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Outline
1. Motivation and Problem Statement

○ Challenges in deploying large pre-trained models.

○ Limitations of existing methods.

2. Key Contributions

○ Overview of proposed approach and its significance.

3. Parameter-Efficient Fine-Tuning and Model Pruning

○ Background on PEFT techniques.

○ Importance of structured pruning for efficiency.

4. Methodology Overview

○ Trainable pruning masks.

○ Integration with low-rank adaptation.

5. Efficient Pruning and Low-Rank Adaptation

○ Detailed explanation with equations and benefits.

6. Experimental Setup

○ Models, datasets, and evaluation metrics.

7. Results

○ Performance analysis and comparison with baselines.

8. Conclusion

○ Summary of contributions and future directions.
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● Growing computational demands of large 

pre-trained models (LPMs).

● PEFT techniques address training overhead 

but fail to optimize inference efficiency.

● Need for a compact and efficient

deployment-ready solution.

Figure 1: Chart showing the growth in the size of models over

time with annotations on memory usage and limits of hardware

(Source: LLM: The Rise of Data)

Motivation and Problem Statement
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● Growing computational demands of large 

pre-trained models (LPMs).

● PEFT techniques address training overhead 

but fail to optimize inference efficiency.

● Need for a compact and efficient

deployment-ready solution.

Figure 2: Table comparing LLaMA-7B models with various PEFT 

methods, showing parameter reductions and accuracy trade-offs.

(Source: Charith Chandra Sai Balne et al., "Parameter Efficient 

Fine Tuning: A Comprehensive Analysis Across 

Applications,"arXiv:2404.13506, 2024)

Motivation and Problem Statement
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1. Trainable Pruning Methodology

○ Optimizes the structure of LPMs during fine-tuning.

○ Includes learnable binary masks for channel-wise pruning.

2. Low-Rank Adaptation Integration

○ Incorporates low-rank adaptation to reduce computational overhead while maintaining 

accuracy.

3. Efficiency Gains

○ Demonstrates up to 18% speed-up in inference with real-world hardware.

Figure 3: Proposed Approach

Key Contribution
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Parameter-Efficient Fine-Tuning and 
Model Pruning
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Figure 5: Structure of DoRA (Source: S.-Y. Liu et al. Dora: Weight-

decomposed low-rank adaptation, 2024.Figure 4: Structure of LoRA (Source: E. J. Hu

et al. Lora: Low-rank adaptation of large

language models, 2021)

Parameter-Efficient Fine-Tuning and 
Model Pruning
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Figure 6: Pruning Techniques

Parameter-Efficient Fine-Tuning and 
Model Pruning

Figure 5: Structure of DoRA (Source: S.-Y. Liu et al. Dora: Weight-

decomposed low-rank adaptation, 2024.Figure 4: Structure of LoRA (Source: E. J. Hu

et al. Lora: Low-rank adaptation of large

language models, 2021)
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Methodology Overview

Figure 5: Overview of the proposed approach
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Methodology Overview

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in 

both frozen and trainable components.

Figure 5: Overview of the proposed approach
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Methodology Overview

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in 

both frozen and trainable components.

2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and 

direction using low-rank adaptation (based on DoRA). Optimize the pruning process by 

focusing only on magnitude vectors, minimizing training overhead.
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Methodology Overview

1. Trainable Pruning Masks: Introduce binary masks to prune unimportant weights in 

both frozen and trainable components.

2. Integration with Low-Rank Adaptation: Decompose weights into magnitude and 

direction using low-rank adaptation (based on DoRA). Optimize the pruning process by 

focusing only on magnitude vectors, minimizing training overhead.

3. Hardware-Compatible Compact Model: The final pruned model retains its compact 

structure. Achieves significant inference speed-up on commercial GPUs and CPUs.

Figure 5: Overview of the proposed approach
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Efficient Pruning and Low-Rank 
Adaptation
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Efficient Pruning and Low-Rank 
Adaptation

1. Integration of Pruning with Low-Rank Adaptation:

○ Use a trainable binary mask (mb) to optimize the magnitude vector in the DoRA 

framework.

○ Low-rank adaptation ensures computational efficiency while maintaining 

accuracy.

2. Low-Rank Adaptation: 
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Efficient Pruning and Low-Rank 
Adaptation

1. Integration of Pruning with Low-Rank Adaptation:

○ Use a trainable binary mask (mb) to optimize the magnitude vector in the DoRA

framework.

○ Low-rank adaptation ensures computational efficiency while maintaining 

accuracy.

2. Low-Rank Adaptation: 

● Pruned Weight Update:
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Experimental Setup

1. Model Used: DistilBERT, RoBERTa (RoBbase), and LLaMA-7B

2. Dataset: 

a. GLUE Benchmark for DistilBERT and RoBERTa.

b. Commonsense reasoning datasets (e.g., BoolQ, PIQA, ARC) for LLaMA-7B.

3. Hardware and Training Details:

a. GPU: NVIDIA A5000

b. Batch size: 8, mixed precision for efficiency.

c. Optimizer: Adam, learning rate fine-tuned during stages (e.g., 5e-5 → 1e-5).
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Results for LLaMA-7B

1. Accuracy Gains: Pruned-LLaMA-7B (Ours) achieves a competitive average accuracy 
(62.77%), outperforming most models like LLM-Pruner and LoRAPrune.

2. Model Size Efficiency: Reduces the number of trainable parameters to 5.09B, 
compared to the baseline’s 6.74B, while maintaining comparable performance.

3. Task-Specific Highlights: 

a. Excels in PIQA (79.54%), outperforming all baselines.

b. Strong performance on BoolQ (72.12%) and WinoGrande (67.93%) compared to 
LLM-Pruner and LoRAPrune.
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Results for RoBbase

1. Accuracy Gains: Pruned-RoBbase (Ours) achieves the highest average accuracy 
(87.46%), outperforming the baseline and LoRA methods.

2. Model Size Efficiency: Pruned-RoBbase reduces model size to 429.3 MB, significantly 
smaller than the baseline RoBbase (476.84 MB).

3. Task-Specific Highlights: Achieves the best accuracy on SST-2 (95.3%) and RTE 
(83.8%) while maintaining competitive performance on other tasks.
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Results for DistilBERT

1. Accuracy Gains: Pruned-DistilBERT (Ours) achieves the highest average accuracy 
(82%), outperforming other methods. Consistently performs better across tasks like RTE 
(65.2%), SST-2 (91.4%), and MNLI (83.4%).

2. Model Size Efficiency: Pruned-DistilBERT achieves an efficient model size of 222.85 
MB, smaller than most other methods like LoRA (258.32 MB) and DoRA (268.5 MB).

3. Improved Performance vs. Baseline: Outperforms DistilBERT Baseline by 6.4% in 
average accuracy (82% vs. 79.6%).
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Analysis of Sparsity and Inference Gains
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Conclusion
Summary of Contributions:

● Introduced a novel trainable pruning methodology for structured pruning.

● Integrated pruning with low-rank adaptation to reduce computational costs while 

maintaining accuracy.

Key Results:

● Up to 24.5% sparsity across layers.

● Up to 18% inference speed-up on real-world hardware.

Broader Impact:

● Enables practical deployment of large pre-trained models in resource-constrained 

environments.

● Balances performance, efficiency, and deployment feasibility.
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Thank You!

Any Questions?
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