs

~ N
_) Pool _* Pool - -+ - _)

Convq Conv; Convij4+1 Conv; Denseq Dense;
) ]

;' N Search Unit Evaluat :

5 Convp/Densep:-Vallate.

— INT4 —)@

' max : :

! weight . Update !

: INTS : :




Examples of MBW LeNet5 generation

default op quantization op NAS op
NAS op with constraints datatype
fp32 fp32 fp32 fp32 fp32
v v v v v
conv2d—> relu —» max —>»conv2d—> relu —» max G —> N C—> G
pool pool
Case 1: Quantization
Int8 Int8 Int8 Int8 Int8
v v v v v
conv2d—> relu —> EL —>»conv2d —> relu —» pax G —> G —> G
pool pool
Case 2: Nerual Architecture Search
Int8 Int4 Int4 Int4 Int4
v R R A .
conv2d—> relu — a —>»conv2d—> relu —> aXE > fc —> fc —» fc
pool pool
Case 3: Nerual Architecture Search with Constraints
Int2 Int4 Int4 Int8 Int4
v v v v v
conv2d—> relu — e —>»conv2d—> relu —» maxs » fcr—> e — G
pool pool

Differential NAS approach in [4] is applied.

[4] M. Huang et al., “A high performance multi-bit-width booth vector systolic
accelerator for NAS optimized deep learning neural networks,” IEEE Trans. CAS-1, 2022.
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Reliability concern regarding MBW NNs

* |In highly precision-reduced NNs, each bit
needs to carry more information.

v

* Important to analyze the reliability of these
multi-precision networks.

Lenet5 Backbone INTS8 model INT4/8 model INT2/4/8 model
Layer Activation Weight Precision = Weight Size  Precision = Weight size  Precision = Weight size
(NCHW) (OIHW) (Bit) (Byte) (Bit) (Byte) (Bit) (Byte)
Convl 1x1x32x32 6% 1x5%5 8 150 8 150 2 37.5
Poolingl Ix6x28%28 - 8 - 8 - 2 -
Conv2 1x6x14x14 16x6x5x%5 8 2400 4 1200 4 1200
Pooling2  Ix16x10x10 - 8 - 4 - 4 -
FC1 1x16x5%5 120x16x5x5 8 48000 4 24000 4 24000
FC2 1x120x1x1 84x120x1x]1 8 10080 4 5040 8 10080
FC3 1x84x1x]1 10x84x1x1 8 840 4 420 4 420
Total - - . 61470 - 30810 - 35737.5
Accuracy - - 98.48% 95.42% 90.25%

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-1, 2023,



Increase
in
misclassifi
cation

Layer Bit INTS8 Model INT4/8 model INT2/4/8 model (3{
Position Samples Errors Error Ratio | Samples Errors Error Ratio | Samples Errors Err 0
0 15K 0 0% 15K 0 0% 15K 120 0.8000%
1 15K 0 0% 15K 7 0.0467% ISK 217 1.4467%
2 15K 1 0.0067% 15K 13 0.0867% - - -
Convl (1) 3 15K 0 0% 15K 57 0.3800% - - -
4 15K 1 0.0067% 15K 94 0.6267% - - -
5 15K 0 0% 15K 127 0.8467% - - -
6 15K 0 0% 15K 150 1.0000% - - -
7 15K 5 0.0333% 15K 143 0.9533% - - -
LAVS(esb) / Dur’(ns) / RT(ns) 8.2220e-5 / 1174570 / 299562.5 6.9417e-3 / 1174570 / 299562.5 3.9583e-3 / 1174570 / 301937.5
0 240K 0 0% 240K 408 0.1700% 240K 90 0.0375%
1 240K 0 0% 240K 610 0.2542% 240K 206 0.0858%
2 240K 1 0.0004% 240K 893 0.3721% 240K 302 0.1258%
Conv2 (2) 3 240K 11 0.0046% 240K 1415 0.5896% 240K 486 0.2025%
4 240K 35 0.0146% - - - - - -
5 240K 75 0.0313% - - - - - -
6 240K 95 0.0396% - - - - - -
7 240K 78 0.0325% - - - - - -
LAVS(esb) / Dur'(ns) / RT(ns) 5.8437e-4 / 198090 / 155250.0 6.5885e-3 / 198090 / 155375.0 2.1473e-3 / 198090 / 156562.5
0 4800K 0 0% 4800K 347 0.0072% 4800K 1394 0.0290%
1 4800K 0 0% 4800K 766 0.0160% 4800K 2320 0.0483%
2 4800K 0 0% 4800K 1778 0.0370% 4800K 4784 0.0997%
FC1 (3) 3 4800K 0 0% 4800K 2688 0.0560% 4800K 9349 0.1948%
4 4800K 0 0% - - - - - -
5 4800K 0 0% - - - - - -
6 4800K 1 0.0000% - - - - - -
7 4800K 46 0.0010% - - - - - -
LAVS(esb) / Dur!(ns) / RT(ns) 4.2300e-8 / 90 /163937.5 5.0211e-6 / 90 / 164562.5 1.6062e-5 / 90 /165625.0
0 1008K 0 0% 1008K 64 0.0063% 1008K 7 0.0007%
1 1008K 0 0% 1008K 200 0.0198% 1008K 38 0.0038%
2 1008K 0 0% 1008K 436 0.0433% 1008K 67 0.0066%
FC2 (4) 3 1008K 0 0% 1008K 699 0.0693% 1008K 81 0.0080%
4 1008K 0 0% - - - 1008K 93 0.0092%
5 1008K 0 0% - - - 1008K 102 0.0101%
6 1008K 0 0% - - - 1008K 178 0.0177%
7 1008K 0 0% - - - 1008K 378 0.0375%
LAVS(esb) / Dur!(ns) / RT(ns) 0/90/114812.5 1.2082e-6 / 90 / 107062.5 8.1527e-7 / 90 /115437.5
0 84K 0 0% 84K 22 0.0262% 84K 28 0.0333%
1 84K 0 0% 84K 40 0.0476% 84K 42 0.0500%
2 84K 0 0% 84K 74 0.0881% 84K 74 0.0881%
FC3 (5) 3 84K 0 0% 84K 140 0.1667% 84K 161 0.1917%
4 84K 0 0% - - - - - -
5 84K 0 0% - - - - - -
6 84K 2 0.0024% - - - - - -
7 84K 56 0.0667% - - - - -

LAVS(esb) / Dur’(ns) / RT(ns)

3.4800e-8 / 90 / 101500.0

1.656e-7 / 90 / 100062.5

1.8300e-7 / 90 / 101437.5

ONAVS(esb) / Total RT(ns)

|

6.6667e-4 / 835062.5

1.3537e-2 / 826625.0

6.1227e-3 / 841000.0




Increase
in
misclassifi
cation

larger impacts.

Higher bits have l

77.1% SDCs come
from high two bits. l

Layer Bit INTS8 Model INT4/8 model INT2/4/8 model (3{
Position Samples Errors Error Ratio | Samples Errors Error Ratio | Samples Errors Err atio
0 15K 0 0% 15K 0 0% 15K 120 0.8000%
1 15K 0 0% 15K 7 0.0467% ISK 217 1.4467%
2 15K 1 0.0067% 15K 13 0.0867% - - -
Convl (1) 3 15K 0 0% 15K 57 0.3800% - - -
4 15K 1 0.0067% 15K 94 0.6267% - - -
5 15K 0 0% 15K 127 0.8467% - - -
6 15K 0 0% 15K 150 1.0000% - - -
7 15K 5 0.0333% 15K 143 0.9533% - - -
LAVS(esb) / Dur’(ns) / RT(ns) 8.2220e-5 / 1174570 / 299562.5 6.9417e-3 / 1174570 / 299562.5 3.9583e-3 / 1174570 / 301937.5
0 240K 0 0% 240K 408 0.1700% 240K 90 0.0375%
240K 0 0% 240K 610 0.2542% 240K 206 0.0858%
240K 1 0.0004% 240K 893 0.3721% 240K 302 0.1258%
240K 11 0.0046% 240K 1415 0.5896% 240K 486 0.2025%
240K 35 0.0146% - - - - - -
240K 75 0.0313% - - - - - -
240K 95 0.0396% - - - - - -
240K 78 0.0325% - - - - - -
[(ns) 5.8437e-4 / 198090 / 155250.0 6.5885e-3 / 198090 / 155375.0 2.1473e-3 / 198090 / 156562.5
4800K 0 0% 4800K 347 0.0072% 4800K 1394 0.0290%
4800K 0 0% 4800K 766 0.0160% 4800K 2320 0.0483%
4800K 0 0% 4800K 1778 0.0370% 4800K 4784 0.0997%
4800K 0 0% 4800K 2688 0.0560% 4800K 9349 0.1948%
4800K 0 0% - - - - - -
4800K 0 0% - - - - - -
4800K 1 0.0000% - - - - - -
7 4800K 46 0.0010% - - - - - -
LAVS(esb) / Dur!(ns) / RT(ns) 4.2300e-8 / 90 /163937.5 5.0211e-6 / 90 / 164562.5 1.6062e-5 / 90 /165625.0
0 1008K 0 0% 1008K 64 0.0063% 1008K 7 0.0007%
1 1008K 0 0% 1008K 200 0.0198% 1008K 38 0.0038%
2 1008K 0 0% 1008K 436 0.0433% 1008K 67 0.0066%
FC2 (4) 3 1008K 0 0% 1008K 699 0.0693% 1008K 81 0.0080%
4 1008K 0 0% - - - 1008K 93 0.0092%
5 1008K 0 0% - - - 1008K 102 0.0101%
6 1008K 0 0% - - - 1008K 178 0.0177%
7 1008K 0 0% - - - 1008K 378 0.0375%
LAVS(esb) / Dur!(ns) / RT(ns) 0/90/114812.5 1.2082e-6 / 90 / 107062.5 8.1527e-7 / 90 /115437.5
0 84K 0 0% 84K 22 0.0262% 84K 28 0.0333%
1 84K 0 0% 84K 40 0.0476% 84K 42 0.0500%
2 84K 0 0% 84K 74 0.0881% 84K 74 0.0881%
FC3 (5) 3 84K 0 0% 84K 140 0.1667% 84K 161 0.1917%
4 84K 0 0% - - - - - -
5 84K 0 0% - - - - - -
6 84K 2 0.0024% - - - - - -
7 84K 56 0.0667% - - - - -

LAVS(esb) / Dur’(ns) / RT(ns)

3.4800e-8 / 90 / 101500.0

1.656e-7 / 90 / 100062.5

1.8300e-7 / 90 / 101437.5

ONAVS(esb) / Total RT(ns)

|

6.6667e-4 / 835062.5

1.3537e-2 / 826625.0

6.1227e-3 / 841000.0




L Bit INT8 Model INT4/8 model INT2/4/8 model
I n C re a S e ayer Position Samples Errors Error Ratio | Samples Errors Error Ratio | Samples Errors Ern 0
0 15K 0 0% ISK 0 0% |SK 120 0.8000%
° 1 15K 0 0% . o 1.4467%
l n 2 15K 1 0.0067% 15K 13 0.0867% - - -
Convl (1) 3 15K 0 0% 15K 57 0.3800% - - -
. o o 4 15K 1 0.0067% 15K 94 0.6267% - - -
m|SCIaSS|f| 5 15K 0 0% 15K 127 0.8467% - . -
6 15K 0 0% 15K 150 1.0000% - - -
- 7 15K 5 0.0333% 15K 143 0.9533% - - -
c at I O n LAVS(esb) / Dur’(ns) / RT(ns) 8.2220e-5 / 1174570 / 299562.5 6.9417e-3 / 1174570 / 299562.5 3.9583e-3 / 1174570 / 301937.5
0 240K 0 0% 240K 408 0.1700% 240K 90 0.0375%
1 240K 0 0% 240K 610 0.2542% 240K 6 0.0858%
2 240K 1 0.0004% = - . 0.1258%
Conv2 (2) 3 240K 11 0.0046% 240K 141 0.5896% 240K 486 0.2025%
4 240K 35 0.0146% - - - - - -
5 240K 75 0.0313% - - - - - -
6 240K 95 0.0396% - - - - - -
7 240K 78 0.0325% - - - - - -
LAVS(esb) / Dur'(ns) / RT(ns) 5.8437e-4 / 198090 / 155250.0 6.5885¢-3 / 198090 / 155375.0 2.1473e-3 / 198090 / 156562.5
0 4800K 0 0% 4800K 347 0.0072% 4800K 1394 0.0290%
1 4800K 0 0% 4800K 766 0.0160% 4800K 2320 0.0483%
2 4800K 0 0% 0.0997%
3 4800K 0 0%  4800K 2688 0.0560% 4800K 9349 0.1948%
FC1®) 4 4800K 0 0% ° ° ° -
: sok o oo Quantization induces -
6 4800K 1 0.0000% -
7 4800K 46 0.0010% ° -
LAVS(esh) / Dur’(ns) / RT(ns) 4.2300¢-8 / 90 /163937.5 I ad rge rm p acts. 35625.0
0 1008K 0 0% 0.0007%
1 1008K 0 0% 1008K 200 0.0198% 1008K 38 0.0038%
2 1008K 0 0% 1008K 436 0.0433% 1008K 67 0.0066%
FC2 (4) 3 1008K 0 0% 1008K 699 0.0693% 1008K 81 0.0080%
4 1008K 0 0% - - - 1008K 93 0.0092%
5 1008K 0 0% - - - 1008K 102 0.0101%
6 1008K 0 0% - - - 0.0177%
7 1008K 0 0% - - - 1008K K 0.0375%
LAVS(esb) / Dur’(ns) / RT(ns) 0/90/114812.5 1.2082e-6 / 90 / 107062.5 8.1527e-7 / 90 /115437.5
0 84K 0 0% 84K 22 0.0262% 84K 28 0.0333%
1 84K 0 0% 84K 40 0.0476% 84K 42 0.0500%
2 84K 0 0% g 0.0881%
3 84K 0 0% 84K 140 0.1667% 84K 161 0.1917%
FCG3 ) 4 84K 0 0% i - i i i :
5 84K 0 0% - - - - - -
6 84K 2 0.0024% - - - - -
7 84K 56 0.0667% - - - - -

LAVS(esb) / Dur’(ns) / RT(ns)

3.4800e-8 / 90 / 101500.0

1.656e-7 / 90 / 100062.5

1.8300e-7 / 90 / 101437.5

ONAVS(esb) / Total RT(ns)

|

6.6667e-4 / 835062.5

1.3537e-2 / 826625.0

6.1227e-3 / 841000.0




Increase

in

misclassifi

cation

Layer Bit INT8 Model INT4/8 model INT2/4/8 model )
psition sample 1 or Ratig sample 0 or Ratig samuple 0 nr Rati
0 15K 0 0% 15K 0 0% 15K 120 0.8000%
1 15K 0 0% 15K 7 0.0467% 15K 217 1.4467%
2 15K 1 0.0067% I5K 13 0.0867% - - -
Convl (1) 3 15K 0 0% I5K 57 0.3800% - - -
4 I5K 1 0.0067% 15K 94 0.6267% - - -
5 15K 0 0% 15K 127 0.8467% - - -
6 15K 0 0% 15K 150 1.0000% - - -
7 15K 5 0.0333% 15K 143 0.9533% - - -
LAVS(esb) / Dur’(ns) / RT(ns) 8.2220e-5 / 1174570 / 299562.5 6.9417¢-3 / 1174570 / 299562.5 3.9583e-3 / 1174570 / 301937.5
0 240K 0 0% 240K 408 0.1700% 240K 90 0.0375%
1 240K 0 0% 240K 610 0.2542% 240K 206 0.0858%
2 240K 1 0.0004% 240K 893 0.3721% 240K 302 0.1258%
Conv2 (2) 3 240K 11 0.0046% 240K 1415 0.5896% 240K 486 0.2025%
4 240K 35 0.0146% - - - - - -
5 240K 75 0.0313% - - - - - -
6 240K 95 0.0396% - - - - - -
7 240K 78 0.0325% - - - - - -
LAVS(esb) / Dur'(ns) / RT(ns) 5.8437e-4 / 198090 / 155250.0 6.5885¢-3 / 198090 / 155375.0 2.1473e-3 / 198090 / 156562.5
0 4800K 0 0% 4800K 347 0.0072% 4800K 1394 0.0290%
1 4800K 0 0% 4800K 766 0.0160% 4800K 2320 0.0483%
2 4800K 0 0% 4800K 1778 0.0370% 4800K 4784 0.0997%
FC . . 9349 0.1948%
 Conv. layers induce larger impacts - -
[ ] - -
LAV due to mUItlple usage. 5790 /165625.0
o L a e N o
J A o (1)
* Conv. Weight size is small and & oo
FC: 81 0.0080%
’ . b ° ° 93 0.0092%
selective protection is meaningful. & oo
178 0.0177%
7 1008K 0 0% - - - 1008K 378 0.0375%
LAVS(esb) / Dur’(ns) / RT(ns) 0/90 /1148125 1.2082¢-6 / 90 / 107062.5 8.1527e-7 / 90 /115437.5
0 84K 0 0% 84K 22 0.0262% 84K 28 0.0333%
1 84K 0 0% 84K 40 0.0476% 84K 42 0.0500%
2 84K 0 0% 84K 74 0.0881% 84K 74 0.0881%
FC3 (5) 3 84K 0 0% 84K 140 0.1667% 84K 161 0.1917%
4 84K 0 0% - - - - - -
5 84K 0 0% - - - - - -
6 84K 2 0.0024% - - - - - -
7 84K 56 0.0667% - - - - -

LAVS(esb) / Dur’(ns) / RT(ns)

3.4800e-8 / 90 / 101500.0

1.656e-7 / 90 / 100062.5

1.8300e-7 / 90 / 101437.5

ONAVS(esb) / Total RT(ns)

|

6.6667e-4 / 835062.5

1.3537e-2 / 826625.0

6.1227e-3 / 841000.0




Increase

in

misclassifi

cation

Laver Bit INTS8 Model INT4/8 model INT2/4/8 model
y Position Samples Errors Error Ratio | Samples Errors Error Ratio | Samples Errors Err 0
0 15K 0 0% 15K 0 0% 15K 120 0.8000%
1 15K 0 0% 15K 7 0.0467% ISK 217 1.4467%
2 15K 1 0.0067% 15K 13 0.0867% - - -
Convl (1) 3 15K 0 0% 15K 57 0.3800% - - -
4 15K 1 0.0067% 15K 94 0.6267% - - -
5 I5K 0 0% 15K 127 0.8467% - - -
6 15K 0 0% 15K 150 1.0000% - - -
7 15K 5 0.0333% 15K 143 0.9533% - - -
LAVS(esb) / Dur’(ns) / RT(ns) 8.2220e-5 / 1174570 / 299562.5 6.9417e-3 / 1174570 / 299562.5 3.9583e-3 / 1174570 / 301937.5
0 240K 0 0% 240K 408 0.1700% 240K 90 0.0375%
1 240K 0 0% 240K 610 0.2542% 240K 206 0.0858%
2 240K 1 0.0004% 240K 893 0.3721% 240K 302 0.1258%
3 - 240K 486 0.2025%
Conv2 (2) PR d i i i
: Compared w/ FP case, S _
6 - - -
7 h [ J [ J I [ J [ J d _ _ _
LAVS(esb) / Dur'(ns) / ] t e I m pa Ct IS I m Ite ° 2.1473e-3 / 198090 / 156562.5
0 . 4800K 1394 0.0290%
1 e I NT8 d I b 4800K 2320 0.0483%
) model iIs robust. BOK 4784 0.0997%
¥
FC1 (3) i . 0 48(30[( 93_49 0.19-48 To
: When preventing error - _
6 - - -
7

LAVS(esb) / Dur’(ns) / ]

FC2 (4)

NN R WN =S

LAVS(esb) / Dur’(ns) / |

FC3 (5)

N R WN =D

accumulation, the

1.6062e-5 / 90 /165625.0

accuracy degradation is
not significant even in

MBW NNs.

0%
0%
0%
0%
0%

84K
84K
84K
84K
84K
84K 0.0024%
84K 0.0667%

Svocoocococ

1008K 7 0.0007%

1008K 38 0.0038%

1008K 67 0.0066%

1008K 81 0.0080%

1008K 93 0.0092%

1008K 102 0.0101%

1008K 178 0.0177%

1008K 378 0.0375%

8.1527e-7 / 90 /115437.5

34K 22 0.0262¢ 84K 28 0.0333%
84K 40 0.0476% 84K 42 0.0500%
84K 74 0.0881% 84K 74 0.0881%
0.1667% 84K 161 0.1917%

84K 140

LAVS(esb) / Dur’(ns) / RT(ns)

3.4800e-8 / 90 / 101500.0

1.656e-7 / 90 / 100062.5

1.8300e-7 / 90 / 101437.5

ONAVS(esb) / Total RT(ns)

|

6.6667e-4 / 835062.5

1.3537e-2 / 826625.0

6.1227e-3 / 841000.0
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e Robustness of NNs
— Case study (FP)

— Identifying vulnerable weight parameters

— Quantization
e Multi-bit-width neural networks

 Robustness of hardware

— Edge Al accelerator
— GPU

e Countermeasures in literature



Demands of Edge Al chips

 Reduced Latency: Real-time data processing
locally is crucial for applications like autonomous
vehicles and robotics.

* Improved Privacy and Security: Local data
processing on the device enhances data privacy
and security, reducing the risk of data
Interception.

* Lower Bandwidth Requirements: The decrease in
the need for data transmission to the cloud
benefits areas with limited internet access and
reducing connectivity dependence.



Edge Al SoCs

* For Al applications, the hardware Al
accelerator can be integrated into the SoC as a
peripheral.

* Edge Al SoCs can be used for mission-critical
and reliability-demanding applications.

v

* Essential to analyze weak points of the
entire SoC with Al accelerator.



Case study: Reliability assessment of an
edge Al SoC

 We perform a case study using a SOTA SoC design that
accepts NAS optimized LeNet5 with MNIST data set
and implemented into a flash-based FPGA.

* We analyze the reliability of our SoC by fault injection
(FI) and neutron irradiation experiments, aiming to
provide valuable insights and serve as crucial
references for future reliability-aware designs.

— CRAM in the flash-based FPGA is robust to neutron
irradiation compared with SRAM-based FPGA.

— This FPGA-based SoC implementation reproduces the
susceptibility of any dedicated SoC chips.

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-1, 2023,



Chip architecture

e SoC consists of 1) MBW accelerator, 2) lightweight
32-bit RISC-V processor, and 3) DDR4 DRAM.

* RISC-V core has 2-stage pipeline, instruction tightly

coupled memory (ITCM) and data tightly coupled
memory (DTCM).

— UART HBirdv2 Multi-bit-width -
1 E203 Accelerator e
Conv CSR |4 3
: AX14 MBW PE Arra
«> Peripheral Bus |<€— Lite—b Controller Y -
=
I Pooling CSR = g
ITCM ‘ Feature Buffer
I(__QISP; RISC-V Core MBW DMA
as A Pooling Unit
DTCM AX14 Full
] v
AXI4 AXI AXI4 DRAM
“| Memory BuS [« k. P Interconnect >



MBW accelerator
 MBW vector systolic accelerator [4] w/ a 16x8 array

— #inputs is 16, 32, and 64 for INT8, INT4, and INT2
respectively

— # of output channel is 8.

* MAC is based on a multi-precision Booth multiplier.

Multi-bit-width DMA

:‘,>| Activation Buffer k— TMR
I I I I CSRs
| . ‘I‘\HTMR Decodel; . | Controlleg| #
AHTVR |_ :
= Pooling Unit |
Encoder I I 9 1 T
— v v v R
[l mew [ T] mBw [ [ mBw | [ mMBW |
PE#01 PE#02 PE#15 PE#16
JAHTMR] out0 |, pomPerery.
5 Encoder| | ” #1
o o | ]
= 3 MBW MBW MBW MBW
| @ = (@] PE#OI PE#02 PE#15 PE#16
2 @
=
.g E Temporary
= = [AHTMR| out 1 | | pata Buffer
Encoder #2
|
B MBW MBW MBW MBW :
PE#OI PE#02 PE#15 PE#16 1
I Temporary
'AHTMR | out 8 . Data Buffer
PE Array Encoder i #8
—— 2:;%‘: Oﬂ?;mt <——|Activation  —=Accumulation<i—— SHTM;_
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SoC implementation

 SoCisimplemented for
MPF300T Eval Kit.

* CRAM in this flash-
based FPGA is robust to
radiation, reproducing
the susceptibility of SoC
chips.

Component Fabric 4LUT  Fabric DFF  Interface 4LUT Interface DFF Math (18x18) uSRAM LSRAM

Conv Unit 31339 21839 13032 13032 136 54 208

Accelerator Pool Unit 33250 26064 408 408 4 22 0
(100 MHz) DMA 375 75 336 336 0 28 0
Interface 71 55 0 0 0 0 0

Total 65035 48033 13776 13776 140 104 208

RISCV E203 (16 MHz) 18591 9414 2448 2448 0 12 64
PF_DDR4 (400 MHz) 18404 15219 1272 1272 0 43 21
AXI4 Interconnect 3458 3138 636 636 0 53 0
Others 61 36 0 0 0 0 0

Total 105549 75840 18132 18132 140 212 293

* ITCM Size: 64KB LSRAM; DTCM Size: 64KB LSRAM; Accelerator Buffer Size: 512KB LSRAM; CSR Size: 79*32Bits uSRAM
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Expe rl m e nts Host Software System on Chip for Al
ElIE
- . nitialization lti-bit-width
* Fault injection e Vector Systolie | DRAW

— Reproduces single Send FCind pecelerstor
blt Upset in WeightS, ol L I InterconnectI
activations, state > N
registers of the Management = I
controller, and CNN Goé(e . \;I R —T [ ol & Trace
config. params. Copy | | Results Resuls

\ / Send Results |4—’
— Logs results and Comparison Microprocessor

saves them via host
software for
analysis

e Neutron irradiation

— Neutron beam is
given to 3 FPGA
boards at CYRIC,
Tohoku Univ.




Details in Fl process

‘ Host side \

v

Software startup

v

Try to connect serial port

v

—» Send FI cmds

‘ SoC side \

v

Peripherals and AI model initialization

\

(—) Wait for serial port connection

v
v

Record FI results

End of record

v
v

Output the reports

l

Update FI cmds

Wait for FI feedback <€

»  Wait for FI cmds

v

Wait for LeNet5 done signal «—— Inject fault based on cmds <

D —

Analyze the FI results

Send back FI signal

v
\

Run LeNet5

v

— Send LeNet5 done signal N

\

Remove fault
\ 4
The last fault position ? ——

I
Y
A\

Send FI done signal
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Fl results (control state registers (CSR))

50

e “Error Ratio”: misclassification ratio in overall errors.

* “Acceptable”: SoC can output the results

* “Unacceptable”: SoC fails to complete CNN

calculation, i.e. DUE

CSR Description Error Ratio / Acceptable (%) Unacceptable (%)
STCONV Start conv operation 0/0 100.00
CBWIN Bit-width of input data 91.7557 / 100.000 0
CFADDR  Activation base address 75.5439 / 100.000 0
CFSHP Shape of activation 76.8271 / 83.0952 16.9048
CCONF  Padding, Stride and Kernel 28.6260 / 35.0000 65.0000
CWADDR Weight base address 69.8139 / 100.000 0
COADDR Output data base address 77.5191 / 100.000 0
CDONE If conv operation done 0/0 100.00
STPOOL Start pooling operation 0/0 100.00
PCONF Pad, Stride and Kernel 0/0 100.00
PIADDR Input data address 66.0663 / 100.000 0
POADDR Output data address 79.0672 / 100.000 0
PIOSHP Shape of activation 59.3511 /7 100.000 0
PBWIN Bit-width of input data 88.5496 / 100.000 0
PDONE If pool operation done 0/0 100.00



Observations in Fl to CSR

* The bit-flip of CSRs is far more sensitive than
that of weights in NNs.

 Data errors in the acceptable range can lead
to a high probability of misclassification.

* Error values in the unacceptable range cause the
accelerator to enter into a deadlock or hang the
AXI bus.

\ 4

* Fortunately, the size of state registers is limited.

* Protecting state registers requires small overhead,
out significantly contributes to reliability
Improvement.




Reliability configurations in
irradiation experiments

Config. 1: Not refresh the contents of ITCM and
DTCM frequently, resulting in error accumulation

Config. 2: reset the after each round, preventing
error accumulation in ITCM and DTCM

Config. 3: replace normal SRAMs in RISC-V with
TMRed SRAM

Config. 4: replace CSRs with TMRed ones

Reset TMR_I/DTCM TMR_CSR

Config. 1 No No No
Config. 2 Yes No No
Config. 3 Yes Yes No
Config. 4 Yes Yes Yes




oc Error occurrence probability

Reset TMR_I/DTCM _TMR_CSR 53

Config.

Irradiation results o2 Ye N No
Config. 3 Yes Yes No
Config. 4  Yes Yes Yes

Cross Section [cm?]

Tolerable Core Event (TCE): RISC-V core has some
misbehavior, but not affect NN application

Tolerable Accelerator Event (TAE): classification is correct,
but the middle outputs are not as expected

Critical Core Event (CCE): RISC-V core runs away or crashes

Critical Accelerator Event (CAE): accelerator has no
correct response or correct classification result
2.0E-6

1.8E-6 | Config. 1 ' [_|TCE
Lo |- | B
L4E-6 |- Config. 2 B CAE
1.2E-6 — :

1.0E-6 |- |

ST Config. 3

VT | Config. 4

4087 | |

2.0E-7

0.0E+0 L ‘h_l_-_.;-__.‘



oc Error occurrence probability

Reset TMR_I/DTCM __TMR CSR 5 /]

Config

Irradiation results

Cross Section [cm?]

Config

Config.

1 No No
.2 Yes No No
.3 Yes Yes No
4 Yes Yes Yes

Tolerable Core Event (TCE): RISC-V core has some
misbehavior, but not affect NN application

Tolerable Accelerator Event (TAE): classification is correct,
but the middle outputs are not as expected

Critical Core Event (CCE): RISC-V core runs away or crashes

Critical Accelerator Event (CAE): accelerator has no
correct response or correct classification result

2.0E-6
1.8E-6
1.6E-6
1.4E-6
1.2E-6
1.0E-6
8.0E-7
6.0E-7

4.0E-7

2.0E-7

0.0E+0

[ Config. 1 '

Config. 2

Config. 3

[ ]TCE
I TAE
B cCE
B cAE

82% reduction

Config. 4

RISC-V core is more
sensitive to
accumulated errors than
accelerator.

When the data in
|/DTCM is flipped and
errors are accumulated,
SoC could crash easily.



oc Error occurrence probability

Reset TMR_I/DTCM TMR CSR 55

Config.

Irradiation results Contg 2 3 %
Config. 3 Yes Yes No
Config. 4 Yes Yes Yes

* Tolerable Core Event (TCE): RISC-V core has some
misbehavior, but not affect NN application

* Tolerable Accelerator Event (TAE): classification is correct,
but the middle outputs are not as expected

* Critical Core Event (CCE): RISC-V core runs away or crashes

* Critical Accelerator Event (CAE): accelerator has no
correct response or correct classification result
2.0E-6

1se [ Config.1 =i1x| After deploying TMRed
. L6E-6 [~ Config. N =E§g |/DTCM in RISC-V core,
< i:ffz 5 . CCEs almost decrease to
£ ope | zero and the other
g ! '
2 soes | : Config. 3 e.ver.1t.s also have a
£ oonT | | Config. 4 significant decrease.
4.0E-7 I | Errors in accelerator
02'0";; [ ‘ h l& become dominant.



oc Error occurrence probability

Irradiation results

Cross Section [cm?]

Reset TMR_I/DTCM _TMR_CSR 5 f

Config. 1 No No No
Config. 2 Yes No NQ

Config. 3 Yes Yes
Config. 4 Yes Yes Yes

Tolerable Core Event (TCE): RISC-V core has some
misbehavior, but not affect NN application

Tolerable Accelerator Event (TAE): classification is correct,
but the middle outputs are not as expected

Critical Core Event (CCE): RISC-V core runs away or crashes

Critical Accelerator Event (CAE): accelerator has no
correct response or correct classification result

2.0E-6
1.8E-6
1.6E-6
1.4E-6

1.2E-6

1.0E-6

8.0E-7

6.0E-7

4.0E-7

2.0E-7

0.0E+0

[ Config. 1 '

Config. 2

[ ]TCE
I TAE
B cCE
B cAE

Config. 3
Config. 4

T TS

After deploying TMRed,
errors generated at
accelerator decreased.

Overall cross section is
reduced by 78.05%
compared with Config. 1.



Comparison to

SRAM FPGA

 Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect
NN application

* Tolerable Accelerator Event (TAE): classification is correct, but the middle

outputs are not as expected

Reset TMR_I/DTCM TMR_CSR

Config. 1 No No
Config. 2 Yes No
Config. 3 Yes Yes
Config. 4  Yes Yes

No
No
No
Yes

e Critical Core Event (CCE): RISC-V core runs away or crashes
e Critical Accelerator Event (CAE): accelerator has no correct response or

correct classification result

2.0E-6
1.8E-6
1.6E-6
1.4E-6

4.0E-7

oc Error occurrence probability
Cross Section [cm?]

1.2E-6 I
1.0E-6 I
8.0E-7 I
6.0E-7 I

2.0E-7

Configuration 1 |
I

0.0E+0

MPF300T SRAM-FPGA MPF300T SRAM-FPGA MPF300T SRAM-FPGA MPF300T

| Configuration 2

Configuration 3

[ ]TCE
I TAE
B cCE
B cAE

Configuration 4

SRAM-FPGA
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CRAM errors limit the reliability improvement in configs. 2, 3, and 4.



What we learned

e RISC-V core is more vulnerable than accelerator.

* Implementing mitigation techniques (e.g., Error Correcting
Codes (ECC), TMR) is necessary for instruction and data
memory to strengthen the SoC.

» After this, the vulnerability of the interface b/w processor
and accelerator becomes visible.

* |Impact of precision differences in NNs is limited.

* After deploying the above-mentioned countermeasures,
the accelerator errors are dominant. Now, weight
protection needs consideration.

e Specific application requirements decide whether to deploy
the mitigation techniques above. Depending on the
system criticality and required reliability level, a
combination of these techniques are necessary to ensure
the SoC’s overall reliability to potential faults.



Related work in edge Al SoCs

EdgeAl devices, e.g., Google's Tensor Processing Unit [5] and
NeuroShield [6], have undergone testing.

Experiments with the NeuroShield and TPU indicate they have
fewer errors compared to GPUs, along with a more
straightforward error pattern where fewer outputs are
affected and the erroneous values closely resemble the
correct ones.

Consequently, the rate of misclassification in neural networks
on EdgeAl hardware is less than that on other platforms.

[5] R. L. Rech Junior, et al., “High energy and thermal neutron sensitivity of
google tensor processing units,” IEEE Trans. Nuclear Science, 2022.

[6] S. Blower et al., “Evaluating and mitigating neutrons effects on COTS
Edge Al accelerators,” IEEE Trans. Nuclear Science, 2021.
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Problem of application-level soft

error evaluation in GPU

e Circuit structure is not

/| Streaming Multiprocessor
. < Processine /
disclosed ARt Ciestiabi il |
* Scheduler, dispatcher, etc. Disnatcher Wars Schedul
o o ar cheduler
* A corruptionin, e.g., P
scheduler, can impact SM SM SM Dispatch Unit
multiple parallel processes.
° ° | | - .
* Instruction cache is sm || sm|]|smf HoztaiarlAle
invisible to users !
* Cache is accessed from core || core | | core
multiple parallel processes. SM SM SM "‘
\
' L2 Cache “ core core |- « +| core
1 ‘
. . . . \ Shared Memor
e Target of fault injection is \ y
limited. Off-chip DRAM “ L1 Cache/Texture Cache

* Difficult to know part-wise
SER contribution ot disclosed m—

difficult to measure SER m———



Assessing contribution from undisclosed
components

 Carried out irradiation test for

* Error rates of disclosed memory components
 SDC error rates of matrix multiplication programs

* Compare measured SDC error rate and the

one predicted only w/ disclosed memory
components

* Difference is expected to come from
undisclosed components

K. Ito, et al., "Characterizing Neutron-Induced SDC Rate of Matrix Multiplication in
Tesla P4 GPU," RADECS, 2019.
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GPU error rate measurement

Matrix multiplication
programs w/ different
%\ \_computer | resource usages were run

Host computer .\'

Streaming Multiprocessor Streaming Multiprocessor

_________________ Instruction Cache I Instruction Cache |

i ocks Scheduler and I ' Warp Scheduler . . | Warp Scheduler I
Dispatcher 1 .
Dispatch Unit | Dispatch Unit I

] SM SM SM I
| . I/ Register File ' . Register File

| SM SM SM |1
core I I core Core [N core core core |, ., .| core

. " !

1| sm SM sm |\

core . M core | J core g core A core core |- - -| core
. | .
I L2 Cache I .

I Shared Memory I
| L1 Cache/Texture Cache I

(a) Program |1 (b) Program 2 (¢c) Program 3

Shared Memory L Shared Memory

L1 Cache/Texture Cache

L1 Cache/Texture Cache

|
LI




Comparison between measured and “*
estimated error rates

* Estimated error rates using measured memory error rate and usage
— Worst-case estimation assuming all errors induce SDC.

 Even with the worst-case estimation, there is a large discrepancy
coming from errors in internal undisclosed hardware

6x1077

measured value —%—
estimated value —%—

5x10°7 |
ax107}
3x107

2x107 } }

1x107 }

Error rate

error rate [error * cm®/n]

EERE S

Prog.1 Prog.2 Prog.3




Difficulties in fault injection and
radiation experiment

Difficulties in fault injection

* |In high-level fault injection, faults can be injected only on
that subset of resources which is visible to the programmer.

e Considering faults in computing resources (such as the
pipelines, the control units, functional units, or scheduler),
evaluating the impact on the software is not trivial.

Difficulties in radiation experiments

* Radiation experiments do not allow to track faults
propagation, preventing us from associating observed
behaviors with the fault source and, thus, identifying the
most vulnerable resources.

e Results are valid only for the particular codes and
configurations that have been tested.



Example of fault injection to control

flow L1: ADD R1 R2 R3

* |Inject error into one

warp by editing PTX #Check Jump Flag
code. JUMP NOJUMP ifRO=1
* PCin one of active #Set Jump Flag
warps is changed SETRO1
* Faulty jump can go to - #Insert Jump Code Faulty jump
any labels JUMP L3
e Jump flagis for \
jumping only once

NOJUMP: NOP

* Loops are unrolled L2: ADD R1 R6 R7
PTX: pseudo assembly language for CUDA L3: MUL R1 R8 R9

K. Ito, et al., "Analyzing DUE Errors on GPUs with Neutron Irradiation Test and Fault
Injection to Control Flow," IEEE Trans. Nuclear Science, 2021.



Possible direction for reliability
assessment

* Low-level fault injection to RTL could reproduce
the hardware behavior.

* However, COTS devices do not provide RTL
designs. Also, considering the slow RTL simulation,
various hardware configurations and many
software applications, the low-level fault

injection suffers from simulation time.

v

* Fault injection complemented with beam
experiments is one possible direction when
dealing with complex hardware.




Constructing a model capable of
estimating various GPU applications

Target model: y = Y. _{apx; + b

y: SER (response variable)
X . app. info. (Explanatory variable)
a, b: constants to be obtained

Irradiation exp. w/ various apps.
Prepare a number of app. metrics

Select primary x;, according to correlation b/w
X, and measured SER (y)

Regression to obtain a;(k=1,2,..,n), and b

K. Ito, et al., "Constructing Application-Level GPU Error Rate Model
with Neutron Irradiation Experiment," RADECS, 2021.
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AVF/PVF

* The probability for an error to propagate from
memory elements to software visible state and
modify the software execution (thus becoming a
failure, such as an SDC or DUE) is called
Architectural/Program Vulnerability Factors
(AVF/PVF).

— Depending on papers, AVF and PVF are differently
defined.
* AVF/PVF from errors in memory visible to

programmers can be easily obtained via high-
level fault injection.



e ]
Neutron beam |

Programs used in
experiments

Prepared applications w/ different behaviors * :
(e.g., mem. size, #blocks, #threads, instructions)-

Exp. site: Tohoku Univ. CYRIC

Instruction proportion GPU: NVIDIA Quadro P2000

INT/FLOAT LDG/STG LDS/STS BRANCH CONTROL MOVE
(matrix multiolication) | 46:4%  2.2% 43.5% 1.1% 3.3% 0.4%
een 43.1% 11.6% 0.0% 14.2% 8.6% 19.7%
N 27.7% 0.5% 13.1% 15.9% 10.8% 11.4%
Py 72.7% 10.2% 0.0% 4.7% 7.2% 4.8%
i 52.2% 13.0% 0.0% 4.4% 8.7% 4.4%
vimucub'as 88.3% 2.2% 7.6% 1.3% 0.5% 0.1%

(mat. mul. library)



oc Error occurrence probability
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Measured error rates

e SDC (silent data corruption)
* Wrong output
* Detection is difficult

 DUE (detectable but uncorrectable error)
* Crash, hang, etc.
* Necessary to reboot GPU or host PC

ii N ii H ii --

mmu32 quicksort mergesort sha256 vectoradd mmucublas
B Measured SDC m Measured DUE

]

Q)
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Single-variable model

e “Warps per block” is primary
explanatory variable

* y=aq X (Warps per block) +b
e Error for SDCis up to 39.7%
* Error for DUE is up to 221.0%
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Corr.
Coeff.
(DUE)
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Two-variable model

*y=aq X (Warps per block) + a, X (newvar.) +b
* SDC model does not improve w/ any new variables
 DUE model improves w/ AVF (DUE) and L2 hit

e L2 hit reduced the maximum error to 43.3%

AVF (architectural vulnerability factor):

fault propagation probability resulting in SDC/DUE
obtained by fault injection to registers

Error
43.3%

0

mmu32 quicksort  mergesort sha256 vectoradd mmucublas

Single-var. Two-var. model w/ AVF (DUE) Two-var. model w/ L2 hit
model



Related work in GPUs (1/2)

ECC (Error-Correcting Code) can lower the GPU error rate by an order of
magnitude, but it is less effective at decreasing the number of radiation-
induced misclassifications in CNNs [7], [8].

Reducing execution speed does not affect the Fault In Time (FIT) rate,
whereas utilizing more parallel resources or larger hardware cores can
increase the FIT rate, albeit with a possible performance advantage. Metrics
such as Mean Executions Before Failure (MEBF), could be suitable to balance
error rate with performance [9], [10], [11].

Neutron beam experiments in [9] indicate that a higher # of parallel
processes can overburden the scheduler, leading to increased error rates in
GPUs [45]. The use of GPU resources more intensively raises the
susceptibility to errors [12].

[7] F. F. d. Santos, et al., “Analyzing and increasing the reliability of convolutional neural networks on GPUs,” IEEE
Trans. Reliability, 2019.

[8] D. A. G. Goncalves de Oliveira, et al., “Evaluation and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Trans. Computers, 2016.

[9] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs parallelism management on safety-critical and
HPC applications reliability,” DSN, 2014.

[10] C. Weaver, et al., “Techniques to reduce the soft error rate of a high-performance microprocessor,” ISCA, 2004.
[11] G. Reis, et al., “Design and evaluation of hybrid fault-detection systems,” ISCA, 2005.

[12] J. M. Badia, et al., “Reliability evaluation of LU decomposition on GPU-accelerated system-on-chip under proton
irradiation,” IEEE Tran. Nuclear Science, 2022.



Related work in GPUs (2/2)

* Algorithms that are slower and memory-bound tend to be
more susceptible to errors, whereas the most efficient
algorithms exhibit a smaller error cross section [13].

* Corruption of shared resources such as caches or the
scheduler can disrupt multiple parallel processes [14][15].

* The severity of corruption (value difference) is influenced by
the parallel architecture and the specific algorithm being run
[16], [17], [18].

[13] J. M. Badia, et al., “Comparison of parallel implementation strategies in GPU-accelerated
system-on-chip under proton irradiation,” IEEE Trans. Nuclear Science, 2022.

[14] P. Rech, et al., “An efficient and experimentally tuned software-based hardening strategy for
matrix multiplication on GPUs,” IEEE Trans. Nuclear Science, 2013.

[15] L. L. Pilla, et al., “Software-based hardening strategies for neutron sensitive FFT algorithms
on GPUs,” IEEE Trans. Nuclear Science, 2014.

[16] D. Oliveira, et al., “Experimental and analytical study of Xeon Phi reliability,” SC, 2017.

[17] D. A. G. D. Oliveira, et al., “Radiation-induced error criticality in modern HPC parallel
accelerators,” HPCA, 2017.

[18] V. Fratin, et al., “Code-dependent and architecture-dependent reliability behaviors,” DSN,
2018.
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Agenda

e Robustness of NNs
— Case study (FP)

— Identifying vulnerable weight parameters

— Quantization
e Multi-bit-width neural networks

e Robustness of hardware

— Edge Al accelerator
— GPU

e Countermeasures in literature



Software countermeasure

* Implement cheap concurrent replication with idle
hardware

— Selective replication for protecting only the most critical
layers or portion of the neural network [19], [20]—-[22].

e Stop errors propagating in CNNs by checking whether
the propagated values during MaxPooling layers,
detecting up to 85% of critical errors in CNNs [7].

[19] F. Libano, et al., “Selective hardening for neural networks in FPGAs,” IEEE Trans. Nuclear
Science, 2019.

[20] L. Weigel, et al., “Kernel vulnerability factor and efficient hardening for histogram of
oriented gradients,” DFT, 2017.

[21] A. Ruospo, et al., “Selective hardening of critical neurons in deep neural

networks,” DDECS, 2022.

[22] C. Bolchini, et al., “Selective hardening of CNNs based on layer vulnerability estimation,”

DFT, 2022.



Algorithm-Based Fault-Tolerant (ABFT)

* ABFT for matrix multiplication [23] detects and
corrects more than 80% of errors. When applied
to CNNs, ABFT outperformed ECC and duplication
[7]. Smart light-ABFT [24] further reduces the
overhead for GPUs.

* Concurrent signhature calculations and signature
comparison for matrix multiplication [25]

[23] P. Rech, et al., “An efficient and experimentally tuned software-based hardening strategy for
matrix multiplication on GPUs,” IEEE Trans. Nuclear Science, 2013.

[24] S. Hari, et al., “Making convolutions resilient via algorithm-based error detection techniques,” IEEE
Trans. Dependable and Secure Computing, 2022.

[25] H. Itsuji, et al., "Concurrent Detection of Failures in GPU Control Logic for Reliable Parallel
Computing," ITC, 2020.



Algorithm countermeasure

e Assess and contrast consecutive input frames against
their corresponding detection outputs. Similar frames
should yield similar detection results. A discrepancy
may raise an error alert. 70% of critical errors are
detected though producing some false positives [26].

* Reduced Precision Duplication With Comparison (RD-
DWC) has been applied to GPUs and has demonstrated

error detection rates of 75% in average with acceptable
additional overhead [27].

[26] L. K. Draghetti, et al., “Detecting errors in convolutional neural networks using inter frame
spatio-temporal correlation,” IOLTS, 2019.

[27] F. F. dos Santos, et al., “Reduced precision DWC: An efficient hardening strategy for mixed-
precision architectures,” IEEE Trans. Computers, 2022.
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Fault aware training

*If the DNN is trained to classify objects correctly even
w/ transient faults, it is possible to produce a more
reliable model while maintaining the original accuracy.

v
Training is performed by injecting transient faults.

* The model is expected to autonomously learn how to
properly deal with faults to reduce mispredictions

[28][29].

Proposed vulnerability model can improve the noise
injection efficiency during the training.

[28] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano and M. Blott, "Accelerated Radiation Test

on Quantized Neural Networks trained with Fault Aware Training," AERO, 2022.
[29] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi and P. Rech, "Transient-Fault-
Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead," IOLTS, 2022.
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For your reference

* Some excellent and complete surveys of the available
reliability studies have been published.

— F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and
dependability of ai hardware: Survey, trends, challenges,
and perspectives,” IEEE Design & Test, vol. 40, no. 2, pp. 8-
58, 2023.

— Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam,
and G. Guo, “Soft errors in DNN accelerators: A

comprehensive review,” Microelectronics Reliability, vol.
115, p. 113969, 2020.

— P. Rech, "Artificial Neural Networks for Space and Safety-
Critical Applications: Reliability Issues and Potential
Solutions," IEEE Trans. Nuclear Science, to appear.



