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Motivation (I)

Challenges in Logic Synthesis Optimization (LSO):

Complexity of Modern ICs:
Billions of transistors in modern ICs make manual design infeasible.
Traditional heuristic-based methods face limitations in achieving
optimal results.

Machine Learning as a Solution:
ML enhances LSO by enabling faster and more accurate predictions [6].

Data Scarcity:
Limited availability of large, labeled datasets hampers machine learning
models.
Overfitting challenges reduce the generalization and reliability of
predictions.

Inefficiencies in Graph Encoding:
Large AIGs with numerous nodes pose challenges for plain GNNs.
Treating all nodes with equal importance leads to suboptimal
representations.

Faezeh Faez et al. (Huawei Noah’s Ark Lab) MTLSO 3 / 45



Motivation (II)

Purpose of MTLSO:

Addressing Data Scarcity:
Multi-task learning (MTL) enables the model to leverage shared
supervision from related tasks.
Introducing an auxiliary task (binary multi-label graph classification)
enhances model robustness.

Improving Graph Representation:
Hierarchical graph representation learning captures multi-level
abstractions of AIGs.
Combines GNNs with graph downsampling for better scalability and
expressiveness.
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Related Work

Key Areas in Related Research:

Logic Synthesis Optimization (LSO):
A growing trend toward employing ML techniques for EDA tasks,
moving away from traditional hand-engineered approaches.
Techniques use GNNs, LSTMs, or Transformers for graph and recipe
representation learning.
Challenges:

Inefficiencies in encoding large AIGs due to treating all graph nodes
with equal importance.
Overfitting due to data scarcity.

Multi-task Learning (MTL):
Enhances model generalization by leveraging shared data across
multiple related tasks.
Demonstrated success in NLP, vision, and speech for mitigating data
scarcity challenges.
Despite its potential to address the data scarcity challenge, MTL
remains underutilized in LSO.
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Methodology → Problem Formulation

Objective

Predict QoR value for each pair (G , ri ) where G is an AIG and ri is a
synthesis recipe.

f : G ×R → R

G: Set of AIGs
R: Set of synthesis recipes
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Methodology → Graph Encoder (Overview)

Goal: Learn a meaningful graph-level representation hG of a large AIG G
using GNNs.

Setup:
Input graph G with node feature matrix X .
Output is a vector representation hG ∈ RF for the entire graph.

Challenge: Large AIGs can consist of thousands of nodes with
varying importance for QoR prediction, rendering conventional plain
GNNs less efficient.

Solution:
A Hierarchical Graph Representation Learning (HGRL) approach.
Iteratively remove unimportant nodes to focus on critical subgraphs.

Graph Neural Network

Graph Encoder

Graph Encoding/Downsampling Global Graph Pooling

Graph Downsampler

Pooling
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Methodology → Graph Encoder → Hierarchical Graph
Representation Learning (I)

Layer-by-Layer GNN Encoding:

HGRL stacks L GNN layers sequentially to process the graph.

At layer l , the graph G l is defined by:

Node feature matrix X l ∈ RN l×F l

Adjacency matrix Al ∈ {0, 1}N l×N l

Node representations are updated via message passing:

H l+1 = GNN(X l ,Al), H l+1 ∈ RN l×F l+1

Graph Neural Network

Graph Encoder

Graph Encoding/Downsampling Global Graph Pooling

Graph Downsampler

Pooling
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Methodology → Graph Encoder → Hierarchical Graph
Representation Learning (II)

Node Downsampling:

Select the top ⌈αN l⌉ nodes by computing scores as the projection of
H l+1 onto a learnable vector, capturing node importance.

Remove nodes with lower scores, reducing graph size for the next
layer:

Al+1,X l+1 = GraphDownsample
(
Al ,H l+1

)
Outputs:

Al+1: Pruned adjacency matrix.
X l+1: Representation matrix for the remaining nodes.

Graph Neural Network

Graph Encoder

Graph Encoding/Downsampling Global Graph Pooling

Graph Downsampler

Pooling
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Methodology → Graph Encoder → Hierarchical Graph
Representation Learning (III)

Final Pooling:

L consecutive encoding and downsampling steps yield AL and X L as
the pruned adjacency matrix and final node embeddings.

A global pooling module aggregates node embeddings into a single
vector:

hG = GraphPool
(
X L

)
.

The vector hG ∈ RF serves as the graph representation.

Graph Neural Network

Graph Encoder

Graph Encoding/Downsampling Global Graph Pooling

Graph Downsampler

Pooling
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Methodology → Recipe Encoder (I)

A synthesis recipe ri consists of a sequence of n transformations:

ri = [ti1, ti2, . . . , tin],

where each transformation tij falls into one of several categories.

To predict the QoR for a given pair of an AIG and a recipe, it is essential to
learn a meaningful representation of the recipe.

Steps for Representation Learning:

1 Embedding:

Convert transformations tij into dense, continuous vectors:

ei = RecipeEmbed(ri ), ei ∈ Rn×p.

Captures patterns and dependencies in the recipe.
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Methodology → Recipe Encoder (II)

Steps for Representation Learning:

2 Convolutional Layers:

Capturing relationships between adjacent transformations and
extracting features with M one-dimensional convolutional layers. The
m-th convolutional layer is denoted as:

λm
i = ConvLayerm(ei ).

Final representation of recipe ri :

λi = Concat(λ1
i , λ

2
i , . . . , λ

M
i ).

... Embed
...

... . . .

...

...

...

Recipe Encoder

Recipe Embedding 1D Convolutional Layers
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Methodology → Multi-Task Learning

Objective: Address overfitting caused by data scarcity in the Logic
Synthesis Optimization using a multi-task learning approach.
Primary Task: QoR value regression for each pair (G , ri ).
Auxiliary Task: Binary multi-label graph classification.

Aids in training by providing additional signals.

Helps signify recipe relevance to an AIG during inference.

Total Loss Function:

L = Lclassification + γLregression
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Methodology → Multi-Task Learning → Binary
Multi-Label Graph Classification

Objective: Predict whether each of the K recipes performs well for a
given AIG G .
Label Construction:

Select the ⌈ρK⌉ best recipes with the lowest QoR values.

The label for each recipe ri with respect to AIG G is defined as:

cGi =

{
1 if ri is among the top-performing recipes for G ,

0 otherwise.

Classifier:

Input: Graph representation hG .

Output: PG
classification ∈ [0, 1]K (predicted probabilities for each recipe):

PG
classification = GraphClassify(hG )

Classification Loss:

Lclassification = BinaryCrossEntropy(PG
classification,C

G )
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Methodology → Multi-Task Learning → QoR Value
Regression

Objective: Predict QoR value yGi for a given pair (G , ri ).
Inputs:

Graph representation hG .

Recipe representation λi .

Classification probabilities PG
classification.

Output:
yGi = Decoder

(
Concat(hG , λi ,P

G
classification)

)
Regression Loss:

Lregression = RegressionLoss(yGi , qGi )
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Methodology → Overview

Graph Neural Network

Graph Encoder

Graph Encoding/Downsampling Global Graph Pooling Binary Multi-label Graph Classifier

...

Graph Downsampler

Pooling

Embed
...

... . . .

...

...

...

Recipe Encoder

Recipe Embedding 1D Convolutional Layers

Binary Cross
Entropy Loss

Function

Decoder

Regression Loss
Function
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Experiments → Datasets

Dataset Min #Nodes Max #Nodes Avg #Nodes #Graphs

OpenABC-D 597 139,719 36,959.92 26

EPFL 207 57,503 15,833.40 15

CD 77 55,332 21,746.99 118

Table: Statistics of datasets used in the experiments.

OpenABC-D [3]

EPFL [1]

Commercial Dataset (CD): Proprietary dataset.
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Experiments → Baselines

Chowdhury et al. [3]:
GCN [7] for AIG encoding.
1D Convolutional layers for recipe encoding.
The two representations are concatenated to predict the QoR.

LOSTIN [8]:
GIN [10] for AIG encoding.
LSTM for recipe representation learning.
The two representations are concatenated to predict the QoR.

GNN-H [9]:
Adopting a similar strategy as LOSTIN [8], but utilizing PNA [4] for
AIG encoding.

Yang et al. [11]:
GraphSage [5] as the GNN.
Transformer for recipe encoding.
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Experiments → Metrics

Mean Absolute Percentage Error (MAPE):

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣
Measures the average absolute percentage difference between actual
and predicted QoR.
Lower MAPE indicates better performance.
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Experiments → Implementation Details

Framework: PyTorch.

Graph Encoder:
2 layers of Graph Encoding/Downsampling (L = 2).
A 2-layer GCN [7] as our GNN, with a hidden layer size of 64.

Graph Downsampler:
TopKPooling [2] with α = 0.5.

Graph Pooling:
Multi-readout: Mean + Max pooling.
Final graph-level representation: 128-dimensional.

Recipe Encoder:
Embedding size: 60.
4 one-dimensional convolutional layers.

Label Construction:
ρ = 0.5 for selecting top recipes.

Data Split:
2/3 for training, 1/3 for testing.
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Experiments → Results → Delay

Metric Dataset
Methods

Chowdhury et al. [3] (Y1) LOSTIN [8] (Y2) GNN-H [9] (Y3) Yang et al. [11] (Y4) MTLSO (X )

Delay
OpenABC-D 23.66 ± 0.19 24.61 ± 0.03 24.31 ± 0.27 24.58 ± 0.13 22.93 ± 0.23
EPFL 4.18 ± 0.07 3.96 ± 0.02 3.96 ± 0.03 3.96 ± 0.02 3.94 ± 0.01
CD 15.88 ± 0.41 16.76 ± 0.13 16.80 ± 0.06 17.09 ± 0.08 13.75 ± 0.25

Gain (%)

Dataset Y1−X
Y1

× 100 Y2−X
Y2

× 100 Y3−X
Y3

× 100 Y4−X
Y4

× 100

OpenABC-D 3.09 6.83 5.68 6.71
EPFL 5.74 0.51 0.51 0.51
CD 13.41 17.96 18.15 19.54

Table: Comparative Results in Terms of MAPE (Avg. ± Std.) for Delay (lower is
better).

MTLSO outperforms all baselines across all datasets.

It achieves an average gain of 8.22% in delay across all baselines and
datasets.
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Experiments → Results → Area

Metric Dataset
Methods

Chowdhury et al. [3] (Y1) LOSTIN [8] (Y2) GNN-H [9] (Y3) Yang et al. [11] (Y4) MTLSO (X )

Area
OpenABC-D 2.71 ± 0.02 2.35 ± 0.07 2.33 ± 0.06 3.77 ± 0.00 2.57 ± 0.03
EPFL 2.46 ± 0.03 2.30 ± 0.01 2.34 ± 0.02 2.39 ± 0.00 2.23 ± 0.04
CD 3.57 ± 0.10 3.46 ± 0.17 3.59 ± 0.12 3.81 ± 0.05 3.33 ± 0.08

Gain (%)

Dataset Y1−X
Y1

× 100 Y2−X
Y2

× 100 Y3−X
Y3

× 100 Y4−X
Y4

× 100

OpenABC-D 5.17 -9.36 -10.30 31.83
EPFL 9.35 3.04 4.70 6.69
CD 6.72 3.76 7.24 12.60

Table: Comparative Results in Terms of MAPE (Avg. ± Std.) for Area (lower is
better).

MTLSO achieves an average gain of 5.95% in area across all baselines
and datasets.
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Experiments → Results → Key Insights

Performance Improvements
Consistent gains in Delay and Area with MTLSO.
Powered by the combination of multi-task learning and hierarchical
graph representation learning.

Future Enhancement Opportunities
Improvements achieved with simple GNNs (i.e., GCN [7]) and basic
recipe encoders (i.e., 1D convolution layers).
Greater potential with advanced GNNs (e.g., GIN [10]) and more
sophisticated recipe encoders (e.g., LSTM, Transformer).
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Experiments → Ablation Study → Model Components

Goal: Assess the impact of two components:
1 Replacing Hierarchical Graph Representation Learning (HGRL) with

Plain Graph Representation Learning (PGRL).
2 Retaining the HGRL module from MTLSO but removing the graph

classification task, resulting in a Single-task Learning (STL) setup.

Findings:

Both multi-task learning and HGRL contribute significantly to better
performance.

Multi-task learning is more critical than HGRL, as even a simpler
PGRL (trained in multi-task mode) surpasses the single-task (STL)
variant.

Table: Ablation Study Results of Model Components in Terms of MAPE.

Delay Area

OpenABC-D EPFL CD OpenABC-D EPFL CD

PGRL 23.49% 3.95% 16.48% 2.99% 2.24% 3.44%
STL 23.61% 4.51% 15.56% 2.69% 2.57% 3.45%

MTLSO 22.93% 3.94% 13.75% 2.57% 2.23% 3.33%
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Experiments → Ablation Study → Number of Graph
Encoding/Downsampling Layers (I)

Ablation on the number of Graph Encoding/Downsampling layers (L).
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Experiments → Ablation Study → Number of Graph
Encoding/Downsampling Layers (II)

More than one encoding layer consistently improves performance,
highlighting the need for a hierarchical strategy for large AIGs.

Optimal L is 2 for EPFL and CD, and 3 for OpenABC-D based on
classification metrics.

Tuning L for each dataset can further enhance graph representation
quality.
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Experiments → Ablation Study → Node Retainment Ratio
(α) (I)

Ablation on the node retainment ratio α in the graph downsampling module.
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Figure: Ablation Study on the Node Retainment Ratio (α). The results are
reported as percentages.

Faezeh Faez et al. (Huawei Noah’s Ark Lab) MTLSO 39 / 45



Experiments → Ablation Study → Node Retainment Ratio
(α) (II)

α = 0.5 yields the best performance, surpassing the extremes (α = 0.1 or
α = 0.9).

Retaining too many nodes (α = 0.9) degrades performance, indicating some
nodes are less informative.

Pruning too aggressively (α = 0.1) harms the results, indicating that certain
nodes play a significant role in the graph-level representation.

The findings highlight:

The importance of adopting such a hierarchical strategy for encoding
AIGs.
The need to set an optimal value for this hyperparameter.
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MTLSO: Summary

Novel Multi-Task Learning Approach for LSO:

MTLSO mitigates overfitting caused by limited data availability.
Combines multi-label graph classification and regression tasks.

Hierarchical Graph Encoding:

Employs multiple layers of Graph Encoding/Downsampling.
Effectively handles large, complex AIGs where plain GNNs struggle.

Key Results:

Delay Minimization: +8.22% improvement.
Area Minimization: +5.95% improvement.
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Any Questions?
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