
Toward Robust Neural Network
Computation on Emerging

Crossbar-based
Hardware and Digital Systems

Yiyu Shi, Masanori Hashimoto
Jan. 22, 2024

1

Toward Robust Neural Network
Computation on Emerging

Crossbar-based
Hardware and Digital Systems

Yiyu Shi, Masanori Hashimoto
Jan. 22, 2024

2

Organization

Yiyu Shi
• Efficient worst-case analysis for neural network inference

using emerging device-based CiM,
• Enhancement of worst-case performance through noise-

injection training,
• Co-design of software and neural architecture specifically for

emerging device-based CiMs.
Masanori Hashimoto
• Identification of vulnerabilities in neural networks,
• Reliability analysis and enhancement of AI accelerators for

edge computing,
• Reliability assessment of GPUs against soft errors.

3

Toward Robust Neural Network Computation on
Emerging Crossbar-based

Hardware and Digital Systems

 Yiyu Shi
Dept. of CSE, University of Notre Dame

yshi4@nd.edu
Jan. 22, 2024

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

DNN on Edge: Memory Wall Issue

[1] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE journal of solid-state circuits 52.1 (2016) 4

q Goal: Deploy DNN on Edge

Handle Various Tasks Gets SOTA Performances Promising for Edge Apps.

Memory
42%

High Memory Access Cost [1]

q Memory Wall issue for Efficient DNN Acceleration

Slow Memory Tech Improvement

EDP ???

Efficiency Bottleneck

Limited Power Budget

Hardware Solution: Compute-in-Memory

5

q Crossbar Array: VMM Engine

CiM Architecture [2] Emerging NVM Devices

q CiM DNN Accelerator using Crossbar Arrays: Advantages

Memory
42%à 20%

Lower Memory Cost

EDP
↓ ↓ ↓

Higher Efficiency

In
pu

t v
ec

to
r

Output vector

Weight matrix

• Input: Voltage

• Weight: Conductance

• Output: Current
A/D Conversion Needed

[2] Zheyu Yan, X. Sharon Hu and Yiyu Shi, "On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks", chapter in
System Dependability and Analytics: Approaching System Dependability from Data, System and Analytics Perspectives, Springer, 2023.

Emerging Technology: Pros and Cons
q Emerging NVM Devices Advantages

• Non-volatile: used as storage & memory

• Compact: more data on chip

• Read: Fast & Low energy

6[3] Yan, Zheyu, et al. "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural
architecture search." 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.

D2D Variations Accuracy Drops [3]

↓↓ 20%
q Challenges from Device Variations

Incorrect Conductance

Error
10%

Incorrect Weight

Emerging NVM Devices

Device Variations: Evaluations

7

Focus on Average Case

↓↓ 20%

q Existing Evaluation Workflows

q Issues of Existing Methods

Device Modeling Circuit/Arch Abstraction Monte Carlo Simulation

Lack Error Bound GuaranteeVery Few MC runs

Only 10 samples

Device Variations: Remedies

8

q Device Variation: Existing Solution
Write

Done

UpdateVerify
Δ𝑔 ≤ 𝑡ℎ

Yes No

Write-Verify (W-V)

Noise

Input

Back
Prop.

Update

Noise-Aware TrainingError Correction/Denoising

q Drawbacks of These Solutions

Human Labor

All the time

Peripheral Circuit Overhead Device Type Dependent

Our Approach: Cross-Layer Co-Design

9

q Advantages for Co-Design

q Metrics for AI Acceleration

q Contributions of Different Layers

Cross-
Layer

Design

Device

Sy
st

em

Software

E

U

AP

R

Device/Circuit

E

U

AP

R

System

E

U

AP

R

Software

E

U

AP

R

Joint Optimal

q AI Acceleration Design Levels

Multi-object Opt.

Energy Efficiency

Utilization

AccuracyPeak Perform.

Reliability

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

11

Background: CiM for DNN

Device

Circuit/
Arch

Software

Detect Sensitive
Devices [DAC 22]

Worst-Case Analysis
[ICCAD 22]

Train Robust DNN
Models [ICCAD 23]

Co-Design

AutoML
[ASPDAC 22]

Img Segmentation
[Nature Electronics]

Img Classification
[SoCC 23]

NVM Devices

Key Problem:
Device Variation & Acc. Drop

Accuracy Drop

Solution: Cross-Layer Co-Design

Object Detection
[Trans on Computers]

Data Difference

Remedy Methods: Overview

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Selective Write-Verify (1)

13

q Device Variation: Existing Solution

Incorrect Weights

Write

Done

UpdateVerify
Δ𝑔 ≤ 𝑡ℎ

Yes No

Write-Verify (W-V)Accuracy Drops

↓↓ 20%

Accuracy Recovers

Program All Devices

q W-V is Time Consuming

1 Day Human Labor

q Reasons for W-V to be Slow

No Parallelism

Small
Model

All the time One by one All devices

Device Variation

error
10%

Selective Write-Verify (2)

14

q Solution: Detect Sensitive Device

q Overview
§ Write-verify a portion of the devices

§ Write the other device once

§ Accelerate the deployment process

Statistical Analysis

Second
D

erivative

Sensitivity
Calculation

Programming

Write-verify top 1%
sensitive devices

Inference

Acc. Enough? Done
YesNo

Only W-V Sensitive Devices

W-V a portion of the devices

Use Write-Verify

Write only once

Sensitive
Weights

Detect Sensitive Weights

[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC)

Selective Write-Verify (3)

15[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC)

q Results
§ Published in EDA top

Conference DAC [3]

§ Cited by Nature Paper

from Ju Li, MIT [4]

[3] Yan, Zheyu, Xiaobo Sharon Hu, and Yiyu Shi. "SWIM: Selective write-verify for computing-in-memory neural accelerators." DAC 2022 (CCF-A).
[4] Rao, Mingyi, et al. "Thousands of conductance levels in memristors integrated on CMOS." Nature 615.7954 (2023): 823-829.

!"#$%&'#$
(#
)*
%'
%+
%'
,

90% Sensitivity Measurement Acc

Strong Correlation

10x Deployment Speedup

Only 10%Devices

Can achieve accurate
programming

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques: Technical Details

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Weight Sensitivity Evaluation
𝑓 𝒘 = 	𝑓 &𝒘 +

𝜕𝑓
𝜕&𝒘

Δ𝐰 +
1
2
Δ𝒘!𝐻 &𝒘 Δ𝐰 + o(Δ𝒘")

Δ𝑓 𝒘 ≈
1
2
Δ𝒘!𝐻 &𝒘 Δ𝐰

=
1
2
2
#$%

&

𝐻## Δ𝑤# ' +
1
2
2
#()

&

𝐻#)Δ𝑤#Δ𝑤)

Δ𝑤# ∼ 𝑁(0, 𝜎)

𝐸 Δ𝑓 𝒘 ≈
1
2
2
#$%

&

𝐻## 𝐸 Δ𝑤# ' =
𝜎'

2
2
#$%

&

𝐻##

• Target: statistically evaluate the
influence of device variations

• Method: Taylor series of the
DNN loss function

• Annotation:
§ 𝑓: loss function
§ 𝒘 = &𝒘 + Δ𝐰: weight
§ 𝐻 &𝒘 : Hessian matrix
§ 𝐸: expectance (average)

• Conclusion: write-verify weights
with high 2nd derivatives

17

Weight’s sensitivity to device variations can be
represented by its second derivative

Effectiveness of Using Second Derivative
• Annotations

§ Y axis for both figures: accuracy drop when
changing a weight (MNIST)

§ X axis for figure up: Weight magnitude
§ X axis for figure down: Weight second

derivative
• Conclusions

§ Accuracy drop and weight magnitude are
poorly co-related

§ Accuracy drop and second derivatives are
strongly co-related

§ Second derivative is a good metric for
sensitivity estimation

18

SWIM Vs Baselines on Different Datasets

• Baselines: use weight magnitude or random as weight selection + on device training
• Solid line: average performance, Shadow: ranges for standard deviation
• SWIM much better than all baselines
• Achieves low enough (less than 2%) accuracy drop by writing-verifying less than 10%

of the weights

19

CIFAR-10 - ConvNet CIFAR-10 – ResNet-18 Tiny ImageNet – ResNet-18

Summary

• Proposed a framework that requires writing-verifying
only a small portion of weights

• The framework can maintain DNN accuracy

• In the meantime, programming time drastically reduced

• Specifically, the proposed framework achieves up to 10x
speedup

20

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques: Technical Details

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Worst-Case Analysis (1)

22

q Background: Reliability of nvCiM DNN Accelerators

Safety Critical Apps
Weight value

Ac
cu

ra
cy

Weight w/o var

𝑡ℎ!
Worst-case

Worst-Case AnalysisRandom Weights

q Safety Critical Apps. & Worst-Case

Random Acc.

Diagnosis Support Cancer Miss Rate Autonomous Driving Accident Rate

Device Variations

Error
10%

[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022
International Conference on Computer-Aided Design (ICCAD)

Worst-Case Analysis (2)

23

q No WC Analysis Now

Exhaustive Search
x High DimensionsOnly Average Acc. Few Samples

q Existing Methods Would Not Work

Monte Carlo Methods
x Low Probability

1 Billion weights 10-20 probability Average Only 10 samples

q What if Ignoring Worst-Case Analysis

Target:
Find Cancer Cells 99% Find All Cells 1% Find NO Cell

A
verage O

nly 100% Find Some Cells 0% Find NO Cell
Ideally

Worst-Case Analysis (3)

24

q Solution: Define it as Constrained Optimizations

q Findings: Very Low Reliability!
§ 3% conductance deviation à Miss-classify all inputs
§ Existing protection methods are not effective

§ Published in ICCAD 22 [5]

𝑤 − 𝑡ℎ& ≤ /𝑤 ≤ 𝑤 + 𝑡ℎ&

Device
Model

Circuit
Design

Build a Noise Model
Weight value

Ac
cu

ra
cy

Weight w/o var

𝑡ℎ!
Worst-case

Def. Constrained
Opt. Problem

minimi𝑧𝑒
!𝑾

'
𝒙∈%

𝑝 𝒙, 𝑓,𝑾

𝑠. 𝑡. 	 𝐿 Δ𝑾 ≤ 𝑡ℎ&
𝑝 𝒙, 𝑓,𝑾 = max{𝑂' −max()'

(𝑂() , 0}

Relax to Differentiable
Objective

1%

90% 95% 100%

0%
20%
40%
60%
80%
100%

0% 1% 2% 3%

Er
ro

r R
at

e

Conductance Deviation
Very Low Reliability

[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022
International Conference on Computer-Aided Design (ICCAD)

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis: Technical Details

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Formulating Worst-Case using Optimization
𝑓(𝑾 + Δ𝑾, 𝒙)

(𝒙, 𝑡) ∈ 𝐷

minimi𝑧𝑒
1𝑾

|{𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡| 𝑥, 𝑡 ∈ 𝐷}|

𝑠. 𝑡. 	 𝐿 Δ𝑾 ≤ 𝑡ℎ3

26

• Neural architecture 𝑓, weight 𝑾 and

weight perturbation Δ𝑾

• Input 𝒙, label 𝑡 and dataset 𝐷

• Minimize the size of the set of

correctly classified inputs à

minimize accuracy

• Subject to the constraint that

perturbation distance smaller than

𝑡ℎ3

Solving Optimization using Relaxation
• Goal: minimi𝑧𝑒

1𝑾
|{𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡| 𝑥, 𝑡 ∈ 𝐷}|

• The goal is discrete and difficult to optimize, relaxation needed
• Relax to a continuous function for each input:

§ minimi𝑧𝑒
1𝑾

∑𝒙∈6 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾

§ 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 > 0, if and only if, 𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡
§ Function that satisfies the requirement

𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 = max{𝑂7 −max
#(7

(𝑂#) , 0}

• Constraint 𝐿 Δ𝑾 ≤ 𝑡ℎ3: Lagrange multiplier c
• minimi𝑧𝑒

1𝑾
(𝑐 ⋅ ∑𝒙∈6 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 + (𝐿 Δ𝑾 − 𝑡ℎ3))

• Gradient descent can be used to solve this problem

27[5] Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE symposium on security and
privacy (sp). IEEE, 2017.

Major Results for Worst-Case DNN Performance
• Baselines: Monte-Carlo Simulation (MC) & Projected Gradient Descent (PGD)
• Proposed method discovers models with lower accuracy (tighter lower bound)
• MC method failed to find models with low enough accuracy
• The proposed method finds wors-case performance efficiently

28

Summary

• Proposed an efficient framework to examine worst-case
performance of DNNs

• Showed that the accuracy of a well-trained DNN can drop
drastically to almost zero with very subtle perturbations

• Existing methods are either too costly (for stronger write-
verify) or ineffective (for training-based methods)

• Further research is needed to find a solution to this issue

29

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues
q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques
• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training
§ Overview

§ Detailed Solution
§ Experimental Results

• Co-Design: HW-SW Co-Design Algorithm
q Outlook & Conclusions

Realistic Worst-Case (1)

32

Realistic Worst-Case (1)
q New Challenge: Very Low Reliability!

§ 3% conductance deviation à Miss-classify all inputs

§ Existing protection methods not effective

§ End of the world?

Too Costly

q Issues for Absolute Worst-Case

Low Probability Partially Verified

10-200 probability 2 x 109 MC Runs Why Improving?

Realistic Worst-Case (2)

[6] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian
noise,” 2023 International Conference on Computer-Aided Design 33

Design New Noise

↓ f’’ ↑ f’ Gaussian only ↓ f’’

Gaussian NOT opt.

Robust Model
𝑤" 𝑤#(100-k)% better

performance

k% worst-case
performance

Statistical Model for KPP Gaussian Noise Injection is not Optimal

q New Metric: K-th Percentile Performance (KPP)

MedianMin

Data

88 89 89 89 89 90 90 90 90 91 91

30-th pctl 80-th pctl

0.45

q Improving KPP

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues
q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques
• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training
§ Overview

§ Detailed Solution
§ Experimental Results

• Co-Design: HW-SW Co-Design Algorithm
q Outlook & Conclusions

Detailed Solution Overview
• Goal: improve realistic worst-case accuracy (KPP) of DNN under device variations

35

Estimate KPP

Analyze Noise-Injection Training
that inject Gaussian noise

DNN

↓ 2nd derivative ↑ 1st derivative

Dev. var.

Gaussian noise only ↓ f’’

Gaussian NOT optimal

Novel RCG-noise

Requirements
for DNN

Link KPP with Model Properties
• Use loss to represent performance, find its Taylor series (the smaller the better)

𝑓(𝑤: + Δ𝑤) = 𝑓 𝑤: + Δ𝑤𝑓; 𝑤: +
Δ𝑤 '

2
𝑓;; 𝑤: + 𝑜 Δ𝑤 " 	(1)

• KPP estimation
§ Given: a DNN model, device variation distribution, and probability k%
§ Find: KPP
§ Key: write KPP in the form of an equation with model properties and k

36

Dev. Var.

KPP Estimation: Details

37

KPP
𝑤' 𝑤((100-k)% better

performance

k% worst-case
performance

Find the range of Δ𝑤
that loss ≥ 𝐾𝑃𝑃

Find probability k% of Δ𝑤 in this range

Let KPP be an
unknown variable

Eq. (1):
Quadratic function

Δ𝑤 Distribution:
Δ𝑤 ∼ 𝑁(0, 𝜎))

Represent KPP with k%
Δ𝑤 ≤ 𝑤' or Δ𝑤 ≥ 𝑤(

Roots of Quadratic function

100 − 𝑘 % = 𝑐𝑑𝑓* 𝑤(− 𝑐𝑑𝑓*(𝑤')

Closed-form impossible

Approximations

1st order approximation:
next slide

3rd order approximation:
more than 4 A4 pages

𝑓(𝑤+ + Δ𝑤) = 𝑓 𝑤+ + Δ𝑤𝑓 , 𝑤+ +
Δ𝑤 (

2
𝑓 ,, 𝑤+ + 𝑜 Δ𝑤 - 	(1)

Desired Model Properties
• Use loss to represent performance, find its Taylor series (the smaller the better)

𝑓(𝑤* + Δ𝑤) = 𝑓 𝑤* + Δ𝑤𝑓+ 𝑤* +
Δ𝑤 ,

2 𝑓++ 𝑤* + 𝑜 Δ𝑤 -

• Average performance estimation

𝐸 𝑓(𝑤* + Δ𝑤) ≈ 𝑓 𝑤* +
𝐸 Δ𝑤 ,

2
𝑓++ 𝑤* 	 (2)

• KPP estimation

−𝐾𝑃𝑃 ≈ −
𝑓+ 𝑤* ,

2𝑓++ 𝑤*
+ 𝑓 𝑤* +

𝑓++ 𝑤* 𝜋𝑘,𝐸 Δ𝑤 ,

4
	 (3)

• Requirements: 𝑓;; 𝑤: ↓, 𝑓 𝑤: ↓, and |𝑓; 𝑤: | ↑

38

Dev. Var.

Percentile

Noise Injection Training Process Analysis

• Noise injection training weight update
𝑤7T% 	 = 	𝑤7 	 − 	 𝛼	 𝑓	 ;	 𝑤7 +	𝑤&

• Taylor Series:

𝑤7T% = 𝑤7 − 𝛼 𝑓; 𝑤7 + 𝑤&𝑓;; 𝑤7 +
𝑤&'

2
𝑓;;; 𝑤7 + 𝑜 𝑤& "

• Averaged effect: 𝑤7T% = 𝑤7 − 𝛼𝐸 𝑓; 𝑤7 + 𝑤&

𝑤7T% = 𝑤7 − 𝛼 𝑓; 𝑤7 + E 𝑤& 𝑓;; 𝑤7 +
𝐸 𝑤& '

2
𝑓;;; 𝑤7 	 (1)

In paper, 𝑤! is denoted as Δ𝑤. We change this terminology to avoid ambiguity in the slides. 39

Updated w Original w LR Loss fn Gradient Noise

Findings: How Noise-Injection Training Improves KPP

• How noise-injection training fulfills the requirements

§ Requirements: 𝑓 𝑤* ↓, |𝑓+ 𝑤* | ↑,								and				𝑓++ 𝑤* ↓

§ 𝑤'./ = 𝑤' − 𝛼 𝑓+ 𝑤' + 𝐸 𝑤0 𝑓++ 𝑤' + 1 2. /

,
𝑓+++ 𝑤'

• Desired noise properties 𝑬 𝒘𝒏 ≠ 𝟎, 𝑬 𝒘𝒏
𝟐 > 𝟎

• Gaussian does not hold this property!

• Propose four candidates

• Training with RIght-Censored Gaussian NoisE (TRICE)

40

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues
q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques
• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training
§ Overview

§ Detailed Solution
§ Experimental Results

• Co-Design: HW-SW Co-Design Algorithm
q Outlook & Conclusions

Experimental Setups
• Baselines:

§ Training w/o noise

§ CorrectNet [7]

§ Injecting Gaussian noise in training

• Evaluation method:

§ Metric: KPP, k = 1 (p = 1%).

§ Monte Carlo runs: 10,000

[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. 42

* Absolute 0 𝜇S is impossible so here it means a very high resistance
** Negative weights are mapped to another array

• Device mapping model

Device conductance (g): 0 – 150 𝜇S*

Weight value (w): 0 – 4.5**

• Device variation model

§ Conductance follows Gaussian dist.

§ 𝑔 = 𝑁 &%
012 &

, 𝜎) ×max 𝑔

0 150

0 4.5

100

3.0

Results on MNIST Dataset

• Model: LeNet, 4-bit quantization

• Metric: K-th Percentile Performance (KPP) à 1-st percentile accuracy

• Columns: comparing three baselines with the proposed method TRICE

• Rows: over different device variation magnitude (𝜎])

• Following experiments: CorrectNet [4] ×
[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. 43

↑ 58%, 38%

↑ 14%

Results on CIFAR-10 Dataset

• (a) VGG-8 model and (b) ResNet-18 model, 6-bit quantization

• X-axis: device variation magnitude (𝜎])

• Y-axis: KPP: 1-st percentile accuracy

44

VGG-8 ResNet-18

↑↑ 25%
↑↑↑ 50%

↑↑ 26%
↑↑↑ 45%

Results when using Different devices

• Previous two experiments: RRAM devices
vs. this experiment: FeFET devices

• Model: LeNet, 4-bit quantization

• Dataset: MNIST

45

FeFET-1 FeFET-2

RRAM FeFET

↑↑ 16%
↑↑↑ 60%

↑↑ 12%
↑↑↑ 60%

Summary

• Advocate the use of a realistic worst-case performance metric (KPP)

• Propose a novel noise-injection training method to improve KPP

• Show that injecting right-censored Gaussian noise can effectively
improve KPP

• The proposed framework improves KPP by up to 25%

• Published in ICCAD 23

• Received Best Paper Award

46

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

HW-SW Co-Design Algorithm (1)

48

q Existing Methods

§ Given: a task and a design space

§ Find: the optimal HW-SW design pair

q Issues for Existing Methods

Differentiable Methods Child Network-Based

Search Time

Weeks

Memory Cost

TBs

q Using Existing Methods

Object Detection

Acc ↑20%

Image Segmentation

↑↑↑ 40% Fairness

[8] W. Jiang, Q. Lou, Z. Yan, et al., “Device-circuit-architecture co-exploration for computing-in-memory neural accelerators,” IEEE Transactions on Computers, 2020
[9] Y. Guo, Z. Yan, X. Yu, et al., “Hardware design and the fairness of a neural network”, Nature Electronics (under review)

HW-SW Co-Design Algorithm (2)

49

q Why Existing Methods are Not Efficient

§ Cold start: Random initialization

§ Search space explosion

Cold Start Search Space Explosion

q Dealing with These Issues

Use Large Language Models

25x Speedup

Combine RL with Differentiable Methods

Pareto Optimal on
Constrained Memory

[10] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms for sw/hw co-design: An example in designing cim DNN accelerators,” SoCC 2023
[11] Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, “Radars: Memory efficient reinforcement learning aided differentiable neural architecture search,” ASP-DAC 2022

Our Solution: Summary

50

Background: CiM for DNN

Device

Circuit/
Arch

Software

Detect Sensitive
Devices

10x Protection

Worst-Case Analysis
100% Error

Train Robust DNN
models

↑↑↑ 33% Acc

Co-Design

AutoML
10x Speedup

Img Segmentation
↑↑↑ 40% Fairness

Img Classification
25x Speedup

NVM Devices

Problem:
Device Variation & Acc. Drop

Accuracy Drop

Solution: Cross-Layer Co-Design

Object Detection
↓↓↓ 10x EDP

Data Difference

Outline
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

Outlooks

52

q Incremental Future Works

§ Using LLM to improve HW-SW Co-Design for robustness

§ Accommodating SWIM to more types of devices

q Future Directions

§ Hardware backdoors for CiM platforms

§ Physical verifications for CiM techniques

§ Mix-precision designs for robust DNN models DNN result: 7 3

Hardware Backdoor

Conclusions
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device: Device Programming Techniques

• Circuit/Arch: Worst-case Analysis

• Software: HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions

53

References
1. Z. Yan, X. S. Hu, and Y. Shi, “Swim: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation

Conference (DAC)
2. Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?”

2022 International Conference on Computer-Aided Design (ICCAD)
3. Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian

noise,” 2023 International Conference on Computer-Aided Design (ICCAD) (Best Paper Award)
4. Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, “Radars: Memory efficient reinforcement learning aided differentiable neural architecture search,” in 2022 27th Asia

and South Pacific Design Automation Conference (ASP-DAC)
5. Z. Yan, D.-C. Juan, X. S. Hu, and Y. Shi, “Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to

neural architecture search,” in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)
6. Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou, and C. Zhuo, “When single event upset meets deep neural networks: Observations, explorations, and

remedies,” in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)
7. Z. Yan, X. S. Hu, and Y. Shi, “On the reliability of computing-in-memory accelerators for deep neural networks,” in System Dependability and Analytics:

Approaching System Dependability from Data, System and Analytics Perspectives
8. Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms for sw/hw co-design: An example in designing cim DNN accelerators,” in Proceedings of

the 36th IEEE International System-on-chip Conference
9. L. Yang, Z. Yan, M. Li, et al., “Co-exploration of neural architectures and heterogeneous asic accelerator designs targeting multiple tasks,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC), IEEE, 2020
10. W. Jiang, Q. Lou, Z. Yan, et al., “Device-circuit-architecture co-exploration for computing-in-memory neural accelerators,” IEEE Transactions on

Computers, 2020

54

Thank You & Questions

Toward Robust Neural Network
Computation on Emerging

Crossbar-based
Hardware and Digital Systems

Masanori Hashimoto
Dept. Informatics, Kyoto University

hashimoto@i.kyoto-u.ac.jp
Jan. 22, 2024

1

Abstract

Deep Neural Networks (DNNs) are currently operated on GPUs in both
cloud servers and edge-computing devices, with recent applications
extending to safety-critical areas like autonomous driving. Accordingly,
the reliability of DNNs and their hardware platforms is garnering
increased attention. This talk will focus on soft errors, predominantly
caused by cosmic rays, a major error source during an intermediate
device's lifetime. While DNNs are inherently robust against bit flips,
these errors can still lead to severe miscalculations due to weight and
activation perturbations, bit flips in AI accelerators, and errors in their
interfaces with microcontrollers, etc. The latter part of this tutorial will
discuss:
• Identification of vulnerabilities in neural networks,
• Reliability analysis and enhancement of AI accelerators for edge

computing,
• Reliability assessment of GPUs against soft errors.

2

Neutrons and muons are falling into VLSI
chips

3

Example of nuclear reaction
4

Example of reaction in VLSI chip
5

[1] S. Abe, et. al, ”Multi-scale Monte Carlo simulation of soft errors using PHITS-
HyENEXSS code system,” IEEE Trans. Nuclear Science, 2012

Injected charge
may result in
bit flip called
soft error.

[1].

Incident in aircraft (Oct. 2008)
A steep dive due to fly-
by-wire system failure
• 1/3 customers and

3/4 crews injured

https://www.atsb.gov.au/media/3532398/ao2008070.pdf

Soft error
Insufficient
evidence since
reproduction
is very difficult

Other factors
(Very) unlikely

6

Multi-physics multi-layer phenomena
with diverse temporal and spatial scales

7

10-14m
10-6m

Real-time & accelerated test

Many devices are operated
• Months to years are necessary to

get enough # of errors

8

https://ars.els-cdn.com/content/image/1-s2.0-
S0026271414000882-gr3.jpg

108x acceleration means
1 sec for 3.2 years.

Demonstration

Linux is running on Raspberry Pi

9

Neutron beam

Video
output

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.

10

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.

Our life depends on AI applications
running on integrated systems

11

High reliability is demanded for AI-based safety-
critical applications.
Rad-hard components sufficiently powerful to
execute DNNs are not available, yet.

http://rtc.nagoya.riken.jp/ROBEAR/

Preliminary experiment irradiating
object detection running on GPUs
• Yolov3-tiny
• GPU cards
– NVIDIA Quadro P2000
– NVIDIA GeForce GTX960
– Aligned in series on the beam track

12

Quasi-monoenergetic
neutron beam at CYRIC

Y. Zhang, K. Ito, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto,
"Fault Mode Analysis of Neural Network-based Object Detection
on GPUs with Neutron Irradiation Test," RADECS, 2020.

Definitions of DUE, SDC and critical SDC
Impact of soft error on computation includes
•wrong computation result (SDC; Silent Data

Corruption)
•Harmful for all applications

• hang or halt (DUE; Detectable Uncoverable
Error)
•Harmful for real-time applications

• no effect (Mask)
•Depends on both hardware and software

13

Critical SDC in Object Detection

14

• SDCs that are critical to object detection
• IoU (intersection-over-union) is used to evaluate
critical SDC

IoU : IoU of faulty and golden output
IoU > thresh: normal SDC (thresh: 0.8 in exp.)
IoU < thresh: critical SDC

14

Temporal patterns of observed SDCs
• Each row corresponds to one sequence of error

occurrence
• Some faulty outputs last for hundreds of seconds

probably due to weight data corruption

15

Program stop (hung, crash)

Repeating identical errors

unit: second

Critical SDC starts

Normal SDC starts

Fault mode categorization
Classify errors into two-by-two categories:
• Identical errors repeat or not
• SDC critical or not

16

Variant
errors

Identical
errors

Category

22Critical
SDC

68Non-
critical

of faulty events

Not all SDCs are critical.
NNs are inherently redundant and robust to
parameter perturbation.

Error rate depends on underlaying hardware.

Current research status

•Some data in literature suggests radiation impact on
DNN is so high, hindering safe large-scale use.
•COTS AI products exhibit a high error rate due to

radiation [2][3], attributed to their large size and
critical resource density.
•Effective hardening strategies against radiation is

necessary.

17

[2] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,“Soft error resilience of
deep residual networks for object recognition,” IEEE Access, 2020.
[3] D. A. G. Goncalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation and mitigation
of radiation-induced soft errors in graphics processing units,” IEEE Trans. Computers, 2016.

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

18

NN robustness evaluation (FP case)
• DNN robustness is important for soft error, hard

error and security.
– Malicious attack to DNN is another concern.

• Maximum impact of single event upset in network
parameters.
– Among all the parameters,

only one bit of one
parameter is with fault and
the others are fault-free.

19

Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou and C. Zhuo, "When Single Event Upset Meets
Deep Neural Networks: Observations, Explorations, and Remedies," ASP-DAC, 2020.

Observations in ResNet56

• Observation 1: the highest exponent bit has
the highest impact across different layers
while fraction bits have is very limited impact.

• Observation 2: the first layer, which directly
deals with the input stream, has higher impact.

20

Maximum accuracy drop in ResNet56

Results in other networks
• Impact of bits are:

exponent > sign >> fraction
• Impact of sign bit varies layer by layer.

21

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

22

Fault injection is too time-consuming

•Fault injection(FI) is a common method for
estimating vulnerability of a network due to
nonlinearity of NN. However, FI costs time
prohibitively because NN has too many parameters.
•Contributions: propose constructing a vulnerability

model (VM) to predict vulnerability of DNN with
fewer FIs in an acceptable time.
• FI reproduces a bit flip supposing soft error and

malicious attack.

23

Y. Zhang, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, "Estimating Vulnerability of All
Model Parameters in DNN with a Small Number of Fault Injections," DATE, 2022.
Y. Zhang, H. Itsuji, T. Uezono, T. Toba, M.Hashimoto, "Vulnerability Estimation of DNN
Model Parameters with Few Fault Injections," IEICE Trans. Fundamentals, 2023.

Features of proposed VM construction

Machine learning is used to construct VM.
•Vulnerability definition:
• sum of accuracy degradation for individual bit flips.

•Feature identification :
• e.g., absolute value of parameters, gradient, calculation

times, etc.
•Fast training:
•Only conduct FI on important bits, e.g., exponent bits

with value 0.
• Iterative training to prepare minimum FI data for

required accuracy

24

VM construction flow
25

Select DNN parameters p and
calculate vulnerability V with

fault injection
Extract features X for selected

DNN parameter p

Train/test VM with X, V

VM accuracy
improve?

Predict vulnerability
of all parameters

Yes

No

Input:
• Trained NN
• Image dataset

Output:
• Trained VM
• Vulnerability of all params.

Start VM construction

Conventional method:
FI to all/important bits
of all parameters.

Proposed method:
FI to important bits of
some parameters and
predict others’
vulnerabilities

Definition of vulnerability

26

𝑉௜ ൌ
1
𝑁௕

 ෍ሺ∆𝑎𝑐𝑐௜,௝ሻ
ே್

௝ୀଵ

∆𝑎𝑐𝑐: accuracy deviation between the original clean DNN and dirty DNN
𝑁௕: the number of bits for vulnerability analysis in one DNN parameter

Neural network

1001………0010001…10

sign exponent mantissa

For 32-bit floating point case:

𝑉௜ ൌ
1

32 ሺ∆𝑎𝑐𝑐 ൅෍∆𝑎𝑐𝑐
଼

௝ୀଵ

൅෍∆𝑎𝑐𝑐
ଶଷ

௝ୀଵ

ሻ

parameter

Efficient vulnerability calculation

•Approximation of vulnerability

• selection
• Floating-point format
• exponent bits whose values are 0.

• Fixed-point format
• Positive number: ’0’ bits locating on the left side of the

topmost ’1’ bit
• Negative number: ’1’ bits locating on the left side of the

topmost ’0’ bits

27

𝑉௜ᇱ ൌ
1
𝑁௕

 ෍ ሺ∆𝑎𝑐𝑐௜,௝ሻ
௝∈௕௜௧௦೔

𝑏𝑖𝑡𝑠: a set that may contain integer numbers
from 1 to 𝑁௕

𝑉௜ ൌ
1
𝑁௕

 ෍ሺ∆𝑎𝑐𝑐௜,௝ሻ
ே್

௝ୀଵ

01101100

(a) 8 exponential bits
of 32 bit floating-point

01101100

(b) 8 bit fixed-point
positive number

01101111

(c) 8 bit fixed-point
negative number

‘0’ to ‘1’; the value change is at most 100%

‘1’ to ‘0’; the value change is at most 100%

Feature extraction

• Absolute value of param (A)
• Number of dangerous bits (D)
• Number of 𝒃𝒊𝒕𝒔

• Gradient (G)
• Larger gradient means larger impact on NN output
• Available in NN training process

• Calculation time (CT)
• How many times each param is used during one NN inference

• Layer location (ID, OD)
• Location of each layer.

28

Setup

•Networks
• ResNet-18, quantized ResNet-18, yolov3-tiny

•Datasets
• CIFAR10: ResNet-18, quantized ResNet-18
• COCO: yolov3-tiny

•VM algorithm
• Random forest
• Definition of
• Top-k accuracy: ResNet-18, quantized ResNet-18
• Mean average precision (mAP): yolov3-tiny

29

Validating selection

•Vulnerability distribution on different bits

•Assume for unimportant bits outside ,
• ResNet-18:
• 99.9996% unimportant bits attain ∆ =0.
• # of fault injection is reduced by 54.5%

• Quantized ResNet-18:
• 99.995% unimportant bits attain ∆ =0
• # of fault injection reduces 27.1%

30

*Vulnerability is
centralized on MSB

Accuracy & time comparison with
traditional FI

31

• VM can predict vulnerability accurately for resnet-18 and yolo-v3
• >3000x speed-up (733 to 0.21 hours) can be achieved compared

with tradition FI.
Vu

ln
er

ab
ili

ty
 m

ea
n

ab
so

lu
te

 e
rr

or

Ratio of fault-injected parameters

Conventional
FI-based

Proposed

Much smaller error can
be obtained by fewer
FIs.

• Traditional fault injection: flip all bits for all parameters
• BF0: only flip important bits for all parameters

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization

• Multi-bit-width neural networks
– Countermeasures in literature

• Robustness of hardware
– Edge AI accelerator
– GPU
– Countermeasures in literature

32

Neural architecture search (NAS) for
multi-bit-width (MBW) NNs

Thanks to approximate and quantization-
compatible features of CNNs, NAS is used for
precision reduction with limited accuracy loss.

33

Examples of MBW LeNet5 generation
34

Differential NAS approach in [4] is applied.

[4] M. Huang et al., “A high performance multi-bit-width booth vector systolic
accelerator for NAS optimized deep learning neural networks,” IEEE Trans. CAS-I, 2022.

Reliability concern regarding MBW NNs
• In highly precision-reduced NNs, each bit

needs to carry more information.

• Important to analyze the reliability of these
multi-precision networks.

35

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-I, 2023,

Increase
in
misclassifi
cation

36

Increase
in
misclassifi
cation

37

Higher bits have
larger impacts.
77.1% SDCs come
from high two bits.

Increase
in
misclassifi
cation

38

Quantization induces
larger impacts.

Increase
in
misclassifi
cation

39

• Conv. layers induce larger impacts
due to multiple usage.

• Conv. Weight size is small and
selective protection is meaningful.

Increase
in
misclassifi
cation

40

• Compared w/ FP case,
the impact is limited.

• INT8 model is robust.
• When preventing error

accumulation, the
accuracy degradation is
not significant even in
MBW NNs.

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

41

Demands of Edge AI chips

• Reduced Latency: Real-time data processing
locally is crucial for applications like autonomous
vehicles and robotics.

• Improved Privacy and Security: Local data
processing on the device enhances data privacy
and security, reducing the risk of data
interception.

• Lower Bandwidth Requirements: The decrease in
the need for data transmission to the cloud
benefits areas with limited internet access and
reducing connectivity dependence.

42

Edge AI SoCs

• For AI applications, the hardware AI
accelerator can be integrated into the SoC as a
peripheral.

• Edge AI SoCs can be used for mission-critical
and reliability-demanding applications.

• Essential to analyze weak points of the
entire SoC with AI accelerator.

43

Case study: Reliability assessment of an
edge AI SoC

• We perform a case study using a SOTA SoC design that
accepts NAS optimized LeNet5 with MNIST data set
and implemented into a flash-based FPGA.

• We analyze the reliability of our SoC by fault injection
(FI) and neutron irradiation experiments, aiming to
provide valuable insights and serve as crucial
references for future reliability-aware designs.
– CRAM in the flash-based FPGA is robust to neutron

irradiation compared with SRAM-based FPGA.
– This FPGA-based SoC implementation reproduces the

susceptibility of any dedicated SoC chips.

44

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-I, 2023,

Chip architecture
• SoC consists of 1) MBW accelerator, 2) lightweight

32-bit RISC-V processor, and 3) DDR4 DRAM.
• RISC-V core has 2-stage pipeline, instruction tightly

coupled memory (ITCM) and data tightly coupled
memory (DTCM).

45

MBW accelerator
• MBW vector systolic accelerator [4] w/ a 16x8 array
– #inputs is 16, 32, and 64 for INT8, INT4, and INT2

respectively
– # of output channel is 8.

• MAC is based on a multi-precision Booth multiplier.

46

SoC implementation

• SoC is implemented for
MPF300T Eval Kit.

• CRAM in this flash-
based FPGA is robust to
radiation, reproducing
the susceptibility of SoC
chips.

47

Experiments
• Fault injection
– Reproduces single

bit upset in weights,
activations, state
registers of the
controller, and CNN
config. params.

– Logs results and
saves them via host
software for
analysis

• Neutron irradiation
– Neutron beam is

given to 3 FPGA
boards at CYRIC,
Tohoku Univ.

48

Details in FI process 49

FI results (control state registers (CSR))
• “Error Ratio”: misclassification ratio in overall errors.
• “Acceptable”: SoC can output the results
• “Unacceptable”: SoC fails to complete CNN

calculation, i.e. DUE

50

Observations in FI to CSR

• The bit-flip of CSRs is far more sensitive than
that of weights in NNs.

• Data errors in the acceptable range can lead
to a high probability of misclassification.

• Error values in the unacceptable range cause the
accelerator to enter into a deadlock or hang the
AXI bus.

• Fortunately, the size of state registers is limited.
• Protecting state registers requires small overhead,

but significantly contributes to reliability
improvement.

51

Reliability configurations in
irradiation experiments
• Config. 1: Not refresh the contents of ITCM and

DTCM frequently, resulting in error accumulation
• Config. 2: reset the after each round, preventing

error accumulation in ITCM and DTCM
• Config. 3: replace normal SRAMs in RISC-V with

TMRed SRAM
• Config. 4: replace CSRs with TMRed ones

52

Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE): classification is correct,

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE): accelerator has no

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4


Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

53

Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE): classification is correct,

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE): accelerator has no

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4

RISC-V core is more
sensitive to
accumulated errors than
accelerator.
When the data in
I/DTCM is flipped and
errors are accumulated,
SoC could crash easily.

82% reduction


Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

54

Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE): classification is correct,

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE): accelerator has no

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4

After deploying TMRed
I/DTCM in RISC-V core,
CCEs almost decrease to
zero and the other
events also have a
significant decrease.
Errors in accelerator
become dominant.


Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

55

Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE): classification is correct,

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE): accelerator has no

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4


Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

After deploying TMRed,
errors generated at
accelerator decreased.

Overall cross section is
reduced by 78.05%
compared with Config. 1.

56

Comparison to
SRAM FPGA
• Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect

NN application
• Tolerable Accelerator Event (TAE): classification is correct, but the middle

outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE): accelerator has no correct response or

correct classification result

57


Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

SRAM-FPGA SRAM-FPGA SRAM-FPGA SRAM-FPGA

CRAM errors limit the reliability improvement in configs. 2, 3, and 4.

What we learned

• RISC-V core is more vulnerable than accelerator.
• Implementing mitigation techniques (e.g., Error Correcting

Codes (ECC), TMR) is necessary for instruction and data
memory to strengthen the SoC.

• After this, the vulnerability of the interface b/w processor
and accelerator becomes visible.

• Impact of precision differences in NNs is limited.
• After deploying the above-mentioned countermeasures,

the accelerator errors are dominant. Now, weight
protection needs consideration.

• Specific application requirements decide whether to deploy
the mitigation techniques above. Depending on the
system criticality and required reliability level, a
combination of these techniques are necessary to ensure
the SoC’s overall reliability to potential faults.

58

Related work in edge AI SoCs

• EdgeAI devices, e.g., Google's Tensor Processing Unit [5] and
NeuroShield [6], have undergone testing.

• Experiments with the NeuroShield and TPU indicate they have
fewer errors compared to GPUs, along with a more
straightforward error pattern where fewer outputs are
affected and the erroneous values closely resemble the
correct ones.

• Consequently, the rate of misclassification in neural networks
on EdgeAI hardware is less than that on other platforms.

59

[5] R. L. Rech Junior, et al., “High energy and thermal neutron sensitivity of
google tensor processing units,” IEEE Trans. Nuclear Science, 2022.
[6] S. Blower et al., “Evaluating and mitigating neutrons effects on COTS
Edge AI accelerators,” IEEE Trans. Nuclear Science, 2021.

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

60

Problem of application-level soft
error evaluation in GPU
• Circuit structure is not

disclosed
• Scheduler, dispatcher, etc.
• A corruption in, e.g.,

scheduler, can impact
multiple parallel processes.

• Instruction cache is
invisible to users
• Cache is accessed from

multiple parallel processes.

• Target of fault injection is
limited.

• Difficult to know part-wise
SER contribution

61

not disclosed
difficult to measure SER

Assessing contribution from undisclosed
components

• Carried out irradiation test for
• Error rates of disclosed memory components
• SDC error rates of matrix multiplication programs

• Compare measured SDC error rate and the
one predicted only w/ disclosed memory
components

• Difference is expected to come from
undisclosed components

62

K. Ito, et al., "Characterizing Neutron-Induced SDC Rate of Matrix Multiplication in
Tesla P4 GPU," RADECS, 2019.

GPU error rate measurement
63

Matrix multiplication
programs w/ different
resource usages were run

Comparison between measured and
estimated error rates

• Estimated error rates using measured memory error rate and usage
– Worst-case estimation assuming all errors induce SDC.

• Even with the worst-case estimation, there is a large discrepancy
coming from errors in internal undisclosed hardware

64

Er
ro

r r
at

e

Difficulties in fault injection and
radiation experiment
Difficulties in fault injection
• In high-level fault injection, faults can be injected only on

that subset of resources which is visible to the programmer.
• Considering faults in computing resources (such as the

pipelines, the control units, functional units, or scheduler),
evaluating the impact on the software is not trivial.

Difficulties in radiation experiments
• Radiation experiments do not allow to track faults

propagation, preventing us from associating observed
behaviors with the fault source and, thus, identifying the
most vulnerable resources.

• Results are valid only for the particular codes and
configurations that have been tested.

65

Example of fault injection to control
flow
• Inject error into one

warp by editing PTX
code.
• PC in one of active

warps is changed
• Faulty jump can go to

any labels
• Jump flag is for

jumping only once
• Loops are unrolled

66

L1: ADD R1 R2 R3

#Check Jump Flag
JUMP NOJUMP if R0 = 1

#Set Jump Flag
SET R0 1

#Insert Jump Code
JUMP L3

NOJUMP: NOP
L2: ADD R1 R6 R7
L3: MUL R1 R8 R9

Normal
jump

Faulty jump

K. Ito, et al., "Analyzing DUE Errors on GPUs with Neutron Irradiation Test and Fault
Injection to Control Flow," IEEE Trans. Nuclear Science, 2021.

PTX: pseudo assembly language for CUDA

Possible direction for reliability
assessment
• Low-level fault injection to RTL could reproduce

the hardware behavior.
• However, COTS devices do not provide RTL

designs. Also, considering the slow RTL simulation,
various hardware configurations and many
software applications, the low-level fault
injection suffers from simulation time.

• Fault injection complemented with beam
experiments is one possible direction when
dealing with complex hardware.

67

68

Target model:

Irradiation exp. w/ various apps.
Prepare a number of app. metrics

Select primary 𝒌 according to correlation b/w
𝒌 and measured SER

Regression to obtain 𝒌(k=1,2,..,n), and

Constructing a model capable of
estimating various GPU applications

𝑦: SER (response variable)
𝑥௞: app. info. (Explanatory variable)
𝑎௞ , 𝑏: constants to be obtained

K. Ito, et al., "Constructing Application-Level GPU Error Rate Model
with Neutron Irradiation Experiment," RADECS, 2021.

AVF/PVF

• The probability for an error to propagate from
memory elements to software visible state and
modify the software execution (thus becoming a
failure, such as an SDC or DUE) is called
Architectural/Program Vulnerability Factors
(AVF/PVF).
– Depending on papers, AVF and PVF are differently

defined.
• AVF/PVF from errors in memory visible to

programmers can be easily obtained via high-
level fault injection.

69

MOVECONTROLBRANCHLDS/STSLDG/STGINT/FLOAT

0.4%3.3%1.1%43.5%2.2%46.4%Mmu32
(matrix multiplication)

19.7%8.6%14.2%0.0%11.6%43.1%Quicksort
(sort)

11.4%10.8%15.9%13.1%0.5%27.7%Mergesort
(sort)

4.8%7.2%4.7%0.0%10.2%72.7%Sha256
(hash)

4.4%8.7%4.4%0.0%13.0%52.2%Vectoradd
(parallel add)

0.1%0.5%1.3%7.6%2.2%88.3%Mmucublas
(mat. mul. library)

Programs used in
experiments

GPU

Neutron beam

Exp. site: Tohoku Univ. CYRIC
GPU: NVIDIA Quadro P2000Instruction proportion

Prepared applications w/ different behaviors
(e.g., mem. size, #blocks, #threads, instructions)

70

Measured error rates
• SDC (silent data corruption)
• Wrong output
• Detection is difficult

• DUE (detectable but uncorrectable error)
• Crash, hang, etc.
• Necessary to reboot GPU or host PC

71

0.0E+00
2.0E-09
4.0E-09
6.0E-09
8.0E-09

mmu32 quicksort mergesort sha256 vectoradd mmucublas

実測値 (SDC) 実測値 (DUE)

cr
os

s s
ec

tio
n

[𝐜
𝐦
𝟐 ሿ

Measured SDC Measured DUE
Er

ro
r o

cc
ur

re
nc

e
pr

ob
ab

ili
ty

Single-variable model
• “Warps per block” is primary

explanatory variable
• 𝒚 ൌ 𝒂𝟏 ൈ ሺ𝑾𝒂𝒓𝒑𝒔 𝒑𝒆𝒓 𝒃𝒍𝒐𝒄𝒌ሻ ൅ 𝐛
• Error for SDC is up to 39.7%
• Error for DUE is up to 221.0%

72

Corr.
Coeff.
(DUE)

Corr.
Coeff.
(SDC)

0.96 0.98 Warps per block
0.89 0.80 Dispatched warps

0.80 0.76 Gld_efficiency

0.80 0.75 Gst_efficiency

0.80 0.75 Warp exec. efficiency

Sorted by corr. coeff. (SDC)

0%

50%

100%

150%

200%

250%

mmu32 quicksort mergesort sha256 vectoradd mmucublas

モデル1: SDC モデル1: DUE

DUE error
211.0%

SDC error
39.7%

Error

SDC DUE

Two-variable model
• 𝟏 𝟐

• SDC model does not improve w/ any new variables
• DUE model improves w/ AVF (DUE) and L2 hit
• L2 hit reduced the maximum error to 43.3%

0%
50%

100%
150%
200%
250%

mmu32 quicksort mergesort sha256 vectoradd mmucublas

モデル1 モデル2: エラー伝搬率 モデル2: L2キャッシュヒット率

Error

Error
43.3%

Single-var.
model

Two-var. model w/ AVF (DUE) Two-var. model w/ L2 hit

73

AVF (architectural vulnerability factor):
fault propagation probability resulting in SDC/DUE
obtained by fault injection to registers

Related work in GPUs (1/2)
• ECC (Error-Correcting Code) can lower the GPU error rate by an order of

magnitude, but it is less effective at decreasing the number of radiation-
induced misclassifications in CNNs [7], [8].

• Reducing execution speed does not affect the Fault In Time (FIT) rate,
whereas utilizing more parallel resources or larger hardware cores can
increase the FIT rate, albeit with a possible performance advantage. Metrics
such as Mean Executions Before Failure (MEBF), could be suitable to balance
error rate with performance [9], [10], [11].

• Neutron beam experiments in [9] indicate that a higher # of parallel
processes can overburden the scheduler, leading to increased error rates in
GPUs [45]. The use of GPU resources more intensively raises the
susceptibility to errors [12].

74

[7] F. F. d. Santos, et al., “Analyzing and increasing the reliability of convolutional neural networks on GPUs,” IEEE
Trans. Reliability, 2019.
[8] D. A. G. Goncalves de Oliveira, et al., “Evaluation and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Trans. Computers, 2016.
[9] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs parallelism management on safety-critical and
HPC applications reliability,” DSN, 2014.
[10] C. Weaver, et al., “Techniques to reduce the soft error rate of a high-performance microprocessor,” ISCA, 2004.
[11] G. Reis, et al., “Design and evaluation of hybrid fault-detection systems,” ISCA, 2005.
[12] J. M. Badia, et al., “Reliability evaluation of LU decomposition on GPU-accelerated system-on-chip under proton
irradiation,” IEEE Tran. Nuclear Science, 2022.

Related work in GPUs (2/2)
• Algorithms that are slower and memory-bound tend to be

more susceptible to errors, whereas the most efficient
algorithms exhibit a smaller error cross section [13].
• Corruption of shared resources such as caches or the

scheduler can disrupt multiple parallel processes [14][15].
• The severity of corruption (value difference) is influenced by

the parallel architecture and the specific algorithm being run
[16], [17], [18].

75

[13] J. M. Badia, et al., “Comparison of parallel implementation strategies in GPU-accelerated
system-on-chip under proton irradiation,” IEEE Trans. Nuclear Science, 2022.
[14] P. Rech, et al., “An efficient and experimentally tuned software-based hardening strategy for
matrix multiplication on GPUs,” IEEE Trans. Nuclear Science, 2013.
[15] L. L. Pilla, et al., “Software-based hardening strategies for neutron sensitive FFT algorithms
on GPUs,” IEEE Trans. Nuclear Science, 2014.
[16] D. Oliveira, et al., “Experimental and analytical study of Xeon Phi reliability,” SC, 2017.
[17] D. A. G. D. Oliveira, et al., “Radiation-induced error criticality in modern HPC parallel
accelerators,” HPCA, 2017.
[18] V. Fratin, et al., “Code-dependent and architecture-dependent reliability behaviors,” DSN,
2018.

Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

76

Software countermeasure
• Implement cheap concurrent replication with idle

hardware
– Selective replication for protecting only the most critical

layers or portion of the neural network [19], [20]–[22].

• Stop errors propagating in CNNs by checking whether
the propagated values during MaxPooling layers,
detecting up to 85% of critical errors in CNNs [7].

77

[19] F. Libano, et al., “Selective hardening for neural networks in FPGAs,” IEEE Trans. Nuclear
Science, 2019.
[20] L. Weigel, et al., “Kernel vulnerability factor and efficient hardening for histogram of
oriented gradients,” DFT, 2017.
[21] A. Ruospo, et al., “Selective hardening of critical neurons in deep neural
networks,” DDECS, 2022.
[22] C. Bolchini, et al., “Selective hardening of CNNs based on layer vulnerability estimation,”
DFT, 2022.

Algorithm-Based Fault-Tolerant (ABFT)

• ABFT for matrix multiplication [23] detects and
corrects more than 80% of errors. When applied
to CNNs, ABFT outperformed ECC and duplication
[7]. Smart light-ABFT [24] further reduces the
overhead for GPUs.

• Concurrent signature calculations and signature
comparison for matrix multiplication [25]

78

[23] P. Rech, et al., “An efficient and experimentally tuned software-based hardening strategy for
matrix multiplication on GPUs,” IEEE Trans. Nuclear Science, 2013.
[24] S. Hari, et al., “Making convolutions resilient via algorithm-based error detection techniques,” IEEE
Trans. Dependable and Secure Computing, 2022.
[25] H. Itsuji, et al., "Concurrent Detection of Failures in GPU Control Logic for Reliable Parallel
Computing," ITC, 2020.

Algorithm countermeasure

• Assess and contrast consecutive input frames against
their corresponding detection outputs. Similar frames
should yield similar detection results. A discrepancy
may raise an error alert. 70% of critical errors are
detected though producing some false positives [26].

• Reduced Precision Duplication With Comparison (RD-
DWC) has been applied to GPUs and has demonstrated
error detection rates of 75% in average with acceptable
additional overhead [27].

79

[26] L. K. Draghetti, et al., “Detecting errors in convolutional neural networks using inter frame
spatio-temporal correlation,” IOLTS, 2019.
[27] F. F. dos Santos, et al., “Reduced precision DWC: An efficient hardening strategy for mixed-
precision architectures,” IEEE Trans. Computers, 2022.

Fault aware training
• If the DNN is trained to classify objects correctly even

w/ transient faults, it is possible to produce a more
reliable model while maintaining the original accuracy.

Training is performed by injecting transient faults.
•The model is expected to autonomously learn how to

properly deal with faults to reduce mispredictions
[28][29].

Proposed vulnerability model can improve the noise
injection efficiency during the training.

80

[28] G. Gambardella, N. J. Fraser, U. Zahid, G. Furano and M. Blott, "Accelerated Radiation Test
on Quantized Neural Networks trained with Fault Aware Training," AERO, 2022.
[29] N. Cavagnero, F. D. Santos, M. Ciccone, G. Averta, T. Tommasi and P. Rech, "Transient-Fault-
Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead," IOLTS, 2022.

Conclusions

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
– Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

81

For your reference

• Some excellent and complete surveys of the available
reliability studies have been published.
– F. Su, C. Liu, and H.-G. Stratigopoulos, “Testability and

dependability of ai hardware: Survey, trends, challenges,
and perspectives,” IEEE Design & Test, vol. 40, no. 2, pp. 8–
58, 2023.

– Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam,
and G. Guo, “Soft errors in DNN accelerators: A
comprehensive review,” Microelectronics Reliability, vol.
115, p. 113969, 2020.

– P. Rech, "Artificial Neural Networks for Space and Safety-
Critical Applications: Reliability Issues and Potential
Solutions," IEEE Trans. Nuclear Science, to appear.

82

