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Motivation and Problem Statement
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Figure 1: Chart showing the growth in the size of models over
time with annotations on memory usage and limits of hardware
(Source: LLM: The Rise of Data)



Motivation and Problem Statement

Model PEFT Params (%) Avg. Accuracy
Growing computational demands of large ChatGPT — — 77.0%
pre-trained models (LPMs). LLaMA-7B
) .. PrefT 0.110% 64.6%
PEFT techniques address training overhead AdapterS 0.990% 70.8%
: L - AdapterP 3.540% 72.3%
but fail to optimize inference efficiency. LoRA 0.830% 74.7%
DoRA (half)  0.430% 77.5%
DoRA 0.840% 78.1%
LoReFT 0.031% 80.2%
LLaMA-13B
o PrefT 0.030% 68.4%
Need for a compact and efficient AdapterS 0.800% 79.5%
. AdapterP 2.890% 81.5%
deployment-ready solution. LoRA 0.670% 30.5%
DoRA (half)  0.350% 80.8%
DoRA 0.680% 81.5%
LoReFT 0.025% 83.3%

Figure 2: Table comparing LLaMA-7B models with various PEFT
methods, showing parameter reductions and accuracy trade-offs.
(Source: Charith Chandra Sai Balne et al., "Parameter Efficient
Fine Tuning: A Comprehensive Analysis Across
Applications,"arXiv:2404.13506, 2024)



Key Contribution

1. Trainable Pruning Methodology
o Optimizes the structure of LPMs during fine-tuning.
o Includes learnable binary masks for channel-wise pruning.
2. Low-Rank Adaptation Integration
o Incorporates low-rank adaptation to reduce computational overhead while maintaining
accuracy.
3. Efficiency Gains
o Demonstrates up to 18% speed-up in inference with real-world hardware.
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Figure 3: Proposed Approach
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Figure 5: Structure of DoRA (Source: S.-Y. Liu et al. Dora: Weight-
decomposed low-rank adaptation, 2024.

Figure 4: Structure of LORA (Source: E. J. Hu
et al. Lora: Low-rank adaptation of large

language models, 2021)
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Figure 6: Pruning Techniques



Methodology Overview
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Figure 5: Overview of the proposed approach
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Figure 5: Overview of the proposed approach

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in
both frozen and trainable components.
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Figure 5: Overview of the proposed approach

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in
both frozen and trainable components.

2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and
direction using low-rank adaptation (based on DoRA). Optimize the pruning process by
focusing only on magnitude vectors, minimizing training overhead.
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Figure 5: Overview of the proposed approach

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in
both frozen and trainable components.

2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and
direction using low-rank adaptation (based on DoRA). Optimize the pruning process by
focusing only on magnitude vectors, minimizing training overhead.

3. Hardware-Compatible Compact Model: The final pruned model retains its compact
structure. Achieves significant inference speed-up on commercial GPUs and CPUSs.
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Efficient Pruning and Low-Rank
Adaptation

1. Integration of Pruning with Low-Rank Adaptation:
o Use a trainable binary mask (m,) to optimize the magnitude vector in the DoRA

framework.
o Low-rank adaptation ensures computational efficiency while maintaining
accuracy.
2. Low-Rank Adaptation: , Vi AV V + BA

SV Eavy - MV +BA||



Efficient Pruning and Low-Rank
Adaptation

1. Integration of Pruning with Low-Rank Adaptation:
o Use a trainable binary mask (m,) to optimize the magnitude vector in the DoRA
framework.
o Low-rank adaptation ensures computational efficiency while maintaining
accuracy.

2. Low-Rank Adaptation:
, V+AV V + BA

SV Eavy - MV +BA||

e Pruned Weight Update:
V+AV V+AV

W = m, W’ = T = (mp O m) ————
p =M mb(m||V+AV||) (my m)||V+/_\V||



Experimental Setup

1. Model Used: DistiBERT, RoBERTa (RoB,,..), and LLaMA-7B
2. Dataset:

a. GLUE Benchmark for DistiiBERT and RoBERTa.

b. Commonsense reasoning datasets (e.g., BoolQ, PIQA, ARC) for LLaMA-7B.
3. Hardware and Training Details:

a. GPU: NVIDIA A5000

b. Batch size: 8, mixed precision for efficiency.

c. Optimizer: Adam, learning rate fine-tuned during stages (e.g., 5e-5 — 1e-5).



Results for LLaMA-7B

Table 1: Performance comparison of different LLaMA-7B models on various datasets.

Model # TP | BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-¢ OBQA | Avg.
LLaMA-7B (Baseline) 6.74B 76.5 79.8 76.1 70.1 72.8 47.6 57.2 68.59
LLaMA-7B (LLM-Pruner) |5.42B | 69.54 76.44 68.11 65.11 63.43 37.88 40 60.07
LLaMA-7B (LoRAPrune) - 65.62 79.31 70 62.76 65.87 37.69 39.14 60.05
LLaMA-7B (LoRAShear) - 72.78 76.36 69.49 67.63 69.02 39.47 40.78 | 62.22
Pruned-LLaMA-7B (Ours) |5.09B | 72.12 79.54 71.65 67.93 67.98 38.84 41.32 | 62.77

1. Accuracy Gains: Pruned-LLaMA-7B (Ours) achieves a competitive average accuracy
(62.77%), outperforming most models like LLM-Pruner and LoRAPrune.

2. Model Size Efficiency: Reduces the number of trainable parameters to 5.09B,
compared to the baseline’s 6.74B, while maintaining comparable performance.

3. Task-Specific Highlights:

a. Excelsin PIQA (79.54%), outperforming all baselines.

b. Strong performance on BoolQ (72.12%) and WinoGrande (67.93%) compared to

LLM-Pruner and LORAPrune.




Results for RoB, ..

Table 2: Performance comparison of different ROBERTa models on various datasets.

Model #TP | |[Model Size]| MRPC RTE SST-2 MNLI CoLA QNLI QQP STS-B Avg.

(MB) (Acc) (Acc) (Acc) (Acc) (Mat.) (Acc) (Acc) (Pearson)
RoB},.se (Baseline) 125M 476.84 90.2 78.7 94.8 87.6 63.3 92.8 91.9 91.2 86.4
RoB},se (LORA) 0.3M 478.1 897 866 951 875 634 933  90.8 91.5 87.2
RoBp,se (DyLoRA) 0.887M - 91.38 77.55 94.36 86.76 59.51 93 89.91 91.05 85.44
RoBj,se (LORA-drop) | 0.15M - 895 814 945 873 629 931  90.1 91 86.2
Pruned-RoBy 5. (Ours) [0.331M 429.3™* 91.5 83.8 95.3 88 64.2 93.28 91 92.62 87.46

** Refers to the average model size. # TP refers to number of trainable parameters.

Accuracy Gains: Pruned-RoB, .. (Ours) achieves the highest average accuracy
(87.46%), outperforming the baseline and LoRA methods.

Model Size Efficiency: Pruned-RoB, . reduces model size to 429.3 MB, significantly
smaller than the baseline RoB, ... (476.84 MB).

Task-Specific Highlights: Achieves the best accuracy on SST-2 (95.3%) and RTE
(83.8%) while maintaining competitive performance on other tasks.



Results for DistIIBERT

Table 3: Performance comparison of different DistilBERT models on various datasets.

Model #TP* Model | MRPC RTE SST-2 MNLI CoLA ONLI QQP STS-B| Avg.
Size (MB)] (Acc) (Acc) (Acc) (Acc) (Matthew) (Acc) (Acc) (Pea.)

DistilBERT* (Baseline) 66M 255.75 87.5 59.9 91.3 82.2 513 89.2 88.5 86.9 79.6
DistilBERT-LoRA 0.147M 258.32 87.2 63.7 91.8 82.9 554 90.1 89.2 87.3 81
DistilBERT-DoRA 0.156M 268.5 89.6 79.6 93.2 83.9 61.2 92.4 91.2 89.4 85.1
Uniformly Pruned 0.156M 209.6 84.7 58.1 89.6 80.8 50 83.1 84.2 85 77

DistilBERT-DoRA

Pruned-DistilBERT (Ours) | 0.165M 222.85™ 88.6 65.2 91.4 83.4 57 91.3 90.7 88 82

* Refers to the results directly from their original paper[15]. # TP refers to number of trainable parameters. ** Refers to the average model size.

1. Accuracy Gains: Pruned-DistilBERT (Ours) achieves the highest average accuracy
(82%), outperforming other methods. Consistently performs better across tasks like RTE
(65.2%), SST-2 (91.4%), and MNLI (83.4%).

2. Model Size Efficiency: Pruned-DistilBERT achieves an efficient model size of 222.85
MB, smaller than most other methods like LoRA (258.32 MB) and DoRA (268.5 MB).

3. Improved Performance vs. Baseline: Outperforms DistiBERT Baseline by 6.4% in
average accuracy (82% vs. 79.6%).




Analysis of Sparsity and Inference Gains

Table 4: Inference model size and time reduction with our pruning method on different models and datasets.

Dataset Ii;runed-DistilBERT-DoRA Peduction (Ours) IPruned-RoBbase-DoRAIReduction (Ours)

Model Size Inference Time Model Size Inference Time

MRPC 18% 15% 25% 18.5%
| RTE 21% 16.2% 28% 20.3% |
SST-2 21% 14.2% 27% 18.7%
MNLI 17% 11.9% 23% 17.8%
CoLA 15% 11.6% 24%, 18.1%
QNLI 13% 9.6% 22 16.6%

QQP 15% 10.9% 23% 17.2%
STS-B 16% 15% 24% 17.4%

Table 5: Model size and inference time reduction ofm
model with our pruning method on various datasets.

Dataset Model Size Inference Time
BoolQ 22% 16.6%
| PIQA 27% 20% |
HellaSwag 25% 18.3%
WinoGrande 24% 17.6%
ARC-e 23% 17%
ARC-c 24% 18.2%

OBQA 26% 19.6%




Conclusion

Summary of Contributions:

e Introduced a novel trainable pruning methodology for structured pruning.
e Integrated pruning with low-rank adaptation to reduce computational costs while
maintaining accuracy.

Key Results:

e Upto 24.5% sparsity across layers.
e Upto 18% inference speed-up on real-world hardware.

Broader Impact:

e Enables practical deployment of large pre-trained models in resource-constrained
environments.
e Balances performance, efficiency, and deployment feasibility.
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