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Motivation (1)

Challenges in Logic Synthesis Optimization (LSO):
o Complexity of Modern ICs:
o Billions of transistors in modern ICs make manual design infeasible.
e Traditional heuristic-based methods face limitations in achieving
optimal results.
@ Machine Learning as a Solution:
e ML enhances LSO by enabling faster and more accurate predictions [6].
o Data Scarcity:

e Limited availability of large, labeled datasets hampers machine learning
models.

e Overfitting challenges reduce the generalization and reliability of
predictions.

o Inefficiencies in Graph Encoding:

o Large AlGs with numerous nodes pose challenges for plain GNNs.
o Treating all nodes with equal importance leads to suboptimal
representations.
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Motivation (II)

Purpose of MTLSO:

o Addressing Data Scarcity:
o Multi-task learning (MTL) enables the model to leverage shared
supervision from related tasks.
o Introducing an auxiliary task (binary multi-label graph classification)
enhances model robustness.
o Improving Graph Representation:
e Hierarchical graph representation learning captures multi-level
abstractions of AlGs.
e Combines GNNs with graph downsampling for better scalability and
expressiveness.
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Related Work

Key Areas in Related Research:
e Logic Synthesis Optimization (LSO):
e A growing trend toward employing ML techniques for EDA tasks,
moving away from traditional hand-engineered approaches.
e Techniques use GNNs, LSTMs, or Transformers for graph and recipe
representation learning.
o Challenges:
o Inefficiencies in encoding large AlGs due to treating all graph nodes
with equal importance.
o Overfitting due to data scarcity.

e Multi-task Learning (MTL):

e Enhances model generalization by leveraging shared data across
multiple related tasks.

e Demonstrated success in NLP, vision, and speech for mitigating data
scarcity challenges.

o Despite its potential to address the data scarcity challenge, MTL
remains underutilized in LSO.
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Methodology — Problem Formulation

Objective

Predict QoR value for each pair (G, r;) where G is an AlIG and r; is a
synthesis recipe.

f:GxR—R

@ G: Set of AlGs

@ R: Set of synthesis recipes
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Methodology — Graph Encoder (Overview)

Goal: Learn a meaningful graph-level representation hg of a large AlIG G
using GNNs.

o Setup:

e Input graph G with node feature matrix X.
e Output is a vector representation hg € RF for the entire graph.

@ Challenge: Large AlGs can consist of thousands of nodes with
varying importance for QoR prediction, rendering conventional plain
GNNs less efficient.

e Solution:

o A Hierarchical Graph Representation Learning (HGRL) approach.
o lteratively remove unimportant nodes to focus on critical subgraphs.
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Methodology — Graph Encoder — Hierarchical Graph

Representation Learning (I)

Layer-by-Layer GNN Encoding:
o HGRL stacks L GNN layers sequentially to process the graph.
o At layer /, the graph G' is defined by:

o Node feature matrix X' € R’V/TF' (
o Adjacency matrix A € {0, 1}V >N

o Node representations are updated via message passing:
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Methodology — Graph Encoder — Hierarchical Graph

Representation Learning (II)

Node Downsampling:

o Select the top [aN'] nodes by computing scores as the projection of
H'*1 onto a learnable vector, capturing node importance.

@ Remove nodes with lower scores, reducing graph size for the next

layer:
AL XH = GrapuDownsampLE(A', H/TT)

e Outputs:

o A*1: Pruned adjacency matrix.
o X'*1: Representation matrix for the remaining nodes.
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Methodology — Graph Encoder — Hierarchical Graph

Representation Learning (lII)

Final Pooling:
o L consecutive encoding and downsampling steps yield AL and X! as
the pruned adjacency matrix and final node embeddings.
@ A global pooling module aggregates node embeddings into a single
vector:
he = GrapaPoOL(X").

@ The vector hg € RF serves as the graph representation.
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Methodology — Recipe Encoder (1)

@ A synthesis recipe r; consists of a sequence of n transformations:
ri = [tin, tiz, - - -, tin],s

where each transformation tj; falls into one of several categories.

@ To predict the QoR for a given pair of an AIG and a recipe, it is essential to
learn a meaningful representation of the recipe.

Steps for Representation Learning:
© Embedding:

o Convert transformations t; into dense, continuous vectors:
e; = RECIPEEMBED(r;), e; € R™*P.

o Captures patterns and dependencies in the recipe.
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Methodology — Recipe Encoder (I1)

Steps for Representation Learning;:
@ Convolutional Layers:

o Capturing relationships between adjacent transformations and
extracting features with M one-dimensional convolutional layers. The
m-th convolutional layer is denoted as:

A" = CONVLAYER"(e)).
o Final representation of recipe r;:

A\ = Concat(A}, A2, ..., AM).

1

Recipe Encoder
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Methodology — Multi-Task Learning

Objective: Address overfitting caused by data scarcity in the Logic
Synthesis Optimization using a multi-task learning approach.
Primary Task: QoR value regression for each pair (G, r;).
Auxiliary Task: Binary multi-label graph classification.

@ Aids in training by providing additional signals.
@ Helps signify recipe relevance to an AIG during inference.
Total Loss Function:

L= Eclassification + ’)’Eregression
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Methodology — Multi-Task Learning — Binary

Multi-Label Graph Classification

Objective: Predict whether each of the K recipes performs well for a
given AlG G.

Label Construction:

o Select the [pK| best recipes with the lowest QoR values.
@ The label for each recipe r; with respect to AIG G is defined as:

CG )1 if r; is among the top-performing recipes for G,
I 7 )0 otherwise.
Classifier:

@ Input: Graph representation hg.

o Output: P§ ... € [0,1]X (predicted probabilities for each recipe):

G _
Pclassification - GRAPHCLASSIFY(hG)

@ Classification Loss:

G G
Llassification = BINARYCROSSENTROPY (P Jacsifications C )
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Methodology — Multi-Task Learning — QoR Value

Regression

Objective: Predict QoR value y,-G for a given pair (G, r;).
Inputs:
@ Graph representation hg.
@ Recipe representation A;.
o Classification probabilities P e .. .
Output:
y,-G = DrcopEr (Concat(hg, Aj, Pccl;assification))

Regression Loss:

G G
Lregression = RecressionLoss(Y;, g;”)
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Methodology — Overview

Graph Encoder
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Experiments — Datasets

| Dataset | Min #Nodes | Max #Nodes | Avg #Nodes | #Graphs |
OpenABC-D 597 139,719 36,959.92 26
EPFL 207 57,503 15,833.40 15
CD 77 55,332 21,746.99 118

Table: Statistics of datasets used in the experiments.
e OpenABC-D [3]

o EPFL [1]
e Commercial Dataset (CD): Proprietary dataset.
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Experiments — Baselines

e Chowdhury et al. [3]:

o GCN [7] for AIG encoding.
e 1D Convolutional layers for recipe encoding.
e The two representations are concatenated to predict the QoR.

o LOSTIN [8]:

o GIN [10] for AIG encoding.
e LSTM for recipe representation learning.
e The two representations are concatenated to predict the QoR.

e GNN-H [9]:
o Adopting a similar strategy as LOSTIN [8], but utilizing PNA [4] for
AlG encoding.
e Yang et al. [11]:

o GraphSage [5] as the GNN.
e Transformer for recipe encoding.
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Experiments — Metrics

e Mean Absolute Percentage Error (MAPE):

n

MAPE = @Z

n £
i=1

)/i—f/i'

Yi

e Measures the average absolute percentage difference between actual

and predicted QoR.
o Lower MAPE indicates better performance.

Faezeh Faez et al. (Huawei Noah's Ark Lab) MTLSO



Datasets
Baselines

Metrics

o
o
o
o Implementation Details
@ Results

°

Ablation Study

Faezeh Faez et al. (Huawei Noah's Ark Lab) MTLSO 29 /45



Experiments — Implementation Details

Framework: PyTorch.
Graph Encoder:

e 2 layers of Graph Encoding/Downsampling (L = 2).
o A 2-layer GCN [7] as our GNN, with a hidden layer size of 64.

Graph Downsampler:
o TopKPooling [2] with a = 0.5.
o Graph Pooling;:

o Multi-readout: Mean + Max pooling.
o Final graph-level representation: 128-dimensional.

Recipe Encoder:

e Embedding size: 60.
o 4 one-dimensional convolutional layers.

Label Construction:

e p = 0.5 for selecting top recipes.
o Data Split:
e 2/3 for training, 1/3 for testing.
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Experiments — Results — Delay

‘ Metric | Dataset ‘ Methods ‘
| Chowdhury et al. [3] (Y1) [ LOSTIN [8] (Y2) | GNN-H [9] (Y3) | Yang et al. [11] (Ya) | MTLSO (X) |
OpenABC-D 23.66 £ 0.19 24.61 £+ 0.03 2431 +£0.27 2458 +£0.13 22.93 + 0.23
Delay | EPFL 4.18 4+ 0.07 3.96 + 0.02 3.96 + 0.03 3.96 + 0.02 3.94 + 0.01
CD 15.88 + 0.41 16.76 + 0.13 16.80 + 0.06 17.09 + 0.08 13.75 + 0.25
Gain (%)
Dataset | Tu-X %100 [ 13X %100 [ B35 x 100 [ XX % 100 |
OpenABC-D 3.09 6.83 5.68 6.71
EPFL 574 0.51 0.51 0.51
CD 13.41 17.96 18.15 19.54

Table: Comparative Results in Terms of MAPE (Avg. + Std.) for Delay (lower is
better).

@ MTLSO outperforms all baselines across all datasets.

@ It achieves an average gain of 8.22% in delay across all baselines and
datasets.
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Experiments — Results — Area

Metric | Dataset Methods
Chowdhury et al- [3] (Y1) [ LOSTIN [8] (Y2) | GNN-H [9] (¥3) | Yang et al. [11] (Y2) [ MTLSO (X)
OpenABC-D 271 £ 0.02 2.35 £ 0.07 2.33 £ 0.06 3.77 £ 0.00 257 +0.03
Area | EPFL 2.46 4 0.03 2.30 & 0.01 2.34 £ 0.02 2.39 4 0.00 2.23 + 0.04
cD 3.57 £ 0.10 3.46 & 0.17 3.59 £ 0.12 3.81 & 0.05 3.33 + 0.08
Gain (%)
Dataset X %100 [ X <100 [ BpX <100 | XX < 100
OpenABC-D 517 -9.36 -10.30 31.83
EPFL 9.35 3.04 470 6.69
[e) 6.72 3.76 7.24 12.60

Table: Comparative Results in Terms of MAPE (Avg. 4 Std.) for Area (lower is
better).

@ MTLSO achieves an average gain of 5.95% in area across all baselines
and datasets.
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Experiments — Results — Key Insights

o Performance Improvements
o Consistent gains in Delay and Area with MTLSO.
o Powered by the combination of multi-task learning and hierarchical
graph representation learning.
@ Future Enhancement Opportunities
o Improvements achieved with simple GNNs (i.e., GCN [7]) and basic
recipe encoders (i.e., 1D convolution layers).
o Greater potential with advanced GNNs (e.g., GIN [10]) and more
sophisticated recipe encoders (e.g., LSTM, Transformer).
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Experiments — Ablation Study — Model Components

Goal: Assess the impact of two components:
@ Replacing Hierarchical Graph Representation Learning (HGRL) with
Plain Graph Representation Learning (PGRL).
@ Retaining the HGRL module from MTLSO but removing the graph
classification task, resulting in a Single-task Learning (STL) setup.
Findings:

@ Both multi-task learning and HGRL contribute significantly to better
performance.

@ Multi-task learning is more critical than HGRL, as even a simpler
PGRL (trained in multi-task mode) surpasses the single-task (STL)
variant.

Table: Ablation Study Results of Model Components in Terms of MAPE.

Delay Area
OpenABC-D  EPFL cb OpenABC-D  EPFL CcD

PGRL 23.49% 3.95% 16.48% 2.99% 2.24%  3.44%
STL 23.61% 4.51% 15.56% 2.69% 257%  3.45%
MTLSO 22.93% 3.94% 13.75% 2.57% 2.23% 3.33%
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Experiments — Ablation Study — Number of Graph

Encoding/Downsampling Layers (1)

@ Ablation on the number of Graph Encoding/Downsampling layers (L).
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Experiments — Ablation Study — Number of Graph

Encoding/Downsampling Layers (I1)

@ More than one encoding layer consistently improves performance,
highlighting the need for a hierarchical strategy for large AlGs.

@ Optimal L is 2 for EPFL and CD, and 3 for OpenABC-D based on
classification metrics.

e Tuning L for each dataset can further enhance graph representation
quality.
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Experiments — Ablation Study — Node Retainment Ratio

@ Ablation on the node retainment ratio « in the graph downsampling module.
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Experiments — Ablation Study — Node Retainment Ratio

(a) (1)

@ a = 0.5 yields the best performance, surpassing the extremes (o = 0.1 or
a=0.9).

@ Retaining too many nodes (o = 0.9) degrades performance, indicating some
nodes are less informative.

@ Pruning too aggressively (o« = 0.1) harms the results, indicating that certain
nodes play a significant role in the graph-level representation.

@ The findings highlight:

e The importance of adopting such a hierarchical strategy for encoding
AlGs.

e The need to set an optimal value for this hyperparameter.
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MTLSO: Summary

@ Novel Multi-Task Learning Approach for LSO:

o MTLSO mitigates overfitting caused by limited data availability.
o Combines multi-label graph classification and regression tasks.

@ Hierarchical Graph Encoding:

o Employs multiple layers of Graph Encoding/Downsampling.
o Effectively handles large, complex AlGs where plain GNNs struggle.

o Key Results:

o Delay Minimization: +8.22% improvement.
o Area Minimization: +5.95% improvement.
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