
KAPLA: Scalable NN Accelerator Dataflow
Design Space Structuring and Fast Exploring

Zhiyao Li and Mingyu Gao

ASP-DAC 2025

Tsinghua University

Shanghai Artificial Intelligence Lab

Shanghai Qi Zhi Institute

Background & Motivation

❑ Domain-specific accelerators (DSAs) for neural networks (NNs)
o Abundant parallelism of PEs

o Localized memory accesses

o Reduced control overheads

2

Google TPU v1 [ISCA’17]

70x efficiency

Activation

Normalize / Pool

Scratch

pad
HBM

Accumulators

PE Array

Background & Motivation

❑ DSAs’ hardware architectures and dataflow schedulers

3

Algorithm

Use Case

Architecture

Scheduler

• Computation parallelism

• Data access patterns

• Hyper-parameters Cost

model Dataflow
Performance

Flexibility

TPU accelerator

XLA compiler

A Large Design Space of Dataflow Scheduling

❑ Complex hardware structures
o Diverse PE array structures: 1D, 2D, adder tree, …

o Deep hierarchical buffer storage: register file, global buffer, main memory, …

o Numerous constraints: PE dataflow, buffer capacity, …

❑ Various algorithm designs
o Complex model topologies

o 3D/4D tensor dimensions

o Abundant layer types

❑ Flexible use scenarios
o Offline: traditional compilers

o Online: MLaaS, NAS, …

Takeaway message:

Time-consuming and frequently-occurring
scheduling can no longer be ignored!

4

Hierarchical NN Dataflow Taxonomy

5

1 Segment Slicing

2 Layer Pipelining

3 Node Parallelism

Loop
Blocking

4

L1 L2 L3 L4 L5 L6 L7

MEM

I[0:5]

O[0]
W[0][0:5]

I[5:10]

O[1]
W[1][5:10]

I[10:15]

O[2]
W[2][10:15]

I[15:20]

O[3]
W[3][15:20]

Node0 Node1 Node2 Node3

MEM

I[10:15]
O[2]

W[2][10:15]

GLB

I[10:12]
O[2]

W[2][10:12]

Node2

0:20

0:20

0:20

… …

… …

… …

L2

L3

L4

Time

0:5

0:5

15:20

15:20

0:4 12:16

i
o

i
o

i
o

5 PE Mapping

Segment slicing
• Model DAG is sliced into multiple segments

where each contains one or more layers
• Each segment is scheduled on hardware

one after one Layer pipelining
• Layers in a segment are processed in a

pipelined style
• Intermediate data are forwarded on-chip

without spilled to off-chip memory
Node parallelism
• Each layer is parallelized across multiple

hardware processing nodes
• Data parallelism, tensor parallelism, …

Loop blocking
• For each (sub)layer in one hardware node,

optimize off-chip data accesses using
nested loop transformation techniques,
including loop blocking, reordering,
unrolling, etc.

PE mapping
• For each (sub)layer in one hardware node,

optimize on-chip dataflow on the PE array,
such as systolic, row-stationary, etc.

All levels are
tightly coupled!

6

Prior Dataflow Techniques

❑ Prior studies mainly focusing on one level
while ignoring other levels
o Inaccurate and suboptimal

o Incompatible or even conflicting

Segment slicing TANGRAM [ASPLOS’19]

Layer pipelining NeoCPU [ATC’19], PipeLayer [HPCA’17], ScaleDeep [ISCA’17]

Node parallelism TETRIS [ASPLOS’17], NeuroCube [ISCA’16]

Loop blocking Timeloop [ISPASS’19], Interstellar [ASPLOS’20]

PE mapping TPU [ISCA’17], Eyeriss [ISCA’16], ShiDianNao [ISCA’15]

1 Segment Slicing

2 Layer Pipelining

3 Node Parallelism

Loop
Blocking

4

L1 L2 L3 L4 L5 L6 L7

MEM

I[0:5]

O[0]
W[0][0:5]

I[5:10]

O[1]
W[1][5:10]

I[10:15]

O[2]
W[2][10:15]

I[15:20]

O[3]
W[3][15:20]

Node0 Node1 Node2 Node3

MEM

I[10:15]
O[2]

W[2][10:15]

GLB

I[10:12]
O[2]

W[2][10:12]

Node2

0:20

0:20

0:20

… …

… …

… …

L2

L3

L4

Time

0:5

0:5

15:20

15:20

0:4 12:16

i
o

i
o

i
o

5 PE Mapping

7

Prior Scheduling Methods

❑ Prior schedulers are either too slow or inaccurate

Method Representative Problems

Exhaustive search TANGRAM [ASPLOS’19] Long search time

Random sampling Timeloop [ISPASS’19] Low scheduling quality

ML-guided search AutoTVM [NeurIPS’18] Long search time; no quality guarantees

Polyhedral models AKG [PLDI’21] Restricted search space

Design goal:

A generic, optimized, and fast scheduler is needed!

Our Key Ideas

8

Key techniques:

• Decouple inter-layer from intra-layer
• Effective validity check and efficiency estimation

Inter-layer pruning and prioritization
Validity check
• Conservative pruning

Efficiency estimation
• Fast cost estimation
• Dynamic-programming-based prioritization

Intra-layer stacking and caching
Validity check
• Tensor sizes from tensor-centric directives

Efficiency estimation
• Maximize temporal reuse through caching
• Maximize spatial parallelism through stacking

Tensor-Centric Dataflow Directives

tensor(dim=size, ...[, shr])

⟶ (Sub)tensors in each buffer

stack(dim+=shift, ..., repl)

⟶ Spatial parallelism, in multiple buffers at one level

update(dim+=step, ...)

⟶ Temporal accesses, across multiple buffer levels

❑ Advantages
o Tensor as first-class citizen

• Fast validity checking of tensor sizes in buffers

o Bottom-up dataflow construction

• Fast memory hierarchy traffic calculatation

o Inter-operator pipeline native

• Easy to express layer pipelining optimizations

Directive examples for CONV and DWCONV layers,
with row-stationary PE mapping, output + batch
hybrid node parallelization, and layer pipelining.

9

Segment
Slicing

Layer
Pipelining

Node
Parallelization

Loop Blocking

PE Mapping

All
Segments

Best Valid
Pipelining

Valid
Partitions

Layer
Min Cost

Segment
Min Cost

Top kS
Segments

Pareto-Opt
Pipelining

Greedy cost
descending

iteration

Iterate & Prune

Estimate

Dynamic Programming

SumIterate & Prune

Pruning Estimating Scheduling

In
te

r-layer
In

tra-layer

The overall workflow of KAPLA

Validity check Efficiency estimation

Inter-layer

Intra-layer

Conservative pruning

KAPLA Dataflow Solver

10

Estimate the minimum required buffer capacity
of a layer, with optimistic intra-layer schemes

Segment
Slicing

Layer
Pipelining

Node
Parallelization

Loop Blocking

PE Mapping

All
Segments

Best Valid
Pipelining

Valid
Partitions

Layer
Min Cost

Segment
Min Cost

Top kS
Segments

Pareto-Opt
Pipelining

Greedy cost
descending

iteration

Iterate & Prune

Estimate

Dynamic Programming

SumIterate & Prune

Pruning Estimating Scheduling

In
te

r-layer
In

tra-layer

The overall workflow of KAPLA

Validity check Efficiency estimation

Inter-layer

Intra-layer

Conservative pruning
Prioritization based on

estimated cost

KAPLA Dataflow Solver

11

Prioritize candidates based on
optimistic intra-layer cost estimation

Fast
No further

intra-layer searching

Accurate
More efficient candidates

are considered and
validated first

Segment
Slicing

Layer
Pipelining

Node
Parallelization

Loop Blocking

PE Mapping

All
Segments

Best Valid
Pipelining

Valid
Partitions

Layer
Min Cost

Segment
Min Cost

Top kS
Segments

Pareto-Opt
Pipelining

Greedy cost
descending

iteration

Iterate & Prune

Estimate

Dynamic Programming

SumIterate & Prune

Pruning Estimating Scheduling

In
te

r-layer
In

tra-layer

The overall workflow of KAPLA

Validity check Efficiency estimation

Inter-layer

Intra-layer

Conservative pruning
Prioritization based on

estimated cost

Bottom-up tensor
construction

KAPLA Dataflow Solver

12

Bottom-up tensor construction
ensures schemes are always valid

Parallelize across
buffers

Fully fill up each
buffer

Segment
Slicing

Layer
Pipelining

Node
Parallelization

Loop Blocking

PE Mapping

All
Segments

Best Valid
Pipelining

Valid
Partitions

Layer
Min Cost

Segment
Min Cost

Top kS
Segments

Pareto-Opt
Pipelining

Greedy cost
descending

iteration

Iterate & Prune

Estimate

Dynamic Programming

SumIterate & Prune

Pruning Estimating Scheduling

In
te

r-layer
In

tra-layer

The overall workflow of KAPLA

Validity check Efficiency estimation

Inter-layer

Intra-layer

Conservative pruning
Prioritization based on

estimated cost

Bottom-up tensor
construction

Cost descending search

KAPLA Dataflow Solver

13

Iteratively apply stacking and caching
with the best loop orders

Evaluation Methodology

❑ Evaluated workloads
o Inference & training on various NNs

o Batch sizes 64 & 1

❑ Evaluated architectures
o 16 x 16 multi-array cloud accelerator

o single-array edge accelerator

❑ Baselines
o (B) nn-dataflow [ASPLOS’19]: exhaustive search

o (S) KAPLA directives: exhaustive search

o (R) Timeloop [ISPASS’19]: random search

o (M) AutoTVM [NeurIPS’18]: XGBoost

14

❑ 518x search speedup

Comparison of scheduling time for NN training on multi-array accelerators.
Measured on an Intel Xeon Gold 5120 processor with 8 parallel processes.

Evaluation Results: Scheduling Speed

15

Evaluation Results: Scheduling Quality

❑ Only 2.2% quality (energy) loss on average

16

B S R M K B S R MK B S R M K B S R MK B S R M K B S R MK B S R MK

0.0

0.5

1.0

1.5

2.0

N
o
rm

al
iz

ed
 E

n
er

g
y

AlexNet MobileNet VGGNet GoogLeNet ResNet MLP LSTM

DRAM Energy

SRAM Energy

NoC Energy

PE Array Energy

Static Energy

Comparison of energy for training (left) and inference (right) on multi-array Eyeriss-like accelerators with batch 64.

B S R M K B S R MK B S R M K B S R MK B S R M K B S R MK B S R MK

0.00

0.25

0.50

0.75

1.00

N
o

rm
al

iz
ed

 E
n
er

g
y

AlexNet MobileNet VGGNet GoogLeNet ResNet MLP LSTM
DRAM Energy

SRAM Energy

NoC Energy

PE Array Energy

Static Energy

Summary

❑ A hierarchical taxonomy that highlights the tight coupling across
different levels of the dataflow space as the major difficulty for fast
design exploration

❑ A set of tensor-centric directives that can accurately express various
inter-layer and intra-layer schemes, and allow for quickly determining
their validity and efficiency

❑ A generic, optimized, and fast dataflow solver, KAPLA, which makes
use of the proposed directives to explore the design space, and
achieves similar scheduling quality with much faster scheduling speed

17

