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Organization

Yiyu Shi
• Efficient worst-case analysis for neural network inference 

using emerging device-based CiM,
• Enhancement of worst-case performance through noise-

injection training,
• Co-design of software and neural architecture specifically for 

emerging device-based CiMs.
Masanori Hashimoto
• Identification of vulnerabilities in neural networks,
• Reliability analysis and enhancement of AI accelerators for 

edge computing,
• Reliability assessment of GPUs against soft errors.
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DNN on Edge: Memory Wall Issue

[1] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." IEEE journal of solid-state circuits 52.1 (2016) 4

q Goal: Deploy DNN on Edge

Handle Various Tasks Gets SOTA Performances Promising for Edge Apps.

Memory
42%

High Memory Access Cost [1]

q Memory Wall issue for Efficient DNN Acceleration

Slow Memory Tech Improvement

EDP ???

Efficiency Bottleneck

Limited Power Budget



Hardware Solution: Compute-in-Memory
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q Crossbar Array: VMM Engine

CiM Architecture [2] Emerging NVM Devices

q CiM DNN Accelerator using Crossbar Arrays: Advantages

Memory
42%à 20%

Lower Memory Cost

EDP
↓ ↓ ↓

Higher Efficiency

In
pu

t v
ec

to
r

Output vector

Weight matrix

• Input:        Voltage

• Weight:     Conductance

• Output:     Current
A/D Conversion Needed

[2] Zheyu Yan, X. Sharon Hu and Yiyu Shi, "On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks", chapter in 
System Dependability and Analytics: Approaching System Dependability from Data, System and Analytics Perspectives, Springer, 2023.



Emerging Technology: Pros and Cons
q Emerging NVM Devices Advantages

• Non-volatile: used as storage & memory

• Compact: more data on chip

• Read: Fast & Low energy

6[3] Yan, Zheyu, et al. "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural 
architecture search." 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021.

D2D Variations Accuracy Drops [3]

↓↓ 20%
q Challenges from Device Variations

Incorrect Conductance

Error
10% 

Incorrect Weight

Emerging NVM Devices



Device Variations: Evaluations
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Focus on Average Case

↓↓ 20%

q Existing Evaluation Workflows

q Issues of Existing Methods

Device Modeling Circuit/Arch Abstraction Monte Carlo Simulation

Lack Error Bound GuaranteeVery Few MC runs

Only 10 samples



Device Variations: Remedies
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q Device Variation: Existing Solution
Write

Done

UpdateVerify
Δ𝑔 ≤ 𝑡ℎ

Yes No

Write-Verify (W-V)

Noise

Input 

Back 
Prop.

Update

Noise-Aware TrainingError Correction/Denoising

q Drawbacks of These Solutions

Human Labor

All the time

Peripheral Circuit Overhead Device Type Dependent



Our Approach: Cross-Layer Co-Design
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q Advantages for Co-Design

q Metrics for AI Acceleration

q Contributions of Different Layers

Cross-
Layer 

Design

Device

Sy
st

em

Software

E

U

AP

R

Device/Circuit

E

U

AP

R

System

E

U

AP

R

Software

E

U

AP

R

Joint Optimal

q AI Acceleration Design Levels

Multi-object Opt.

Energy Efficiency

Utilization

AccuracyPeak Perform.

Reliability
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Background: CiM for DNN 

Device

Circuit/ 
Arch

Software

Detect Sensitive 
Devices [DAC 22]

Worst-Case Analysis 
[ICCAD 22]

Train Robust DNN 
Models [ICCAD 23]

Co-Design

AutoML
[ASPDAC 22]

Img Segmentation
[Nature Electronics]

Img Classification 
[SoCC 23]

NVM Devices

Key Problem:
Device Variation & Acc. Drop

Accuracy Drop

Solution: Cross-Layer Co-Design

Object Detection 
[Trans on Computers]

Data Difference

Remedy Methods: Overview
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Selective Write-Verify (1)
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q Device Variation: Existing Solution

Incorrect Weights

Write

Done

UpdateVerify
Δ𝑔 ≤ 𝑡ℎ

Yes No

Write-Verify (W-V)Accuracy Drops

↓↓ 20%

Accuracy Recovers

Program All Devices

q W-V is Time Consuming

1 Day Human Labor

q Reasons for W-V to be Slow

No Parallelism

Small 
Model

All the time One by one All devices

Device Variation

error
10% 



Selective Write-Verify (2)
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q Solution: Detect Sensitive Device

q Overview
§ Write-verify a portion of the devices

§ Write the other device once

§ Accelerate the deployment process

Statistical Analysis

Second
D

erivative

Sensitivity 
Calculation

Programming

Write-verify top 1% 
sensitive devices

Inference

Acc. Enough? Done
YesNo

Only W-V Sensitive Devices

W-V a portion of the devices

Use Write-Verify

Write only once

Sensitive
Weights

Detect Sensitive Weights

[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC) 



Selective Write-Verify (3)

15[4] Z. Yan, X. S. Hu, and Y. Shi, “SWIM: Selective write-verify for computing-in-memory neural accelerators,” 2022 59th ACM/IEEE Design Automation Conference (DAC) 

q Results
§ Published in EDA top 

Conference DAC [3]

§ Cited by Nature Paper 

from Ju Li, MIT [4]

[3] Yan, Zheyu, Xiaobo Sharon Hu, and Yiyu Shi. "SWIM: Selective write-verify for computing-in-memory neural accelerators." DAC 2022 (CCF-A).
[4] Rao, Mingyi, et al. "Thousands of conductance levels in memristors integrated on CMOS." Nature 615.7954 (2023): 823-829.

!"#$%&'#$
(#
)*
%'
%+
%'
,

90% Sensitivity Measurement Acc

Strong Correlation

10x Deployment Speedup

Only 10%Devices

Can achieve accurate 
programming
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Weight Sensitivity Evaluation
𝑓 𝒘 = 	𝑓 &𝒘 +

𝜕𝑓
𝜕&𝒘

Δ𝐰 +
1
2
Δ𝒘!𝐻 &𝒘 Δ𝐰 + o(Δ𝒘")

Δ𝑓 𝒘 ≈
1
2
Δ𝒘!𝐻 &𝒘 Δ𝐰

=
1
2
2
#$%

&

𝐻## Δ𝑤# ' +
1
2
2
#()

&

𝐻#)Δ𝑤#Δ𝑤)

Δ𝑤# ∼ 𝑁(0, 𝜎)

𝐸 Δ𝑓 𝒘 ≈
1
2
2
#$%

&

𝐻## 𝐸 Δ𝑤# ' =
𝜎'

2
2
#$%

&

𝐻##

• Target: statistically evaluate the 
influence of device variations

• Method: Taylor series of the 
DNN loss function

• Annotation:
§ 𝑓: loss function
§ 𝒘 = &𝒘 + Δ𝐰: weight
§ 𝐻 &𝒘 : Hessian matrix
§ 𝐸: expectance (average)

• Conclusion: write-verify weights 
with high 2nd derivatives

17

Weight’s sensitivity to device variations can be 
represented by its second derivative 



Effectiveness of Using Second Derivative
• Annotations

§ Y axis for both figures: accuracy drop when 
changing a weight (MNIST)

§ X axis for figure up: Weight magnitude
§ X axis for figure down: Weight second 

derivative
• Conclusions

§ Accuracy drop and weight magnitude are 
poorly co-related

§ Accuracy drop and second derivatives are 
strongly co-related

§ Second derivative is a good metric for 
sensitivity estimation

18



SWIM Vs Baselines on Different Datasets

• Baselines: use weight magnitude or random as weight selection + on device training
• Solid line: average performance, Shadow: ranges for standard deviation
• SWIM much better than all baselines
• Achieves low enough (less than 2%) accuracy drop by writing-verifying less than 10% 

of the weights

19

CIFAR-10 - ConvNet CIFAR-10 – ResNet-18 Tiny ImageNet – ResNet-18



Summary

• Proposed a framework that requires writing-verifying 
only a small portion of weights 

• The framework can maintain DNN accuracy

• In the meantime, programming time drastically reduced

• Specifically, the proposed framework achieves up to 10x 
speedup

20
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Worst-Case Analysis (1)

22

q Background: Reliability of nvCiM DNN Accelerators

Safety Critical Apps
Weight value

Ac
cu

ra
cy

Weight w/o var

𝑡ℎ!
Worst-case

Worst-Case AnalysisRandom Weights

q Safety Critical Apps. & Worst-Case

Random Acc.

Diagnosis Support Cancer Miss Rate Autonomous Driving Accident Rate

Device Variations

Error
10% 

[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022 
International Conference on Computer-Aided Design (ICCAD) 



Worst-Case Analysis (2)

23

q No WC Analysis Now

Exhaustive Search
x High DimensionsOnly Average Acc. Few Samples

q Existing Methods Would Not Work

Monte Carlo Methods
x Low Probability

1 Billion weights 10-20 probability Average Only 10 samples

q What if Ignoring Worst-Case Analysis

Target:
Find Cancer Cells 99% Find All Cells 1% Find NO Cell

A
verage O

nly 100% Find Some Cells 0% Find NO Cell
Ideally



Worst-Case Analysis (3)

24

q Solution: Define it as Constrained Optimizations

q Findings: Very Low Reliability!
§ 3% conductance deviation à Miss-classify all inputs
§ Existing protection methods are not effective

§ Published in ICCAD 22 [5]

𝑤 − 𝑡ℎ& ≤ /𝑤 ≤ 𝑤 + 𝑡ℎ&

Device 
Model

Circuit 
Design

Build a Noise Model
Weight value

Ac
cu

ra
cy

Weight w/o var

𝑡ℎ!
Worst-case

Def. Constrained 
Opt. Problem

minimi𝑧𝑒
!𝑾

'
𝒙∈%

𝑝 𝒙, 𝑓,𝑾

𝑠. 𝑡. 	 𝐿 Δ𝑾 ≤ 𝑡ℎ&
𝑝 𝒙, 𝑓,𝑾 = max{𝑂' −max()'

(𝑂() , 0}

Relax to Differentiable 
Objective

1%

90% 95% 100%

0%
20%
40%
60%
80%
100%

0% 1% 2% 3%

Er
ro

r R
at

e

Conductance Deviation
Very Low Reliability

[5] Z. Yan, X. S. Hu, and Y. Shi, “Computing in memory neural network accelerators for safety-critical systems: Can small device variations be disastrous?” 2022 
International Conference on Computer-Aided Design (ICCAD) 
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Formulating Worst-Case using Optimization
𝑓(𝑾 + Δ𝑾, 𝒙)

(𝒙, 𝑡) ∈ 𝐷

minimi𝑧𝑒
1𝑾

|{𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡| 𝑥, 𝑡 ∈ 𝐷}|

𝑠. 𝑡. 	 𝐿 Δ𝑾 ≤ 𝑡ℎ3

26

• Neural architecture 𝑓, weight 𝑾 and 

weight perturbation Δ𝑾

• Input 𝒙, label 𝑡 and dataset 𝐷

• Minimize the size of the set of 

correctly classified inputs à 

minimize accuracy

• Subject to the constraint that 

perturbation distance smaller than 

𝑡ℎ3 



Solving Optimization using Relaxation
• Goal: minimi𝑧𝑒

1𝑾
|{𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡| 𝑥, 𝑡 ∈ 𝐷}|

• The goal is discrete and difficult to optimize, relaxation needed 
• Relax to a continuous function for each input:

§ minimi𝑧𝑒
1𝑾

∑𝒙∈6 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾

§ 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 > 0, if and only if, 𝑓 𝑾 + Δ𝑾, 𝒙 == 𝑡
§ Function that satisfies the requirement

𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 = max{𝑂7 −max
#(7

(𝑂#) , 0}

• Constraint 𝐿 Δ𝑾 ≤ 𝑡ℎ3: Lagrange multiplier c
• minimi𝑧𝑒

1𝑾
(𝑐 ⋅ ∑𝒙∈6 𝑝 𝒙, 𝑓,𝑾 + Δ𝑾 + (𝐿 Δ𝑾 − 𝑡ℎ3))

• Gradient descent can be used to solve this problem

27[5] Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE symposium on security and 
privacy (sp). IEEE, 2017.



Major Results for Worst-Case DNN Performance
• Baselines: Monte-Carlo Simulation (MC) & Projected Gradient Descent (PGD)
• Proposed method discovers models with lower accuracy (tighter lower bound)
• MC method failed to find models with low enough accuracy
• The proposed method finds wors-case performance efficiently

28



Summary

• Proposed an efficient framework to examine worst-case 
performance of DNNs

• Showed that the accuracy of a well-trained DNN can drop 
drastically to almost zero with very subtle perturbations

• Existing methods are either too costly (for stronger write-
verify) or ineffective (for training-based methods)

• Further research is needed to find a solution to this issue

29
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Realistic Worst-Case (1)

32

Realistic Worst-Case (1)
q New Challenge: Very Low Reliability!

§ 3% conductance deviation à Miss-classify all inputs

§ Existing protection methods not effective

§ End of the world?

Too Costly

q Issues for Absolute Worst-Case

Low Probability Partially Verified

10-200 probability 2 x 109 MC Runs Why Improving?



Realistic Worst-Case (2)

[6] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “Improving realistic worst-case performance of nvcim dnn accelerators through training with right-censored gaussian 
noise,” 2023 International Conference on Computer-Aided Design 33

Design New Noise

↓ f’’ ↑ f’ Gaussian only ↓ f’’

Gaussian NOT opt.

Robust Model
𝑤" 𝑤#(100-k)% better 

performance

k% worst-case 
performance

Statistical Model for KPP Gaussian Noise Injection is not Optimal

q New Metric: K-th Percentile Performance (KPP)

MedianMin

Data

88 89 89 89 89 90 90 90 90 91 91

30-th pctl 80-th pctl

0.45

q Improving KPP
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Detailed Solution Overview
• Goal: improve realistic worst-case accuracy (KPP) of DNN under device variations

35

Estimate KPP

Analyze Noise-Injection Training 
that inject Gaussian noise

DNN

↓ 2nd derivative ↑ 1st derivative

Dev. var.

Gaussian noise only ↓ f’’

Gaussian NOT optimal

Novel RCG-noise

Requirements 
for DNN



Link KPP with Model Properties
• Use loss to represent performance, find its Taylor series (the smaller the better)

𝑓(𝑤: + Δ𝑤) = 𝑓 𝑤: + Δ𝑤𝑓; 𝑤: +
Δ𝑤 '

2
𝑓;; 𝑤: + 𝑜 Δ𝑤 " 	(1)

• KPP estimation
§ Given: a DNN model, device variation distribution, and probability k% 
§ Find: KPP
§ Key: write KPP in the form of an equation with model properties and k

36

Dev. Var.



KPP Estimation: Details

37

KPP
𝑤' 𝑤((100-k)% better 

performance

k% worst-case 
performance

Find the range of Δ𝑤 
that loss ≥ 𝐾𝑃𝑃  

Find probability k% of Δ𝑤 in this range

Let KPP be an 
unknown variable

Eq. (1):
Quadratic function

Δ𝑤 Distribution:
Δ𝑤 ∼ 𝑁(0, 𝜎))

Represent KPP with k%
Δ𝑤 ≤ 𝑤' or Δ𝑤 ≥ 𝑤(

Roots of Quadratic function

100 − 𝑘 % = 𝑐𝑑𝑓* 𝑤( − 𝑐𝑑𝑓*(𝑤')

Closed-form impossible

Approximations

1st order approximation: 
next slide

3rd  order approximation: 
more than 4 A4 pages

𝑓(𝑤+ + Δ𝑤) = 𝑓 𝑤+ + Δ𝑤𝑓 , 𝑤+ +
Δ𝑤 (

2
𝑓 ,, 𝑤+ + 𝑜 Δ𝑤 - 	(1)



Desired Model Properties
• Use loss to represent performance, find its Taylor series (the smaller the better)

𝑓(𝑤* + Δ𝑤) = 𝑓 𝑤* + Δ𝑤𝑓+ 𝑤* +
Δ𝑤 ,

2 𝑓++ 𝑤* + 𝑜 Δ𝑤 -

• Average performance estimation

𝐸 𝑓(𝑤* + Δ𝑤) ≈ 𝑓 𝑤* +
𝐸 Δ𝑤 ,

2
𝑓++ 𝑤* 	 (2)

• KPP estimation

−𝐾𝑃𝑃 ≈ −
𝑓+ 𝑤* ,

2𝑓++ 𝑤*
+ 𝑓 𝑤* +

𝑓++ 𝑤* 𝜋𝑘,𝐸 Δ𝑤 ,

4
	 (3)

• Requirements: 𝑓;; 𝑤: ↓,     𝑓 𝑤: ↓,     and     |𝑓; 𝑤: | ↑

38

Dev. Var.

Percentile



Noise Injection Training Process Analysis

• Noise injection training weight update
𝑤7T% 	 = 	𝑤7 	 − 	 𝛼	 𝑓	 ;	 𝑤7 +	𝑤&

• Taylor Series:

𝑤7T% = 𝑤7 − 𝛼 𝑓; 𝑤7 + 𝑤&𝑓;; 𝑤7 +
𝑤&'

2
𝑓;;; 𝑤7 + 𝑜 𝑤& "

• Averaged effect: 𝑤7T% = 𝑤7 − 𝛼𝐸 𝑓; 𝑤7 + 𝑤&

𝑤7T% = 𝑤7 − 𝛼 𝑓; 𝑤7 + E 𝑤& 𝑓;; 𝑤7 +
𝐸 𝑤& '

2
𝑓;;; 𝑤7 	 (1)

In paper, 𝑤! is denoted as Δ𝑤. We change this terminology to avoid ambiguity in the slides. 39

Updated w Original w LR Loss fn Gradient Noise



Findings: How Noise-Injection Training Improves KPP

• How noise-injection training fulfills the requirements

§ Requirements:     𝑓 𝑤* ↓,       |𝑓+ 𝑤* | ↑,								and				𝑓++ 𝑤* ↓

§ 𝑤'./ = 𝑤' − 𝛼 𝑓+ 𝑤' + 𝐸 𝑤0 𝑓++ 𝑤' + 1 2. /

,
𝑓+++ 𝑤'

• Desired noise properties 𝑬 𝒘𝒏 ≠ 𝟎, 𝑬 𝒘𝒏
𝟐 > 𝟎

• Gaussian does not hold this property!

• Propose four candidates

• Training with RIght-Censored Gaussian NoisE (TRICE)

40
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Experimental Setups
• Baselines:

§ Training w/o noise

§ CorrectNet [7]

§ Injecting Gaussian noise in training

• Evaluation method:

§ Metric: KPP, k = 1 (p = 1%).

§ Monte Carlo runs: 10,000

[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression 
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. 42

*    Absolute 0 𝜇S is impossible so here it means a very high resistance
** Negative weights are mapped to another array

• Device mapping model

Device conductance (g): 0 – 150 𝜇S*

Weight value (w): 0 – 4.5**

• Device variation model

§ Conductance follows Gaussian dist.

§ 𝑔 = 𝑁 &%
012 &

, 𝜎) ×max 𝑔

0 150

0 4.5

100

3.0



Results on MNIST Dataset

• Model: LeNet, 4-bit quantization

• Metric: K-th Percentile Performance (KPP) à 1-st percentile accuracy

• Columns: comparing three baselines with the proposed method TRICE

• Rows: over different device variation magnitude (𝜎]) 

• Following experiments: CorrectNet [4] ×
[7] Eldebiky, Amro, et al. "CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression 
and Compensation." 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. 43

↑ 58%, 38%

↑ 14%



Results on CIFAR-10 Dataset

• (a) VGG-8 model and (b) ResNet-18 model, 6-bit quantization

• X-axis: device variation magnitude (𝜎]) 

• Y-axis: KPP: 1-st percentile accuracy

44

VGG-8 ResNet-18

↑↑   25%
↑↑↑ 50%

↑↑   26%
↑↑↑ 45%



Results when using Different devices

• Previous two experiments: RRAM devices 
vs. this experiment: FeFET devices

• Model: LeNet, 4-bit quantization

• Dataset: MNIST

45

FeFET-1 FeFET-2

RRAM FeFET

↑↑   16%
↑↑↑ 60%

↑↑   12%
↑↑↑ 60%



Summary

• Advocate the use of a realistic worst-case performance metric (KPP)

• Propose a novel noise-injection training method to improve KPP

• Show that injecting right-censored Gaussian noise can effectively 
improve KPP

• The proposed framework improves KPP by up to 25%

• Published in ICCAD 23

• Received Best Paper Award

46
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HW-SW Co-Design Algorithm (1)

48

q Existing Methods

§ Given: a task and a design space

§ Find: the optimal HW-SW design pair

q Issues for Existing Methods

Differentiable Methods Child Network-Based

Search Time

Weeks

Memory Cost

TBs

q Using Existing Methods

Object Detection

Acc ↑20%

Image Segmentation

↑↑↑ 40% Fairness

[8] W. Jiang, Q. Lou, Z. Yan, et al., “Device-circuit-architecture co-exploration for computing-in-memory neural accelerators,” IEEE Transactions on Computers, 2020
[9] Y. Guo, Z. Yan, X. Yu, et al., “Hardware design and the fairness of a neural network”, Nature Electronics (under review)



HW-SW Co-Design Algorithm (2)

49

q Why Existing Methods are Not Efficient

§ Cold start: Random initialization

§ Search space explosion

Cold Start Search Space Explosion

q Dealing with These Issues

Use Large Language Models

25x Speedup

Combine RL with Differentiable Methods

Pareto Optimal on 
Constrained Memory

[10] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms for sw/hw co-design: An example in designing cim DNN accelerators,” SoCC 2023
[11] Z. Yan, W. Jiang, X. S. Hu, and Y. Shi, “Radars: Memory efficient reinforcement learning aided differentiable neural architecture search,” ASP-DAC 2022



Our Solution: Summary

50

Background: CiM for DNN 

Device

Circuit/
Arch

Software

Detect Sensitive 
Devices 

10x Protection

Worst-Case Analysis
100% Error

Train Robust DNN 
models

↑↑↑ 33% Acc

Co-Design

AutoML
10x Speedup

Img Segmentation
↑↑↑ 40% Fairness

Img Classification 
25x Speedup

NVM Devices

Problem:
Device Variation & Acc. Drop

Accuracy Drop

Solution: Cross-Layer Co-Design

Object Detection 
↓↓↓ 10x EDP

Data Difference
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Outlooks
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q Incremental Future Works

§ Using LLM to improve HW-SW Co-Design for robustness

§ Accommodating SWIM to more types of devices

q Future Directions

§ Hardware backdoors for CiM platforms

§ Physical verifications for CiM techniques

§ Mix-precision designs for robust DNN models DNN result: 7  3

Hardware Backdoor



Conclusions
q Introduction: Crossbar-based Hardware and their Robustness Issues

q Remedy Methods: Cross-Layer Co-Design

• Device:     Device Programming Techniques 

• Circuit/Arch: Worst-case Analysis

• Software:   HW-Aware Training

• Co-Design: HW-SW Co-Design Algorithm

q Outlook & Conclusions
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Abstract

Deep Neural Networks (DNNs) are currently operated on GPUs in both 
cloud servers and edge-computing devices, with recent applications 
extending to safety-critical areas like autonomous driving. Accordingly, 
the reliability of DNNs and their hardware platforms is garnering 
increased attention. This talk will focus on soft errors, predominantly 
caused by cosmic rays, a major error source during an intermediate 
device's lifetime. While DNNs are inherently robust against bit flips, 
these errors can still lead to severe miscalculations due to weight and 
activation perturbations, bit flips in AI accelerators, and errors in their 
interfaces with microcontrollers, etc. The latter part of this tutorial will 
discuss:
• Identification of vulnerabilities in neural networks,
• Reliability analysis and enhancement of AI accelerators for edge 

computing,
• Reliability assessment of GPUs against soft errors.

2



Neutrons and muons are falling into VLSI 
chips

3



Example of nuclear reaction
4



Example of reaction in VLSI chip
5

[1] S. Abe, et. al, ”Multi-scale Monte Carlo simulation of soft errors using PHITS-
HyENEXSS code system,” IEEE Trans. Nuclear Science, 2012

Injected charge 
may result in 
bit flip called 
soft error.

[1].



Incident in aircraft (Oct. 2008)
A steep dive due to fly-
by-wire system failure
• 1/3 customers and 

3/4 crews injured

https://www.atsb.gov.au/media/3532398/ao2008070.pdf

Soft error
Insufficient 
evidence since 
reproduction 
is very difficult

Other factors
(Very) unlikely

6



Multi-physics multi-layer phenomena 
with diverse temporal and spatial scales

7

10-14m
10-6m



Real-time & accelerated test

Many devices are operated
• Months to years are necessary to 

get enough # of errors

8

https://ars.els-cdn.com/content/image/1-s2.0-
S0026271414000882-gr3.jpg

108x acceleration means 
1 sec for 3.2 years.



Demonstration

Linux is running on Raspberry Pi

9

Neutron beam

Video 
output

Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.
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Courtesy to Prof. Kobayashi, Kyoto Institute of Technology.



Our life depends on AI applications 
running on integrated systems

11

High reliability is demanded for AI-based safety-
critical applications.
Rad-hard components sufficiently powerful to 
execute DNNs are not available, yet.

http://rtc.nagoya.riken.jp/ROBEAR/



Preliminary experiment irradiating 
object detection running on GPUs
• Yolov3-tiny
• GPU cards
– NVIDIA Quadro P2000
– NVIDIA GeForce GTX960
– Aligned in series on the beam track

12

Quasi-monoenergetic 
neutron beam at CYRIC

Y. Zhang, K. Ito, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, 
"Fault Mode Analysis of Neural Network-based Object Detection 
on GPUs with Neutron Irradiation Test," RADECS, 2020.



Definitions of DUE, SDC and critical SDC 
Impact of soft error on computation includes
•wrong computation result (SDC; Silent Data 

Corruption)
•Harmful for all applications

• hang or halt (DUE; Detectable Uncoverable 
Error)
•Harmful for real-time applications

• no effect (Mask)
•Depends on both hardware and software

13



Critical SDC in Object Detection

14

• SDCs that are critical to object detection
• IoU (intersection-over-union) is used to evaluate 
critical SDC

IoU :  IoU of faulty and golden output
IoU > thresh: normal SDC (thresh: 0.8 in exp.)
IoU < thresh: critical SDC

14



Temporal patterns of observed SDCs
• Each row corresponds to one sequence of error 

occurrence
• Some faulty outputs last for hundreds of seconds 

probably due to weight data corruption

15

Program stop (hung, crash)

Repeating identical errors

unit: second

Critical SDC starts

Normal SDC starts



Fault mode categorization
Classify errors into two-by-two categories:
• Identical errors repeat or not
• SDC critical or not

16

Variant 
errors

Identical 
errors

Category

22Critical 
SDC

68Non-
critical

# of faulty events

Not all SDCs are critical.
NNs are inherently redundant and robust to 
parameter perturbation.

Error rate depends on underlaying hardware. 



Current research status

•Some data in literature suggests radiation impact on 
DNN is so high, hindering safe large-scale use.
•COTS AI products exhibit a high error rate due to 

radiation [2][3], attributed to their large size and 
critical resource density.
•Effective hardening strategies against radiation is 

necessary.

17

[2] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,“Soft error resilience of 
deep residual networks for object recognition,” IEEE Access, 2020.
[3] D. A. G. Goncalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech, “Evaluation and mitigation 
of radiation-induced soft errors in graphics processing units,” IEEE Trans. Computers, 2016.



Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

18



NN robustness evaluation (FP case)
• DNN robustness is important for soft error, hard 

error and security.
– Malicious attack to DNN is another concern.

• Maximum impact of single event upset in network 
parameters.
– Among all the parameters, 

only one bit of one 
parameter is with fault and 
the others are fault-free.

19

Z. Yan, Y. Shi, W. Liao, M. Hashimoto, X. Zhou and C. Zhuo, "When Single Event Upset Meets 
Deep Neural Networks: Observations, Explorations, and Remedies," ASP-DAC, 2020.



Observations in ResNet56

• Observation 1: the highest exponent bit has 
the highest impact across different layers 
while fraction bits have is very limited impact. 

• Observation 2: the first layer, which directly 
deals with the input stream, has higher impact.

20

Maximum accuracy drop in ResNet56



Results in other networks
• Impact of bits are:

exponent > sign >> fraction
• Impact of sign bit varies layer by layer.

21



Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature

22



Fault injection is too time-consuming

•Fault injection(FI) is a common method for 
estimating vulnerability of a network due to 
nonlinearity of NN. However, FI costs time 
prohibitively because NN has too many parameters.
•Contributions:  propose constructing a vulnerability 

model (VM) to predict vulnerability of DNN with 
fewer FIs in an acceptable time.
• FI reproduces a bit flip supposing  soft error and  

malicious attack.

23

Y. Zhang, H. Itsuji, T. Uezono, T. Toba and M. Hashimoto, "Estimating Vulnerability of All 
Model Parameters in DNN with a Small Number of Fault Injections," DATE, 2022.
Y. Zhang, H. Itsuji, T. Uezono, T. Toba, M.Hashimoto, "Vulnerability Estimation of DNN 
Model Parameters with Few Fault Injections," IEICE Trans. Fundamentals, 2023. 



Features of proposed VM construction

Machine learning is used to construct VM.
•Vulnerability definition: 
• sum of accuracy degradation for individual bit flips.

•Feature identification : 
• e.g., absolute value of parameters, gradient, calculation 

times, etc. 
•Fast training: 
•Only conduct FI on important bits, e.g., exponent bits 

with value 0.
• Iterative training to prepare minimum FI data for 

required accuracy

24



VM construction flow
25

Select DNN parameters p and 
calculate vulnerability V with 

fault injection 
Extract features X for selected 

DNN parameter p

Train/test VM with X, V

VM accuracy 
improve?

Predict vulnerability 
of all parameters

Yes

No

Input:
• Trained NN
• Image dataset

Output:
• Trained VM
• Vulnerability of all params.

Start VM construction

Conventional method:
FI to all/important bits 
of all parameters.

Proposed method:
FI to important bits of 
some parameters and 
predict others’ 
vulnerabilities



Definition of  vulnerability

26

𝑉௜ ൌ  
1
𝑁௕

 ෍ሺ∆𝑎𝑐𝑐௜,௝ሻ
ே್

௝ୀଵ

∆𝑎𝑐𝑐:    accuracy deviation between the original clean DNN and dirty DNN
𝑁௕:       the number of bits for vulnerability analysis in one DNN parameter

Neural network

1001………0010001…10

sign exponent mantissa 

For 32-bit floating point case:  

𝑉௜ ൌ  
1

32 ሺ∆𝑎𝑐𝑐 ൅෍∆𝑎𝑐𝑐
଼

௝ୀଵ

൅෍∆𝑎𝑐𝑐
ଶଷ

௝ୀଵ

ሻ

parameter



Efficient vulnerability calculation

•Approximation of vulnerability

• selection
• Floating-point format
• exponent bits whose values are 0.

• Fixed-point format
• Positive number:     ’0’ bits locating on the left side of the 

topmost ’1’ bit
• Negative number:   ’1’ bits locating on the left side of the 

topmost ’0’ bits

27

𝑉௜ᇱ ൌ  
1
𝑁௕

 ෍ ሺ∆𝑎𝑐𝑐௜,௝ሻ
௝∈௕௜௧௦೔

𝑏𝑖𝑡𝑠: a set that may contain integer numbers 
from 1 to 𝑁௕

𝑉௜ ൌ  
1
𝑁௕

 ෍ሺ∆𝑎𝑐𝑐௜,௝ሻ
ே್

௝ୀଵ

01101100

(a) 8 exponential bits 
of 32 bit floating-point

01101100

(b) 8 bit fixed-point 
positive number

01101111

(c) 8 bit fixed-point 
negative number

‘0’ to ‘1’; the value change is at most 100%

‘1’ to ‘0’; the value change is at most 100%



Feature extraction

• Absolute value of param (A)
• Number of dangerous bits (D)
• Number of 𝒃𝒊𝒕𝒔

• Gradient (G)
• Larger gradient means larger impact on NN output
• Available in NN training process

• Calculation time (CT)
• How many times each param is used during one NN inference

• Layer location (ID, OD)
• Location of each layer.

28



Setup

•Networks
• ResNet-18,  quantized ResNet-18,  yolov3-tiny

•Datasets
• CIFAR10:   ResNet-18,  quantized ResNet-18
• COCO:       yolov3-tiny 

•VM algorithm
• Random forest
• Definition of 
• Top-k accuracy:       ResNet-18,  quantized ResNet-18
• Mean average precision (mAP):   yolov3-tiny

29



Validating selection 

•Vulnerability distribution on different bits

•Assume for unimportant bits outside ,
• ResNet-18:     
• 99.9996% unimportant bits attain ∆ =0.
• # of fault injection is reduced by 54.5%

• Quantized ResNet-18:   
• 99.995% unimportant  bits attain ∆ =0
• # of fault injection reduces 27.1%

30

*Vulnerability is 
centralized on MSB



Accuracy & time comparison with 
traditional FI

31

• VM can predict vulnerability accurately for resnet-18 and yolo-v3
• >3000x speed-up (733 to 0.21 hours) can be achieved compared 

with tradition FI.
Vu
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Ratio of fault-injected parameters

Conventional
FI-based

Proposed

Much smaller error can 
be obtained by fewer 
FIs. 

• Traditional fault injection: flip all bits for all parameters
• BF0: only flip important bits for all parameters



Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization

• Multi-bit-width neural networks
– Countermeasures in literature

• Robustness of hardware
– Edge AI accelerator
– GPU
– Countermeasures in literature

32



Neural architecture search (NAS) for 
multi-bit-width (MBW) NNs

Thanks to approximate and quantization-
compatible features of CNNs,  NAS is used for 
precision reduction with limited accuracy loss.

33



Examples of MBW LeNet5 generation
34

Differential  NAS  approach in [4] is applied.

[4] M.  Huang  et  al.,  “A  high  performance  multi-bit-width  booth  vector systolic 
accelerator for NAS optimized deep learning neural networks,” IEEE Trans. CAS-I, 2022.



Reliability concern regarding MBW NNs
• In highly precision-reduced NNs, each bit 

needs to carry more information. 

• Important to analyze the reliability of these 
multi-precision networks.

35

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for 
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-I, 2023,



Increase 
in 
misclassifi
cation

36



Increase 
in 
misclassifi
cation

37

Higher bits have 
larger impacts.
77.1%  SDCs come 
from high two bits.



Increase 
in 
misclassifi
cation

38

Quantization induces
larger impacts.



Increase 
in 
misclassifi
cation

39

• Conv. layers induce larger impacts 
due to multiple usage.

• Conv. Weight size is small and 
selective protection is meaningful.



Increase 
in 
misclassifi
cation

40

• Compared w/ FP case, 
the impact is limited.

• INT8 model is robust.
• When preventing error 

accumulation, the 
accuracy degradation is 
not significant even in 
MBW NNs.



Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature
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Demands of Edge AI chips

• Reduced Latency: Real-time data processing 
locally is crucial for applications like autonomous 
vehicles and robotics.

• Improved Privacy and Security: Local data 
processing on the device enhances data privacy 
and security, reducing the risk of data 
interception.

• Lower Bandwidth Requirements: The decrease in 
the need for data transmission to the cloud 
benefits areas with limited internet access and 
reducing connectivity dependence.

42



Edge AI SoCs

• For AI applications, the hardware AI 
accelerator can be integrated into the SoC as a 
peripheral.

• Edge AI SoCs can be used for mission-critical 
and reliability-demanding applications.

• Essential  to  analyze  weak points of the 
entire SoC with AI accelerator.

43



Case study: Reliability assessment of an 
edge AI SoC

• We perform a case study using a SOTA SoC design that 
accepts NAS optimized LeNet5 with MNIST data set 
and implemented into a flash-based FPGA. 

• We analyze the reliability of our SoC by fault injection 
(FI)  and  neutron  irradiation  experiments,  aiming  to  
provide valuable  insights  and  serve  as  crucial  
references  for  future reliability-aware  designs.  
– CRAM  in  the flash-based  FPGA  is  robust  to  neutron  

irradiation  compared with  SRAM-based  FPGA. 
– This  FPGA-based SoC implementation reproduces the 

susceptibility of any dedicated  SoC  chips.

44

Q. Cheng et al., "Reliability Exploration of System-on-Chip With Multi-Bit-Width Accelerator for 
Multi-Precision Deep Neural Networks," IEEE Trans. CAS-I, 2023,



Chip architecture
• SoC consists of 1) MBW accelerator, 2) lightweight 

32-bit RISC-V processor, and 3) DDR4 DRAM.    
• RISC-V core has 2-stage pipeline, instruction  tightly  

coupled  memory  (ITCM)  and  data  tightly coupled  
memory  (DTCM).

45



MBW accelerator
• MBW vector systolic accelerator [4] w/ a 16x8  array
– #inputs is 16, 32, and 64 for INT8, INT4, and INT2 

respectively
– # of output channel is 8.

• MAC is based on a multi-precision Booth multiplier.

46



SoC implementation

• SoC is implemented for 
MPF300T Eval Kit.

• CRAM in this flash-
based FPGA is robust to 
radiation, reproducing 
the susceptibility of SoC  
chips.

47



Experiments
• Fault injection
– Reproduces single 

bit upset in weights, 
activations, state 
registers of the 
controller, and CNN 
config. params. 

– Logs results  and 
saves them via host 
software for 
analysis

• Neutron irradiation
– Neutron beam is 

given to 3 FPGA 
boards at CYRIC, 
Tohoku Univ.

48



Details in FI process 49



FI results (control state registers (CSR))
• “Error Ratio”: misclassification ratio in overall errors.
• “Acceptable”: SoC can output the results
• “Unacceptable”: SoC fails to complete CNN  

calculation, i.e. DUE

50



Observations in FI to CSR

• The  bit-flip  of  CSRs  is  far  more  sensitive than  
that of  weights  in  NNs. 

• Data  errors  in the  acceptable range  can  lead  
to  a  high  probability  of  misclassification. 

• Error values in the unacceptable range cause the 
accelerator to enter into a deadlock or hang the 
AXI bus.

• Fortunately, the size of state registers is limited.
• Protecting state registers requires small overhead, 

but significantly contributes to reliability 
improvement.

51



Reliability configurations in 
irradiation experiments
• Config. 1: Not refresh the contents of ITCM  and 

DTCM frequently, resulting in error accumulation
• Config. 2: reset the after each round, preventing 

error accumulation in ITCM and DTCM
• Config. 3: replace normal SRAMs in RISC-V with  

TMRed SRAM
• Config. 4: replace CSRs with TMRed ones

52



Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some 

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE):  classification is correct, 

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE):  accelerator  has  no 

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4


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Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some 

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE):  classification is correct, 

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE):  accelerator  has  no 

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4

RISC-V  core  is  more  
sensitive  to  
accumulated errors than 
accelerator. 
When the data in  
I/DTCM is flipped and 
errors are accumulated, 
SoC could  crash easily.  

82% reduction
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Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some 

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE):  classification is correct, 

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE):  accelerator  has  no 

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4

After deploying TMRed
I/DTCM in RISC-V core, 
CCEs almost decrease to 
zero and the other 
events also have a 
significant decrease. 
Errors in accelerator 
become dominant.
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Irradiation results
• Tolerable Core Event (TCE): RISC-V core has some 

misbehavior, but not affect NN application
• Tolerable Accelerator Event (TAE):  classification is correct, 

but the middle outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE):  accelerator  has  no 

correct response or correct classification result

Config. 1

Config. 2

Config. 3
Config. 4
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After deploying TMRed, 
errors generated at 
accelerator decreased. 

Overall cross section is 
reduced by 78.05% 
compared with Config. 1.
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Comparison to 
SRAM FPGA
• Tolerable Core Event (TCE): RISC-V core has some misbehavior, but not affect 

NN application
• Tolerable Accelerator Event (TAE):  classification is correct, but the middle 

outputs are not as expected
• Critical Core Event (CCE): RISC-V core runs away or crashes
• Critical Accelerator Event (CAE):  accelerator  has  no correct response or 

correct classification result

57
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CRAM errors limit the reliability improvement in configs. 2, 3, and 4.



What we learned

• RISC-V  core  is  more vulnerable  than  accelerator.
• Implementing  mitigation techniques (e.g., Error Correcting 

Codes (ECC), TMR) is necessary for instruction and data 
memory to strengthen the SoC.

• After this, the vulnerability of the interface b/w processor 
and accelerator becomes visible.

• Impact  of  precision differences in NNs is limited. 
• After deploying the above-mentioned  countermeasures,  

the  accelerator  errors  are dominant. Now, weight 
protection needs consideration.

• Specific application requirements decide whether to deploy 
the  mitigation techniques above.  Depending  on  the 
system criticality  and required reliability level, a 
combination of these techniques are necessary to ensure 
the SoC’s overall reliability to potential faults.
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Related work in edge AI SoCs

• EdgeAI devices, e.g., Google's Tensor Processing Unit [5] and 
NeuroShield [6], have undergone testing.

• Experiments with the NeuroShield and TPU indicate they have 
fewer errors compared to GPUs, along with a more 
straightforward error pattern where fewer outputs are 
affected and the erroneous values closely resemble the 
correct ones.

• Consequently, the rate of misclassification in neural networks 
on EdgeAI hardware is less than that on other platforms.
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[5] R. L. Rech Junior, et al., “High energy and thermal neutron sensitivity of
google tensor processing units,” IEEE Trans. Nuclear Science, 2022.
[6] S. Blower et al., “Evaluating and mitigating neutrons effects on COTS
Edge AI accelerators,” IEEE Trans. Nuclear Science, 2021.



Agenda

• Robustness of NNs
– Case study (FP)
– Identifying vulnerable weight parameters
– Quantization
• Multi-bit-width neural networks

• Robustness of hardware
– Edge AI accelerator
– GPU

• Countermeasures in literature
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Problem of application-level soft 
error evaluation in GPU
• Circuit structure is not 

disclosed
• Scheduler, dispatcher, etc.
• A corruption in, e.g., 

scheduler, can impact 
multiple parallel processes.

• Instruction cache is 
invisible to users
• Cache is accessed from 

multiple parallel processes.

• Target of fault injection is 
limited.

• Difficult to know part-wise 
SER contribution
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not disclosed 
difficult to measure SER



Assessing contribution from undisclosed 
components

• Carried out irradiation test for
• Error rates of disclosed memory components
• SDC error rates of matrix multiplication programs

• Compare measured SDC error rate and the 
one predicted only w/ disclosed memory 
components

• Difference is expected to come from 
undisclosed components
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K. Ito, et al., "Characterizing Neutron-Induced SDC Rate of Matrix Multiplication in 
Tesla P4 GPU," RADECS, 2019.



GPU error rate measurement
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Matrix multiplication 
programs w/ different 
resource usages were run



Comparison between measured and 
estimated error rates

• Estimated error rates using measured memory error rate and usage
– Worst-case estimation assuming all errors induce SDC.

• Even with the worst-case estimation, there is a large discrepancy
coming from errors in internal undisclosed hardware
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Difficulties in fault injection and 
radiation experiment
Difficulties in fault injection
• In high-level fault injection, faults can be injected only on 

that subset of resources which is visible to the programmer.
• Considering faults in computing resources (such as the 

pipelines, the control units, functional units, or scheduler), 
evaluating the impact on the software is not trivial.

Difficulties in radiation experiments
• Radiation experiments do not allow to track faults 

propagation, preventing us from associating observed 
behaviors with the fault source and, thus, identifying the 
most vulnerable resources. 

• Results are valid only for the particular codes and 
configurations that have been tested.
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Example of fault injection to control 
flow
• Inject error into one 

warp by editing PTX 
code. 
• PC in one of active 

warps is changed
• Faulty jump can go to 

any labels
• Jump flag is for 

jumping only once
• Loops are unrolled 
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L1: ADD R1 R2 R3

#Check Jump Flag
JUMP NOJUMP if R0 = 1

#Set Jump Flag
SET R0 1

#Insert Jump Code
JUMP L3 

NOJUMP: NOP
L2: ADD R1 R6 R7
L3: MUL R1 R8 R9

Normal 
jump

Faulty jump

K. Ito, et al., "Analyzing DUE Errors on GPUs with Neutron Irradiation Test and Fault 
Injection to Control Flow," IEEE Trans. Nuclear Science, 2021.

PTX: pseudo assembly language for CUDA



Possible direction for reliability 
assessment
• Low-level fault injection to RTL could reproduce 

the hardware behavior.
• However, COTS devices do not provide RTL 

designs. Also, considering the slow RTL simulation, 
various hardware configurations and many 
software applications, the low-level fault 
injection suffers from simulation time.

• Fault injection complemented with beam 
experiments is one possible direction when 
dealing with complex hardware.
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Target model: 

Irradiation exp. w/ various apps.
Prepare a number of app. metrics

Select primary 𝒌 according to correlation b/w 
𝒌 and measured SER 

Regression to obtain 𝒌(k=1,2,..,n), and 

Constructing a model capable of 
estimating various GPU applications

𝑦: SER (response variable)
𝑥௞: app. info. (Explanatory variable)
𝑎௞ , 𝑏: constants to be obtained

K. Ito, et al., "Constructing Application-Level GPU Error Rate Model 
with Neutron Irradiation Experiment," RADECS, 2021.



AVF/PVF

• The probability for an error to propagate from 
memory elements to software visible state and 
modify the software execution (thus becoming a 
failure, such as an SDC or DUE) is called 
Architectural/Program Vulnerability Factors 
(AVF/PVF). 
– Depending on papers, AVF and PVF are differently 

defined.
• AVF/PVF from errors in memory visible to 

programmers can be easily obtained via high-
level fault injection.
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MOVECONTROLBRANCHLDS/STSLDG/STGINT/FLOAT

0.4%3.3%1.1%43.5%2.2%46.4%Mmu32
(matrix multiplication)

19.7%8.6%14.2%0.0%11.6%43.1%Quicksort 
(sort)

11.4%10.8%15.9%13.1%0.5%27.7%Mergesort
(sort)

4.8%7.2%4.7%0.0%10.2%72.7%Sha256
(hash)

4.4%8.7%4.4%0.0%13.0%52.2%Vectoradd
(parallel add)

0.1%0.5%1.3%7.6%2.2%88.3%Mmucublas
(mat. mul. library)

Programs used in
experiments

GPU

Neutron beam

Exp. site: Tohoku Univ. CYRIC
GPU: NVIDIA Quadro P2000Instruction proportion

Prepared applications w/ different behaviors
(e.g., mem. size, #blocks, #threads, instructions)
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Measured error rates
• SDC (silent data corruption)
• Wrong output
• Detection is difficult

• DUE (detectable but uncorrectable error)
• Crash, hang, etc.
• Necessary to reboot GPU or host PC
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Single-variable model
• “Warps per block” is primary 

explanatory variable
• 𝒚 ൌ 𝒂𝟏 ൈ ሺ𝑾𝒂𝒓𝒑𝒔 𝒑𝒆𝒓 𝒃𝒍𝒐𝒄𝒌ሻ ൅ 𝐛
• Error for SDC is up to 39.7%
• Error for DUE is up to 221.0%
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Corr. 
Coeff.
(DUE)

Corr.
Coeff.
(SDC)

0.96 0.98 Warps per block
0.89 0.80 Dispatched warps

0.80 0.76 Gld_efficiency

0.80 0.75 Gst_efficiency

0.80 0.75 Warp exec. efficiency

Sorted by corr. coeff. (SDC)

0%

50%

100%

150%

200%

250%

mmu32 quicksort mergesort sha256 vectoradd mmucublas

モデル1: SDC モデル1: DUE

DUE error
211.0%

SDC error
39.7%

Error

SDC           DUE           



Two-variable model
• 𝟏 𝟐

• SDC model does not improve w/ any new variables
• DUE model improves w/ AVF (DUE) and L2 hit
• L2 hit reduced the maximum error to 43.3%

0%
50%

100%
150%
200%
250%

mmu32 quicksort mergesort sha256 vectoradd mmucublas

モデル1 モデル2: エラー伝搬率 モデル2: L2キャッシュヒット率

Error

Error
43.3%

Single-var. 
model

Two-var. model w/ AVF (DUE) Two-var. model w/ L2 hit                                 
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AVF (architectural vulnerability factor):
fault propagation probability resulting in SDC/DUE
obtained by fault injection to registers



Related work in GPUs (1/2)
• ECC (Error-Correcting Code) can lower the GPU error rate by an order of 

magnitude, but it is less effective at decreasing the number of radiation-
induced misclassifications in CNNs [7], [8].

• Reducing execution speed does not affect the Fault In Time (FIT) rate, 
whereas utilizing more parallel resources or larger hardware cores can 
increase the FIT rate, albeit with a possible performance advantage. Metrics 
such as Mean Executions Before Failure (MEBF), could be suitable to balance 
error rate with performance [9], [10], [11].

• Neutron beam experiments in [9] indicate that a higher # of parallel 
processes can overburden the scheduler, leading to increased error rates in 
GPUs [45]. The use of GPU resources more intensively raises the 
susceptibility to errors [12].
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[7] F. F. d. Santos, et al., “Analyzing and increasing the reliability of convolutional neural networks on GPUs,” IEEE 
Trans. Reliability, 2019.
[8] D. A. G. Goncalves de Oliveira, et al., “Evaluation and mitigation of radiation-induced soft errors in graphics 
processing units,” IEEE Trans. Computers, 2016.
[9] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of GPUs parallelism management on safety-critical and 
HPC applications reliability,” DSN, 2014.
[10] C. Weaver, et al., “Techniques to reduce the soft error rate of a high-performance microprocessor,” ISCA, 2004.
[11] G. Reis, et al., “Design and evaluation of hybrid fault-detection systems,” ISCA, 2005.
[12] J. M. Badia, et al., “Reliability evaluation of LU decomposition on GPU-accelerated system-on-chip under proton 
irradiation,” IEEE Tran. Nuclear Science, 2022.



Related work in GPUs (2/2)
• Algorithms that are slower and memory-bound tend to be 

more susceptible to errors, whereas the most efficient 
algorithms exhibit a smaller error cross section [13].
• Corruption of shared resources such as caches or the 

scheduler can disrupt multiple parallel processes [14][15].
• The severity of corruption (value difference) is influenced by 

the parallel architecture and the specific algorithm being run 
[16], [17], [18].
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2018.
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Software countermeasure
• Implement cheap concurrent replication with idle 

hardware
– Selective replication for protecting only the most critical 

layers or portion of the neural network [19], [20]–[22]. 

• Stop errors propagating in CNNs by checking whether 
the propagated values during MaxPooling layers, 
detecting up to 85% of critical errors in CNNs [7].
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[19] F. Libano, et al., “Selective hardening for neural networks in FPGAs,” IEEE Trans. Nuclear 
Science, 2019.
[20] L. Weigel, et al., “Kernel vulnerability factor and efficient hardening for histogram of 
oriented gradients,” DFT, 2017. 
[21] A. Ruospo, et al., “Selective hardening of critical neurons in deep neural
networks,” DDECS, 2022. 
[22] C. Bolchini, et al., “Selective hardening of CNNs based on layer vulnerability estimation,” 
DFT, 2022.



Algorithm-Based Fault-Tolerant (ABFT)

• ABFT for matrix multiplication [23] detects and 
corrects more than 80% of errors. When applied 
to CNNs, ABFT outperformed ECC and duplication 
[7]. Smart light-ABFT [24] further reduces the 
overhead for GPUs.

• Concurrent signature calculations and signature 
comparison for matrix multiplication  [25]
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[23] P. Rech, et al., “An efficient and experimentally tuned software-based hardening strategy for 
matrix multiplication on GPUs,” IEEE Trans. Nuclear Science, 2013.
[24] S. Hari, et al., “Making convolutions resilient via algorithm-based error detection techniques,” IEEE 
Trans. Dependable and Secure Computing, 2022.
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Algorithm countermeasure

• Assess and contrast consecutive input frames against 
their corresponding detection outputs. Similar frames 
should yield similar detection results. A discrepancy 
may raise an error alert. 70% of critical errors are 
detected though producing some false positives [26].

• Reduced Precision Duplication With Comparison (RD-
DWC) has been applied to GPUs and has demonstrated 
error detection rates of 75% in average with acceptable 
additional overhead [27].
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[26] L. K. Draghetti, et al., “Detecting errors in convolutional neural networks using inter frame 
spatio-temporal correlation,” IOLTS, 2019.
[27] F. F. dos Santos, et al., “Reduced precision DWC: An efficient hardening strategy for mixed-
precision architectures,” IEEE Trans. Computers, 2022.



Fault aware training
• If the DNN is trained to classify objects correctly even 

w/ transient faults, it is possible to produce a more 
reliable model while maintaining the original accuracy.

Training is performed by injecting transient faults.
•The model is expected to autonomously learn how to 

properly deal with faults to reduce mispredictions 
[28][29].

Proposed vulnerability model can improve the noise 
injection efficiency during the training.
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