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Dynamic Co-Optimization Compiler: Leveraging Multi-Agent
Reinforcement Learning for Enhanced DNN Accelerator

Performance



Motivation

● Increasing Complexity of neural network model

● Advanced architectures and large-scale workloads demand more than mere software tweaks.

● Limitations of Existing Auto-Tuners

● Traditional frameworks (e.g., TVM [Chen et al., 2018]) primarily focus on software 

optimizations, leaving hardware optimization potential largely untapped.

● Need for Hardware–Software Synergy

● Jointly optimizing both layers is critical for peak performance but is vastly underexplored.
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“Software and Hardware.” Altium Resources, Altium, files.resources.altium.com



Related Work

● AutoTVM [Chen et al., 2018]: Uses machine learning-based cost models to optimize DNN 

configurations but focuses primarily on software parameters.

● CHAMELEON [Ahn et al., 2020]: Employs reinforcement learning for adaptive exploration of the 

solution space but does not integrate hardware parameter optimization effectively.

● MetaTune [Ryu et al., 2021]: Leverages meta-learning for faster adaptation to new optimization 

spaces but lacks a holistic hardware-software co-design approach.

● PRIME [Kumar et al., 2021]: Data-driven offline optimization for hardware design but operates 

outside of reinforcement learning frameworks, leading to slower compilation times.

● NaaS [Zhou et al., 2022]: Joint optimization of neural architectures and hardware accelerators, 

but its unified search space approach is extremely large.
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Shortcomings of Existing Approaches
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Hand-optimized kernels are 

difficult to design and 

generally non-scalable.

Manual Tuning Overhead

Fail to do hardware and 

software co-optimizations 

(CHAMELEON, NaaS).

Lack of HW–SW Co-

Design

Struggle to find near-optimal 

solutions quickly (MetaTune, 

PRIME).

Slow Convergence in 

Large Search Spaces

Automated frameworks 

(AutoTVM, CHAMELEON) 

concentrate on software 

parameters and often neglect 

hardware parameters.

Partial Focus on 

Parameters



How DCO-Comp Addresses These Challenges
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DCO-Comp automates the 

search process using Multi-

Agent Reinforcement 

Learning (MARL). 

Automated Tuning 

DCO-Comp uses a multi-

agent system with specialized 

agents for scheduling, 

mapping, and hardware 

tuning.

HW–SW Co-Design

DCO-Comp incorporates 

Confidence Sampling (CS) to 

prioritize high-confidence 

configurations, reducing the 

exploration time.

Fast Convergence in Large 

Search Spaces

DCO-Comp simultaneously 

optimizes hardware and 

software parameters, 

ensuring a holistic co-design 

approach. 

Focus on All Parameters



DCO-Comp : Dynamic Co-Optimization Compiler

● Multi-agent RL for setting hardware and software knobs

● Confidence sampling for improved search efficiency

● Seamless integration with the TVM pipeline
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This diagram illustrates the overall search flow of DCOC. The numbers indicate the sequence of 

actions performed at each step. The process iterates in a loop, continuously refining 

configurations through feedback until the optimal configuration is found.
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MARL Exploration Module

Shared Critic (value network)

Policy networks for each agent

Centralized Training, Decentralized Execution (CTDE)
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Three specialized 
agents:

• Scheduling Agent
• Mapping Agent
• Hardware Agent



Agent Roles
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Agent Type Description

Scheduling Agent Focuses on task parallelization and distribution for 

effective scheduling.

Mapping Agent Divides and processes data dimensions (tensor height 

and width) for optimal hardware computation mapping.

Hardware Agent Adjusts parameters for decomposing and processing 

tensor components (i.e., batches, input and output 

channels) to optimize hardware utilization while meeting 

available resource counts and target performance levels.



Knobs Controlled by Each Agent

9

Agent Type Knobs

Scheduling Agent • Horizontal threading (h_threading) 

• Output channel threading (oc_threading)

Mapping Agent • Tile across height (tile_h) 

• Tile across width (tile_w)

Hardware Agent • Tile across batch size (tile_b)

• Tile across input channels (tile_ci)

• Tile across output channels (tile_co) 

𝐊𝐧𝐨𝐛𝐬 𝐢𝐧 𝐭𝐡𝐞 𝐝𝐞𝐬𝐢𝐠𝐧 𝐬𝐩𝐚𝐜𝐞 𝐭𝐨 𝐨𝐩𝐭𝐢𝐦𝐢𝐳𝐞 𝐜𝐨𝐧𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐥𝐚𝐲𝐞𝐫𝐬
𝐭𝐚𝐫𝐠𝐞𝐭𝐢𝐧𝐠 𝐕𝐓𝐀++ hardware [𝐁𝐚𝐧𝐞𝐫𝐣𝐞𝐞 𝐞𝐭 𝐚𝐥., 𝟐𝟎𝟐𝟏]



Confidence Sampling (CS)
• Probability-guided selection of configurations

• Filters low-confidence solutions

• Reduces measurement overhead
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Fewer required configurations, also the sampling process gravitates 
towards configurations that exhibit superior performance over time, 
highlighting the efficacy of this method.

Configurations over time for ResNet-18 model a) 

before and b) after applying the CS method.



Experimental Settings & Platforms
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Item Description

Compiler Integration • DCO-Comp is integrated into the TVM framework to enable end-to-end evaluation.

Comparison Baselines • AutoTVM: Baseline automated tuner in TVM.

• CHAMELEON: Existing RL-based tuner, with code from its original repository.

(Both baselines were extended to have hardware co-optimization for a fair comparison.)

Hardware/Simulator • Evaluations performed on an AMD EPYC 7763 64-Core CPU.

• DCO-Comp targets the VTA++ simulator, which is configurable and representative of 

FPGA/GPU-like architectures.

Benchmarked Models • AlexNet, VGG series (VGG-11, VGG-13, VGG-16, VGG-19)

• ResNet series (ResNet-18, ResNet-34).

• All models are compiled with the same total number of hardware measurements (e.g., 1,000) to 

ensure a fair comparison.

Hyperparameter Setup • Key hyperparameters (e.g., for GBT in TVM, MAPPO for multi-agent RL) are consistent with 

standard practices from AutoTVM and CHAMELEON.

• DCO-Comp employs offline-tuned parameters to optimize multi-agent RL exploration and 

Confidence Sampling.

Performance Metrics • Throughput (in GFLOPS or equivalently, 1 / inference time) as runtime performance metrics.

• Compilation Time (total optimization overhead) for each framework.



Improvement in Throughput
● DCO-Comp yields up to 37.95% improvement (17% on average)

● Gains across ResNet, AlexNet, VGG series
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Comparing the achieved throughput of different 

frameworks over AutoTvm on VTA++



Reduction in Compilation Time

● DCO-Comp’s improved search approach → up to 42.2% speedup in compile time over 

AutoTVM (22.3% on average)

● Confidence Sampling + MARL drastically cut down exploration overhead

Overall search flow of DCOC.

Overall search flow of DCOC.
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Comparing the compilation time of different 

frameworks (The percentage show the speedup of 

DCOC compared to AutoTVM).



Performance vs. #Trials (GFLOPS)

● DCO-Comp converges to high GFLOPS faster ( 455 vs 800 Trials for AutoTVM and 

CHAMELEON)

● Fewer hardware measurements needed to reach near-peak performance
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Comparing the compiled code performance 

(GFLOPS per Trial) of different frameworks for 

ResNet-18 model.



Summary

● Unified Hardware & Software Co-Optimization  

A novel multi-agent RL compiler (DCO-Comp) that jointly tunes hardware parameters and 

software tiling/scheduling.

● Confidence Sampling (CS) for Efficient Search  

Dramatically reduces exploration overhead while still pinpointing top-performing configurations.

● Breakthrough Performance  

Achieves up to 38% higher throughput and 42% faster compilation over state-of-the-art 

frameworks.

● Robust, Scalable Solution  

Generalizable to varied DNN workloads and accelerator architectures, paving the way for next-

generation DNN compilers.
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THANK YOU 
YOUQuestions

For codes and additional questions, please reach out to 

afayyazi@usc.edu
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