
Arya Fayyazi, Mehdi Kamal, Massoud Pedram*
{afayyazi, mehdi.kamal, pedram}@usc.edu

University of Southern California
Los Angeles, California, USA

Tuesday, January 21, 2025
ASP-DAC

1

Dynamic Co-Optimization Compiler: Leveraging Multi-Agent
Reinforcement Learning for Enhanced DNN Accelerator

Performance

Motivation

● Increasing Complexity of neural network model

● Advanced architectures and large-scale workloads demand more than mere software tweaks.

● Limitations of Existing Auto-Tuners

● Traditional frameworks (e.g., TVM [Chen et al., 2018]) primarily focus on software

optimizations, leaving hardware optimization potential largely untapped.

● Need for Hardware–Software Synergy

● Jointly optimizing both layers is critical for peak performance but is vastly underexplored.

2

“Software and Hardware.” Altium Resources, Altium, files.resources.altium.com

Related Work

● AutoTVM [Chen et al., 2018]: Uses machine learning-based cost models to optimize DNN

configurations but focuses primarily on software parameters.

● CHAMELEON [Ahn et al., 2020]: Employs reinforcement learning for adaptive exploration of the

solution space but does not integrate hardware parameter optimization effectively.

● MetaTune [Ryu et al., 2021]: Leverages meta-learning for faster adaptation to new optimization

spaces but lacks a holistic hardware-software co-design approach.

● PRIME [Kumar et al., 2021]: Data-driven offline optimization for hardware design but operates

outside of reinforcement learning frameworks, leading to slower compilation times.

● NaaS [Zhou et al., 2022]: Joint optimization of neural architectures and hardware accelerators,

but its unified search space approach is extremely large.

3

Shortcomings of Existing Approaches

4

Hand-optimized kernels are

difficult to design and

generally non-scalable.

Manual Tuning Overhead

Fail to do hardware and

software co-optimizations

(CHAMELEON, NaaS).

Lack of HW–SW Co-

Design

Struggle to find near-optimal

solutions quickly (MetaTune,

PRIME).

Slow Convergence in

Large Search Spaces

Automated frameworks

(AutoTVM, CHAMELEON)

concentrate on software

parameters and often neglect

hardware parameters.

Partial Focus on

Parameters

How DCO-Comp Addresses These Challenges

5

DCO-Comp automates the

search process using Multi-

Agent Reinforcement

Learning (MARL).

Automated Tuning

DCO-Comp uses a multi-

agent system with specialized

agents for scheduling,

mapping, and hardware

tuning.

HW–SW Co-Design

DCO-Comp incorporates

Confidence Sampling (CS) to

prioritize high-confidence

configurations, reducing the

exploration time.

Fast Convergence in Large

Search Spaces

DCO-Comp simultaneously

optimizes hardware and

software parameters,

ensuring a holistic co-design

approach.

Focus on All Parameters

DCO-Comp : Dynamic Co-Optimization Compiler

● Multi-agent RL for setting hardware and software knobs

● Confidence sampling for improved search efficiency

● Seamless integration with the TVM pipeline

6

This diagram illustrates the overall search flow of DCOC. The numbers indicate the sequence of

actions performed at each step. The process iterates in a loop, continuously refining

configurations through feedback until the optimal configuration is found.

Start

(1) (2) (3)

(4)

(5)(3)

(5)

(1)

(6)

Hardware configs

MARL Exploration Module

Shared Critic (value network)

Policy networks for each agent

Centralized Training, Decentralized Execution (CTDE)

7

Three specialized
agents:

• Scheduling Agent
• Mapping Agent
• Hardware Agent

Agent Roles

8

Agent Type Description

Scheduling Agent Focuses on task parallelization and distribution for

effective scheduling.

Mapping Agent Divides and processes data dimensions (tensor height

and width) for optimal hardware computation mapping.

Hardware Agent Adjusts parameters for decomposing and processing

tensor components (i.e., batches, input and output

channels) to optimize hardware utilization while meeting

available resource counts and target performance levels.

Knobs Controlled by Each Agent

9

Agent Type Knobs

Scheduling Agent • Horizontal threading (h_threading)

• Output channel threading (oc_threading)

Mapping Agent • Tile across height (tile_h)

• Tile across width (tile_w)

Hardware Agent • Tile across batch size (tile_b)

• Tile across input channels (tile_ci)

• Tile across output channels (tile_co)

𝐊𝐧𝐨𝐛𝐬 𝐢𝐧 𝐭𝐡𝐞 𝐝𝐞𝐬𝐢𝐠𝐧 𝐬𝐩𝐚𝐜𝐞 𝐭𝐨 𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞 𝐜𝐨𝐧𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐥𝐚𝐲𝐞𝐫𝐬
𝐭𝐚𝐫𝐠𝐞𝐭𝐢𝐧𝐠 𝐕𝐓𝐀++ hardware [𝐁𝐚𝐧𝐞𝐫𝐣𝐞𝐞 𝐞𝐭 𝐚𝐥., 𝟐𝟎𝟐𝟏]

Confidence Sampling (CS)
• Probability-guided selection of configurations

• Filters low-confidence solutions

• Reduces measurement overhead

10

Fewer required configurations, also the sampling process gravitates
towards configurations that exhibit superior performance over time,
highlighting the efficacy of this method.

Configurations over time for ResNet-18 model a)

before and b) after applying the CS method.

Experimental Settings & Platforms

11

Item Description

Compiler Integration • DCO-Comp is integrated into the TVM framework to enable end-to-end evaluation.

Comparison Baselines • AutoTVM: Baseline automated tuner in TVM.

• CHAMELEON: Existing RL-based tuner, with code from its original repository.

(Both baselines were extended to have hardware co-optimization for a fair comparison.)

Hardware/Simulator • Evaluations performed on an AMD EPYC 7763 64-Core CPU.

• DCO-Comp targets the VTA++ simulator, which is configurable and representative of

FPGA/GPU-like architectures.

Benchmarked Models • AlexNet, VGG series (VGG-11, VGG-13, VGG-16, VGG-19)

• ResNet series (ResNet-18, ResNet-34).

• All models are compiled with the same total number of hardware measurements (e.g., 1,000) to

ensure a fair comparison.

Hyperparameter Setup • Key hyperparameters (e.g., for GBT in TVM, MAPPO for multi-agent RL) are consistent with

standard practices from AutoTVM and CHAMELEON.

• DCO-Comp employs offline-tuned parameters to optimize multi-agent RL exploration and

Confidence Sampling.

Performance Metrics • Throughput (in GFLOPS or equivalently, 1 / inference time) as runtime performance metrics.

• Compilation Time (total optimization overhead) for each framework.

Improvement in Throughput
● DCO-Comp yields up to 37.95% improvement (17% on average)

● Gains across ResNet, AlexNet, VGG series

12

Comparing the achieved throughput of different

frameworks over AutoTvm on VTA++

Reduction in Compilation Time

● DCO-Comp’s improved search approach → up to 42.2% speedup in compile time over

AutoTVM (22.3% on average)

● Confidence Sampling + MARL drastically cut down exploration overhead

Overall search flow of DCOC.

Overall search flow of DCOC.

13

Comparing the compilation time of different

frameworks (The percentage show the speedup of

DCOC compared to AutoTVM).

Performance vs. #Trials (GFLOPS)

● DCO-Comp converges to high GFLOPS faster (455 vs 800 Trials for AutoTVM and

CHAMELEON)

● Fewer hardware measurements needed to reach near-peak performance

14

Comparing the compiled code performance

(GFLOPS per Trial) of different frameworks for

ResNet-18 model.

Summary

● Unified Hardware & Software Co-Optimization  

A novel multi-agent RL compiler (DCO-Comp) that jointly tunes hardware parameters and

software tiling/scheduling.

● Confidence Sampling (CS) for Efficient Search  

Dramatically reduces exploration overhead while still pinpointing top-performing configurations.

● Breakthrough Performance  

Achieves up to 38% higher throughput and 42% faster compilation over state-of-the-art

frameworks.

● Robust, Scalable Solution  

Generalizable to varied DNN workloads and accelerator architectures, paving the way for next-

generation DNN compilers.

15

THANK YOU
YOUQuestions

For codes and additional questions, please reach out to

afayyazi@usc.edu

16

