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Background & Motivation

❑ Domain-specific accelerators (DSAs) for neural networks (NNs)
o Abundant parallelism of PEs

o Localized memory accesses

o Reduced control overheads
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Background & Motivation

❑ DSAs’ hardware architectures and dataflow schedulers
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A Large Design Space of Dataflow Scheduling

❑ Complex hardware structures
o Diverse PE array structures: 1D, 2D, adder tree, …

o Deep hierarchical buffer storage: register file, global buffer, main memory, …

o Numerous constraints: PE dataflow, buffer capacity, …

❑ Various algorithm designs
o Complex model topologies

o 3D/4D tensor dimensions

o Abundant layer types

❑ Flexible use scenarios
o Offline: traditional compilers

o Online: MLaaS, NAS, …

Takeaway message:

Time-consuming and frequently-occurring
scheduling can no longer be ignored!
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Hierarchical NN Dataflow Taxonomy
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5 PE Mapping

Segment slicing
• Model DAG is sliced into multiple segments 

where each contains one or more layers
• Each segment is scheduled on hardware

one after one Layer pipelining
• Layers in a segment are processed in a 

pipelined style
• Intermediate data are forwarded on-chip

without spilled to off-chip memory
Node parallelism
• Each layer is parallelized across multiple 

hardware processing nodes
• Data parallelism, tensor parallelism, …

Loop blocking
• For each (sub)layer in one hardware node,

optimize off-chip data accesses using
nested loop transformation techniques, 
including loop blocking, reordering, 
unrolling, etc.

PE mapping
• For each (sub)layer in one hardware node,

optimize on-chip dataflow on the PE array,
such as systolic, row-stationary, etc.

All levels are
tightly coupled!
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Prior Dataflow Techniques

❑ Prior studies mainly focusing on one level
while ignoring other levels
o Inaccurate and suboptimal

o Incompatible or even conflicting

Segment slicing TANGRAM [ASPLOS’19]

Layer pipelining NeoCPU [ATC’19], PipeLayer [HPCA’17], ScaleDeep [ISCA’17]

Node parallelism TETRIS [ASPLOS’17], NeuroCube [ISCA’16]

Loop blocking Timeloop [ISPASS’19], Interstellar [ASPLOS’20]

PE mapping TPU [ISCA’17], Eyeriss [ISCA’16], ShiDianNao [ISCA’15]

1 Segment Slicing

2 Layer Pipelining

3 Node Parallelism

Loop 
Blocking
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Prior Scheduling Methods

❑ Prior schedulers are either too slow or inaccurate

Method Representative Problems

Exhaustive search TANGRAM [ASPLOS’19] Long search time

Random sampling Timeloop [ISPASS’19] Low scheduling quality

ML-guided search AutoTVM [NeurIPS’18] Long search time; no quality guarantees

Polyhedral models AKG [PLDI’21] Restricted search space

Design goal:

A generic, optimized, and fast scheduler is needed!



Our Key Ideas
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Key techniques:

• Decouple inter-layer from intra-layer
• Effective validity check and efficiency estimation

Inter-layer pruning and prioritization
Validity check
• Conservative pruning

Efficiency estimation
• Fast cost estimation
• Dynamic-programming-based prioritization

Intra-layer stacking and caching
Validity check
• Tensor sizes from tensor-centric directives

Efficiency estimation
• Maximize temporal reuse through caching
• Maximize spatial parallelism through stacking



Tensor-Centric Dataflow Directives

tensor(dim=size, ...[, shr])

⟶ (Sub)tensors in each buffer

stack(dim+=shift, ..., repl)

⟶ Spatial parallelism, in multiple buffers at one level

update(dim+=step, ...)

⟶ Temporal accesses, across multiple buffer levels

❑ Advantages
o Tensor as first-class citizen

• Fast validity checking of tensor sizes in buffers

o Bottom-up dataflow construction

• Fast memory hierarchy traffic calculatation

o Inter-operator pipeline native

• Easy to express layer pipelining optimizations

Directive examples for CONV and DWCONV layers, 
with row-stationary PE mapping, output + batch
hybrid node parallelization, and layer pipelining.
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Estimate the minimum required buffer capacity
of a layer, with optimistic intra-layer schemes
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Prioritize candidates based on
optimistic intra-layer cost estimation

Fast
No further 

intra-layer searching

Accurate
More efficient candidates

are considered and
validated first
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Bottom-up tensor construction
ensures schemes are always valid

Parallelize across 
buffers

Fully fill up each
buffer
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Iteratively apply stacking and caching
with the best loop orders



Evaluation Methodology

❑ Evaluated workloads
o Inference & training on various NNs

o Batch sizes 64 & 1

❑ Evaluated architectures
o 16 x 16 multi-array cloud accelerator

o single-array edge accelerator

❑ Baselines
o (B)  nn-dataflow [ASPLOS’19]: exhaustive search

o (S)  KAPLA directives: exhaustive search

o (R)  Timeloop [ISPASS’19]: random search

o (M) AutoTVM [NeurIPS’18]: XGBoost
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❑ 518x search speedup

Comparison of scheduling time for NN training on multi-array accelerators. 
Measured on an Intel Xeon Gold 5120 processor with 8 parallel processes.

Evaluation Results: Scheduling Speed

15



Evaluation Results: Scheduling Quality

❑ Only 2.2% quality (energy) loss on average
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Summary

❑ A hierarchical taxonomy that highlights the tight coupling across 
different levels of the dataflow space as the major difficulty for fast 
design exploration

❑ A set of tensor-centric directives that can accurately express various 
inter-layer and intra-layer schemes, and allow for quickly determining 
their validity and efficiency

❑ A generic, optimized, and fast dataflow solver, KAPLA, which makes 
use of the proposed directives to explore the design space, and
achieves similar scheduling quality with much faster scheduling speed
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