

Learning to Prune and Low-Rank Adaptation for Compact Language Model Deployment

Authors: Asmer Hamid Ali (aali115@asu.edu), Fan Zhang, Li Yang, Deliang Fan Efficient, Secure and Intelligent Computing (ESIC) Laboratory (https://faculty.engineering.asu.edu/dfan/) Arizona State University

Outline

1. Motivation and Problem Statement

- Challenges in deploying large pre-trained models.
- Limitations of existing methods.

2. Key Contributions

• Overview of proposed approach and its significance.

3. Parameter-Efficient Fine-Tuning and Model Pruning

- Background on PEFT techniques.
- Importance of structured pruning for efficiency.

4. Methodology Overview

- Trainable pruning masks.
- Integration with low-rank adaptation.

5. Efficient Pruning and Low-Rank Adaptation

- Detailed explanation with equations and benefits.
- 6. Experimental Setup
 - Models, datasets, and evaluation metrics.
- 7. Results
 - Performance analysis and comparison with baselines.
- 8. Conclusion
 - Summary of contributions and future directions.

Motivation and Problem Statement

- Growing computational demands of large pre-trained models (LPMs).
- PEFT techniques address training overhead but fail to optimize inference efficiency.

• Need for a **compact and efficient** deployment-ready solution.

Figure 1: Chart showing the growth in the size of models over time with annotations on memory usage and limits of hardware (Source: LLM: The Rise of Data)

Motivation and Problem Statement

- Growing computational demands of large pre-trained models (LPMs).
- PEFT techniques address training overhead but fail to optimize inference efficiency.

• Need for a **compact and efficient** deployment-ready solution.

Model	PEFT	Params (%)	Avg. Accuracy		
ChatGPT		_	77.0%		
LLaMA-71	3				
	PrefT	0.110%	64.6%		
	AdapterS	0.990%	70.8%		
	AdapterP	3.540%	72.3%		
	LoRA	0.830%	74.7%		
	DoRA (half)	0.430%	77.5%		
	DoRA	0.840%	78.1%		
	LoReFT	0.031%	80.2%		
LLaMA-13B					
	PrefT	0.030%	68.4%		
	AdapterS	0.800%	79.5%		
	AdapterP	2.890%	81.5%		
	LoRA	0.670%	80.5%		
	DoRA (half)	0.350%	80.8%		
	DoRA	0.680%	81.5%		
	LoReFT	0.025%	83.3%		

Figure 2: Table comparing LLaMA-7B models with various PEFT methods, showing parameter reductions and accuracy trade-offs. (Source: Charith Chandra Sai Balne et al., "Parameter Efficient Fine Tuning: A Comprehensive Analysis Across Applications, "arXiv:2404.13506, 2024)

Key Contribution

1. Trainable Pruning Methodology

- Optimizes the structure of LPMs during fine-tuning.
- Includes learnable binary masks for channel-wise pruning.

2. Low-Rank Adaptation Integration

 Incorporates low-rank adaptation to reduce computational overhead while maintaining accuracy.

3. Efficiency Gains

• Demonstrates up to **18% speed-up** in inference with real-world hardware.

Figure 3: Proposed Approach

Parameter-Efficient Fine-Tuning and Model Pruning

Parameter-Efficient Fine-Tuning and Model Pruning

Figure 4: Structure of LoRA (*Source: E. J. Hu* et al. Lora: Low-rank adaptation of large language models, 2021)

Figure 5: Structure of DoRA (Source: S.-Y. Liu et al. Dora: Weightdecomposed low-rank adaptation, 2024.

Parameter-Efficient Fine-Tuning and Model Pruning

Figure 5: Structure of DoRA (Source: S.-Y. Liu et al. Dora: Weightdecomposed low-rank adaptation, 2024.

Figure 4: Structure of LoRA (Source: E. J. Hu et al. Lora: Low-rank adaptation of large language models, 2021) Struct

Structured Pruning

Figure 6: Pruning Techniques

Figure 5: Overview of the proposed approach

Figure 5: Overview of the proposed approach

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in both frozen and trainable components.

Figure 5: Overview of the proposed approach

- 1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in both frozen and trainable components.
- 2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and direction using low-rank adaptation (based on DoRA). Optimize the pruning process by focusing only on magnitude vectors, minimizing training overhead.

Figure 5: Overview of the proposed approach

- 1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in both frozen and trainable components.
- 2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and direction using low-rank adaptation (based on DoRA). Optimize the pruning process by focusing only on magnitude vectors, minimizing training overhead.
- **3.** Hardware-Compatible Compact Model: The final pruned model retains its compact structure. Achieves significant inference speed-up on commercial GPUs and CPUs.

Efficient Pruning and Low-Rank Adaptation

Efficient Pruning and Low-Rank Adaptation

- 1. Integration of Pruning with Low-Rank Adaptation:
 - Use a trainable binary mask (m_b) to optimize the magnitude vector in the DoRA framework.
 - Low-rank adaptation ensures computational efficiency while maintaining accuracy.
- 2. Low-Rank Adaptation:

$$W' = m \frac{V + \Delta V}{||V + \Delta V||} = m \frac{V + BA}{||V + BA||}$$

Efficient Pruning and Low-Rank Adaptation

- 1. Integration of Pruning with Low-Rank Adaptation:
 - Use a trainable binary mask (m_b) to optimize the magnitude vector in the DoRA framework.
 - Low-rank adaptation ensures computational efficiency while maintaining accuracy.
- 2. Low-Rank Adaptation:

$$W' = m\frac{V + \Delta V}{||V + \Delta V||} = m\frac{V + BA}{||V + BA||}$$

• Pruned Weight Update:

$$W'_p = m_b W' = m_b \left(m \frac{V + \Delta V}{||V + \Delta V||} \right) = (m_b \odot m) \frac{V + \Delta V}{||V + \Delta V||}$$

Experimental Setup

- 1. Model Used: DistilBERT, RoBERTa (RoB_{base}), and LLaMA-7B
- 2. Dataset:
 - a. GLUE Benchmark for DistilBERT and RoBERTa.
 - b. Commonsense reasoning datasets (e.g., BoolQ, PIQA, ARC) for LLaMA-7B.
- 3. Hardware and Training Details:
 - a. GPU: NVIDIA A5000
 - b. Batch size: 8, mixed precision for efficiency.
 - c. Optimizer: Adam, learning rate fine-tuned during stages (e.g., $5e-5 \rightarrow 1e-5$).

Results for LLaMA-7B

Table 1: Performance comparison of different LLaMA-7B models on various datasets.

Model	# TP	BoolQ	PIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.
LLaMA-7B (Baseline)	6.74B	76.5	79.8	76.1	70.1	72.8	47.6	57.2	68.59
LLaMA-7B (LLM-Pruner)	5.42B	69.54	76.44	68.11	65.11	63.43	37.88	40	60.07
LLaMA-7B (LoRAPrune)	-	65.62	79.31	70	62.76	65.87	37.69	39.14	60.05
LLaMA-7B (LoRAShear)	-	72.78	76.36	69.49	67.63	69.02	39.47	40.78	62.22
Pruned-LLaMA-7B (Ours)	5.09B	72.12	79.54	71.65	67.93	67.98	38.84	41.32	62.77
								-	

- 1. Accuracy Gains: Pruned-LLaMA-7B (Ours) achieves a competitive average accuracy (62.77%), outperforming most models like LLM-Pruner and LoRAPrune.
- **Model Size Efficiency**: Reduces the number of trainable parameters to **5.09B**, 2. compared to the baseline's 6.74B, while maintaining comparable performance.
- 3. Task-Specific Highlights:
 - a. Excels in **PIQA (79.54%)**, outperforming all baselines.
 - b. Strong performance on BoolQ (72.12%) and WinoGrande (67.93%) compared to IIM-Pruner and LoRAPrune.

Results for RoB_{base}

Model	# TP	Model Size (MB)	MRPC (Acc)	RTE (Acc)	SST-2 (Acc)	MNLI (Acc)	CoLA (Mat.)	QNLI (Acc)	QQP (Acc)	STS-B (Pearson)	Avg.
RoB _{base} (Baseline) RoB _{base} (LoRA)	125M 0.3M	476.84 478.1	90.2 89.7	78.7 86.6	94.8 95.1	87.6 87.5	63.3 63.4	92.8 93.3	91.9 90.8	91.2 91.5	86.4 87.2
RoB _{base} (DyLoRA)	0.887M	-	91.38	77.55	94.36	86.76	59.51	93	89.91	91.05	85.44
RoB _{base} (LoRA-drop)	0.15M	-	89.5	81.4	94.5	87.3	62.9	93.1	90.1	91	86.2
Pruned-RoB _{base} (Ours)	0.331M	429.3**	91.5	83.8	95.3	88	64.2	93.28	91	92.62	87.46

Table 2: Performance comparison of different RoBERTa models on various datasets.

** Refers to the average model size. # TP refers to number of trainable parameters.

- **1.** Accuracy Gains: Pruned-RoB_{base} (Ours) achieves the highest average accuracy (87.46%), outperforming the baseline and LoRA methods.
- Model Size Efficiency: Pruned-RoB_{base} reduces model size to 429.3 MB, significantly smaller than the baseline RoB_{base} (476.84 MB).
- 3. Task-Specific Highlights: Achieves the best accuracy on SST-2 (95.3%) and RTE (83.8%) while maintaining competitive performance on other tasks.

Results for DistilBERT

Table 3: Performance comparison of different DistilBERT models on various datasets.

Model	# TP*	Model Size (MB)	MRPC (Acc)	RTE (Acc)	SST-2 (Acc)	MNLI (Acc)	CoLA (Matthew)	QNLI (Acc)	QQP (Acc)	STS-B (Pea.)	Avg.
DistilBERT* (Baseline)	66M	255.75	87.5	59.9	91.3	82.2	51.3	89.2	88.5	86.9	79.6
DistilBERT-LoRA	0.147M	258.32	87.2	63.7	91.8	82.9	55.4	90.1	89.2	87.3	81
DistilBERT-DoRA	0.156M	268.5	89.6	79.6	93.2	83.9	61.2	92.4	91.2	89.4	85.1
Uniformly Pruned	0.156M	209.6	84.7	58.1	89.6	80.8	50	83.1	84.2	85	77
DistilBERT-DoRA											
Pruned-DistilBERT (Ours)	0.165M	222.85**	88.6	65.2	91.4	83.4	57	91.3	90.7	88	82

* Refers to the results directly from their original paper[15]. # TP refers to number of trainable parameters. ** Refers to the average model size.

- Accuracy Gains: Pruned-DistilBERT (Ours) achieves the highest average accuracy (82%), outperforming other methods. Consistently performs better across tasks like RTE (65.2%), SST-2 (91.4%), and MNLI (83.4%).
- 2. Model Size Efficiency: *Pruned-DistilBERT* achieves an efficient model size of 222.85 MB, smaller than most other methods like LoRA (258.32 MB) and DoRA (268.5 MB).
- **3.** Improved Performance vs. Baseline: Outperforms DistilBERT Baseline by 6.4% in average accuracy (82% vs. 79.6%).

Analysis of Sparsity and Inference Gains

Dataset	Pruned-DistilB	ERT-DoRA Reduction (Ours)	Pruned-RoB _{bas}	_{se} -DoRA Reduction (Ours)
	Model Size	Inference Time	Model Size	Inference Time
MRPC	18%	15%	25%	18.5%
RTE	21%	16.2%	28%	20.3%
SST-2	21%	14.2%	27%	18.7%
MNLI	17%	11.9%	23%	17.8%
CoLA	15%	11.6%	24%	18.1%
QNLI	13%	9.6%	22%	16.6%
QQP	15%	10.9%	23%	17.2%
STS-B	16%	15%	24%	17.4%

Table 4: Inference model size and time reduction with our pruning method on different models and datasets.

Table 5: Model size and inference time reduction of LLaMa model with our pruning method on various datasets.

J	Dataset	Model Size	e Inference Time
_	BoolQ	22%	16.6%
Г	PIQA	27%	20%
Η	ellaSwag	25%	18.3%
Wi	noGrande	24%	17.6%
	ARC-e	23%	17%
	ARC-c	24%	18.2%
	OBQA	26%	19.6%

Conclusion

Summary of Contributions:

- Introduced a novel trainable pruning methodology for structured pruning.
- Integrated pruning with low-rank adaptation to reduce computational costs while maintaining accuracy.

Key Results:

- Up to **24.5% sparsity** across layers.
- Up to **18% inference speed-up** on real-world hardware.

Broader Impact:

- Enables practical deployment of large pre-trained models in resource-constrained environments.
- Balances performance, efficiency, and deployment feasibility.

References

- E. J. Hu et al. Lora: Low-rank adaptation of large language models, 2021.
- S.-Y. Liu et al. Dora: Weight-decomposed low-rank adaptation, 2024.
- V. Sanh et al. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, 2020.
- Y. Liu et al. Roberta: A robustly optimized bert pretraining approach, 2019.
- H. Touvron et al. Llama: Open and efficient foundation language models, 2023.
- X. Ma et al. Llm-pruner: On the structural pruning of large language models, 2023.
- M. Zhang et al. Loraprune: Pruning meets low-rank parameter-efficient finetuning, 2023
- M. Xia et al. Sheared llama: Accelerating language model pre-training via structured pruning, 2024
- E. Jang et al. Categorical reparameterization with gumbel-softmax, 2017.
- T. Chen et al. Lorashear: Efficient large language model structured pruning and knowledge recovery, 2023.
- H. Zhou et al. Lora-drop: Efficient lora parameter pruning based on output evaluation, 2024.
- M. Valipour et al. Dylora: Parameter efficient tuning of pre-trained models using dynamic search-free low-rank adaptation, 2023.

Thank You!

Any Questions?

Acknowledgement

This work is supported in part by the National Science Foundation under Grant No.2314591, No.2505326, No.2452573, No.2452657, No.2503906, and No.2505209.

Contact information:

Asmer Hamid Ali: aali115@asu.edu

Deliang Fan: dfan@asu.edu

