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Introduction

⚫ Logic synthesis transforms a high-level circuit description at the Register-

Transfer Level (RTL) into an optimized gate-level netlist. 

⚫ Logic optimization directly affects technology mapping, determining the final 

netlist's area and delay.
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Introduction

⚫ The popular open-source tool ABC [1] represents combinational logic using 

And-Inverter Graphs (AIGs).

⚫ ABC provides various logic optimization operators, such as:

1ABC: An academic industrial-strength verification tool,CAV 2010

（a）rewrite （b）balance （c）resub
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Challenges

 The exponentially growing search space makes design space exploration challenging. 

For a set 𝐴= 𝑎1, 𝑎2, … , 𝑎𝑛  and flow length 𝑘, there are 𝑛𝑘 possibilities.

 Different circuits have unique characteristics, requiring tailored optimization operators 

flows to achieve the best results. 

 Challenges remain in representing AIG states and optimization flows, hindering the 

application of machine learning methods.
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To overcome the above challenges, many design space exploration methods have 

been proposed.

Related Work

➢ DRiLLS constructs scalar features and integrates the A2C agent1.

➢ GNNs capture AIG topology and combine it with historical decisions2.

➢ Random Forests analyze feature importance for pruning3.

➢ Context-based multi-armed bandit with Syn-LinUCB4.

➢ Monte Carlo Tree Search with SynUCT5.

1 K. Zhu,et al. “Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network,” in Proc.,MLCAD,2020
2 Hosny, Abdelrahman,et al. “DRiLLS: Deep Reinforcement Learning for Logic Synthesis.” ASP-DAC ,2019
3Zhou, G,et al. “Area-Driven FPGA Logic Synthesis Using Reinforcement Learning.” ASP-DAC,2023
4 F Liu, et al.”CBTune: Contextual Bandit Tuning for Logic Synthesis. ”DATE,2024
5 Z. Pei et al. "AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search." ICCAD,2023
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Previous Solutions & Limitations

➢ Supervised learning-based methods rely on limited datasets and often suffer from poor 

prediction accuracy. 

➢ Online reinforcement learning and bandit-based methods start training from scratch for 

each encountered circuit, lacking generalization capability. 

Therefore, an ideal policy should consider how to learn general offline knowledge from 

existing circuits and synthesis flows and fine-tune it for new target circuits.
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Reinforcement Learning

⚫ Reinforcement Learning (RL) enables an agent to learn optimal actions by 

interacting with an environment and receiving feedback in the form of 

rewards.

⚫ The goal is to maximize cumulative rewards over time, adapting the policy 

based on observed outcomes.
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Imitation Learning

Imitation Learning is a machine learning approach that aims to learn policies 

by mimicking expert behavior. In imitation learning, the model learns to take 

appropriate actions in similar environments by observing expert demonstrations 

(state-action pairs).

Behavior Cloning (BC) is a specific method of imitation learning, similar to 

supervised learning. It frames the imitation problem as a classification or 

regression task, fitting the expert's state-action mapping to learn a policy. 
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Simple experiment
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• Expert Trajectories Generation

• Imitation Learning

• RL Finetuning



Expert Trajectory Generation
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Use GA to generate high-quality synthesis flows as training data



Imitation Learning
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Feature Extraction

Scalar Features of AIG CircuitsPoilcy network
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The policy, denoted as πθ
BC(at|st) maps a given state st to an action at . 

Expert trajectories are represented as sequences of states and actions, τ = 

(s0, a0, ⋯ ,st, at)

 LNLP is the negative log-likelihood of expert actions under the policy's predicted 

distribution：

 



RL Finetuning
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 Dual Policy Distillation

•Teacher Policy: High-quality trajectories for efficient learning

•Student Policy: Random initialization for broader exploration

 Multi-process parallel interaction

 Shared Critic Network



RL Finetuning
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The Student Policy’s loss

The Teacher Policy’s loss
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• Training sets: ISCAS'85 , ISCAS'89 , ITC'99 , LGSynth'89 , LGSynth'91 , IWLS'93 , IWLS 

2005 , and LEKO/LEKU benchmarks 

• Testing sets : EPFL benchmark

• Baseline:DRILLS1,RL4LS2,CBtune3,Alphasyn4

• ABC for logic synthesis optimization

 Mapped to 6-LUTs using the ABC priority cuts mapper (command: if -a -K 6)

• RL algorithm evaluated: PPO

• Train for 5k samples

1 Hosny, Abdelrahman,et al. “DRiLLS: Deep Reinforcement Learning for Logic Synthesis.” ASP-DAC ,2019
2Zhou, G,et al. “Area-Driven FPGA Logic Synthesis Using Reinforcement Learning.” ASP-DAC,2023
3 F Liu, et al.”CBTune: Contextual Bandit Tuning for Logic Synthesis. ”DATE,2024
4 Z. Pei et al. "AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search." ICCAD,2023
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We achieved 5% better LUT optimization and a 2.4× speedup compared to the 

current best method



Evaluation
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• Comparison between exploration 

based on pretraining and random 

exploration from scratch.
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⚫ We propose PIRLLS, a two-stage learning framework for logic synthesis and optimization.

• Pretrain the exploration policy with imitation learning on expert trajectories, leveraging 

offline knowledge from existing data.

• Finetune the pretrained policy on target circuits using reinforcement learning, 

customizing optimization for specific needs.

⚫ PIRLLS surpasses state-of-the-art methods across various metrics, enhancing 

optimization quality and achieving significant speedup.
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