MTLSO: A Multi-Task Learning Approach for Logic Synthesis Optimization

Faezeh Faez¹ Raika Karimi¹ Yingxue Zhang¹ Xing Li² Lei Chen² Mingxuan Yuan² Mahdi Biparva¹

¹Huawei Noah's Ark Lab, Toronto, Canada ²Huawei Noah's Ark Lab, Hong Kong, China

2 Related Work

Motivation (I)

Challenges in Logic Synthesis Optimization (LSO):

• Complexity of Modern ICs:

- Billions of transistors in modern ICs make manual design infeasible.
- Traditional heuristic-based methods face limitations in achieving optimal results.

• Machine Learning as a Solution:

• ML enhances LSO by enabling faster and more accurate predictions [6].

• Data Scarcity:

- Limited availability of large, labeled datasets hampers machine learning models.
- Overfitting challenges reduce the generalization and reliability of predictions.

• Inefficiencies in Graph Encoding:

- Large AIGs with numerous nodes pose challenges for plain GNNs.
- Treating all nodes with equal importance leads to suboptimal representations.

Motivation (II)

Purpose of MTLSO:

• Addressing Data Scarcity:

- Multi-task learning (MTL) enables the model to leverage shared supervision from related tasks.
- Introducing an auxiliary task (binary multi-label graph classification) enhances model robustness.

• Improving Graph Representation:

- Hierarchical graph representation learning captures multi-level abstractions of AIGs.
- Combines GNNs with graph downsampling for better scalability and expressiveness.

Related Work

Key Areas in Related Research:

• Logic Synthesis Optimization (LSO):

- A growing trend toward employing ML techniques for EDA tasks, moving away from traditional hand-engineered approaches.
- Techniques use GNNs, LSTMs, or Transformers for graph and recipe representation learning.
- Challenges:
 - Inefficiencies in encoding large AIGs due to treating all graph nodes with equal importance.
 - Overfitting due to data scarcity.

• Multi-task Learning (MTL):

- Enhances model generalization by leveraging shared data across multiple related tasks.
- Demonstrated success in NLP, vision, and speech for mitigating data scarcity challenges.
- Despite its potential to address the data scarcity challenge, MTL remains underutilized in LSO.

- Problem Formulation
- Graph Encoder
- Recipe Encoder
- Multi-Task Learning

• Problem Formulation

- Graph Encoder
- Recipe Encoder
- Multi-Task Learning

Objective

Predict QoR value for each pair (G, r_i) where G is an AIG and r_i is a synthesis recipe.

 $f:\mathcal{G}\times\mathcal{R}\to\mathbb{R}$

- G: Set of AIGs
- \mathcal{R} : Set of synthesis recipes

- Problem Formulation
- Graph Encoder
- Recipe Encoder
- Multi-Task Learning

Methodology \rightarrow Graph Encoder (Overview)

Goal: Learn a meaningful graph-level representation h_G of a large AIG G using GNNs.

• Setup:

- Input graph G with node feature matrix X.
- Output is a vector representation $h_G \in \mathbb{R}^F$ for the entire graph.
- **Challenge:** Large AIGs can consist of thousands of nodes with varying importance for QoR prediction, rendering conventional plain GNNs less efficient.
- Solution:
 - A Hierarchical Graph Representation Learning (HGRL) approach.
 - Iteratively remove unimportant nodes to focus on critical subgraphs.

Methodology \rightarrow Graph Encoder \rightarrow Hierarchical Graph Representation Learning (I)

Layer-by-Layer GNN Encoding:

- HGRL stacks *L* GNN layers sequentially to process the graph.
- At layer I, the graph G^{I} is defined by:
 - Node feature matrix $X' \in \mathbb{R}^{N' \times F'}$
 - Adjacency matrix $A' \in \{0,1\}^{N' \times N'}$
- Node representations are updated via message passing:

$$H^{l+1} = \text{GNN}(X^l, A^l), \quad H^{l+1} \in \mathbb{R}^{N^l \times F^{l+1}}$$

Methodology \rightarrow Graph Encoder \rightarrow Hierarchical Graph Representation Learning (II)

Node Downsampling:

- Select the top [αN^l] nodes by computing scores as the projection of H^{l+1} onto a learnable vector, capturing node importance.
- Remove nodes with lower scores, reducing graph size for the next layer:

$$A^{l+1}, X^{l+1} = \operatorname{GraphDownsample}(A^{l}, H^{l+1})$$

- Outputs:
 - A¹⁺¹: Pruned adjacency matrix.
 - X^{l+1} : Representation matrix for the remaining nodes.

Methodology \rightarrow Graph Encoder \rightarrow Hierarchical Graph Representation Learning (III)

Final Pooling:

- L consecutive encoding and downsampling steps yield A^L and X^L as the pruned adjacency matrix and final node embeddings.
- A global pooling module aggregates node embeddings into a single vector:

$$h_G = \text{GRAPHPOOL}(X^L).$$

• The vector $h_G \in \mathbb{R}^F$ serves as the graph representation.

- Problem Formulation
- Graph Encoder
- Recipe Encoder
- Multi-Task Learning

Methodology \rightarrow Recipe Encoder (I)

• A synthesis recipe r_i consists of a sequence of n transformations:

$$r_i = [t_{i1}, t_{i2}, \ldots, t_{in}],$$

where each transformation t_{ij} falls into one of several categories.

• To predict the QoR for a given pair of an AIG and a recipe, it is essential to learn a meaningful representation of the recipe.

Steps for Representation Learning:

- Embedding:
 - Convert transformations *t_{ij}* into dense, continuous vectors:

$$\mathbf{e}_i = \operatorname{RECIPEEMBED}(r_i), \quad \mathbf{e}_i \in \mathbb{R}^{n \times p}.$$

• Captures patterns and dependencies in the recipe.

Methodology \rightarrow Recipe Encoder (II)

Steps for Representation Learning:

2 Convolutional Layers:

• Capturing relationships between adjacent transformations and extracting features with *M* one-dimensional convolutional layers. The *m*-th convolutional layer is denoted as:

$$\lambda_i^m = \text{CONVLAYER}^m(\mathbf{e}_i).$$

• Final representation of recipe r_i:

$$\lambda_i = \operatorname{Concat}(\lambda_i^1, \lambda_i^2, \dots, \lambda_i^M).$$

- Problem Formulation
- Graph Encoder
- Recipe Encoder
- Multi-Task Learning

Objective: Address overfitting caused by data scarcity in the Logic Synthesis Optimization using a multi-task learning approach. **Primary Task:** QoR value regression for each pair (G, r_i) . **Auxiliary Task:** Binary multi-label graph classification.

- Aids in training by providing additional signals.
- Helps signify recipe relevance to an AIG during inference.

Total Loss Function:

$$\mathcal{L} = \mathcal{L}_{\text{classification}} + \gamma \mathcal{L}_{\text{regression}}$$

$\begin{array}{l} \mbox{Methodology} \rightarrow \mbox{Multi-Task Learning} \rightarrow \mbox{Binary} \\ \mbox{Multi-Label Graph Classification} \end{array}$

Objective: Predict whether each of the K recipes performs well for a given AIG G.

Label Construction:

- Select the $\lceil \rho K \rceil$ best recipes with the lowest QoR values.
- The label for each recipe r_i with respect to AIG G is defined as:

$$c_i^G = \begin{cases} 1 & \text{if } r_i \text{ is among the top-performing recipes for } G, \\ 0 & \text{otherwise.} \end{cases}$$

Classifier:

- Input: Graph representation h_G .
- Output: $P_{\text{classification}}^{G} \in [0, 1]^{K}$ (predicted probabilities for each recipe):

$$\mathsf{P}^{G}_{\mathsf{classification}} = \operatorname{GRAPHCLASSIFY}(h_G)$$

• Classification Loss:

$$\mathcal{L}_{\mathsf{classification}} = \textsc{BinaryCrossEntropy}(P^{\mathcal{G}}_{\mathsf{classification}}, \mathcal{C}^{\mathcal{G}})$$

$\begin{array}{l} \mbox{Methodology} \rightarrow \mbox{Multi-Task Learning} \rightarrow \mbox{QoR Value} \\ \mbox{Regression} \end{array}$

Objective: Predict QoR value y_i^G for a given pair (G, r_i) . **Inputs:**

- Graph representation h_G .
- Recipe representation λ_i .
- Classification probabilities $P_{\text{classification}}^{G}$.

Output:

$$y_i^{\mathcal{G}} = \text{Decoder}(\text{Concat}(h_{\mathcal{G}}, \lambda_i, P_{\text{classification}}^{\mathcal{G}}))$$

Regression Loss:

$$\mathcal{L}_{\text{regression}} = \text{RegressionLoss}(y_i^{\mathcal{G}}, q_i^{\mathcal{G}})$$

$\mathsf{Methodology} \to \mathsf{Overview}$

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

• Datasets

- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

Dataset	aset Min #Nodes Max #No		Avg #Nodes	#Graphs
OpenABC-D	597	139,719	36,959.92	26
EPFL	207	57,503	15,833.40	15
CD	77	55,332	21,746.99	118

Table: Statistics of datasets used in the experiments.

- OpenABC-D [3]
- EPFL [1]
- Commercial Dataset (CD): Proprietary dataset.

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

• Chowdhury et al. [3]:

- GCN [7] for AIG encoding.
- 1D Convolutional layers for recipe encoding.
- The two representations are concatenated to predict the QoR.

• LOSTIN [8]:

- GIN [10] for AIG encoding.
- LSTM for recipe representation learning.
- The two representations are concatenated to predict the QoR.

• GNN-H [9]:

• Adopting a similar strategy as LOSTIN [8], but utilizing PNA [4] for AIG encoding.

• Yang et al. [11]:

- GraphSage [5] as the GNN.
- Transformer for recipe encoding.

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

• Mean Absolute Percentage Error (MAPE):

$$\mathsf{MAPE} = \frac{100}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

- Measures the average absolute percentage difference between actual and predicted QoR.
- Lower MAPE indicates better performance.

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

$\mathsf{Experiments} \to \mathsf{Implementation} \ \mathsf{Details}$

- Framework: PyTorch.
- Graph Encoder:
 - 2 layers of Graph Encoding/Downsampling (L = 2).
 - A 2-layer GCN [7] as our GNN, with a hidden layer size of 64.

• Graph Downsampler:

- TopKPooling [2] with $\alpha = 0.5.$
- Graph Pooling:
 - Multi-readout: Mean + Max pooling.
 - Final graph-level representation: 128-dimensional.

• Recipe Encoder:

- Embedding size: 60.
- 4 one-dimensional convolutional layers.

• Label Construction:

• $\rho = 0.5$ for selecting top recipes.

Data Split:

• 2/3 for training, 1/3 for testing.

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

Metric	Dataset	Methods				
	Dataset	Chowdhury et al. [3] (Y_1)	LOSTIN [8] (Y ₂)	GNN-H [9] (<i>Y</i> ₃)	Yang et al. [11] (<i>Y</i> ₄)	MTLSO(X)
	OpenABC-D	23.66 ± 0.19	24.61 ± 0.03	24.31 ± 0.27	24.58 ± 0.13	$\textbf{22.93} \pm \textbf{0.23}$
Delay	EPFL	4.18 ± 0.07	3.96 ± 0.02	3.96 ± 0.03	3.96 ± 0.02	$\textbf{3.94} \pm \textbf{0.01}$
	CD	15.88 ± 0.41	16.76 ± 0.13	16.80 ± 0.06	17.09 ± 0.08	$\textbf{13.75}\pm\textbf{0.25}$

	Gain (%)				
Dataset	$\frac{Y_1-X}{Y_1} \times 100$	$\frac{Y_2-X}{Y_2} \times 100$	$rac{Y_3-X}{Y_3} imes 100$	$rac{Y_4-X}{Y_4} imes 100$	
OpenABC-D	3.09	6.83	5.68	6.71	
EPFL	5.74	0.51	0.51	0.51	
CD	13.41	17.96	18.15	19.54	

Table: Comparative Results in Terms of MAPE (Avg. \pm Std.) for Delay (lower is better).

- MTLSO outperforms all baselines across all datasets.
- It achieves an average gain of 8.22% in delay across all baselines and datasets.

Metric	Dataset	Methods				
	Dataset	Chowdhury et al. [3] (Y_1)	LOSTIN [8] (Y ₂)	GNN-H [9] (<i>Y</i> 3)	Yang et al. [11] (<i>Y</i> ₄)	$MTLSO\left(X\right)$
Area	OpenABC-D	2.71 ± 0.02	2.35 ± 0.07	$\textbf{2.33} \pm \textbf{0.06}$	3.77 ± 0.00	2.57 ± 0.03
	EPFL	2.46 ± 0.03	2.30 ± 0.01	2.34 ± 0.02	2.39 ± 0.00	$\textbf{2.23} \pm \textbf{0.04}$
	CD	3.57 ± 0.10	3.46 ± 0.17	3.59 ± 0.12	3.81 ± 0.05	$\textbf{3.33} \pm \textbf{0.08}$

	Gain (%)				
Dataset	$\frac{Y_1-X}{Y_1} \times 100$	$\frac{Y_2-X}{Y_2} \times 100$	$rac{Y_3-X}{Y_3} imes 100$	$\frac{Y_4-X}{Y_4} \times 100$	
OpenABC-D	5.17	-9.36	-10.30	31.83	
EPFL	9.35	3.04	4.70	6.69	
CD	6.72	3.76	7.24	12.60	

Table: Comparative Results in Terms of MAPE (Avg. \pm Std.) for Area (lower is better).

 MTLSO achieves an average gain of 5.95% in area across all baselines and datasets.

• Performance Improvements

- Consistent gains in Delay and Area with MTLSO.
- Powered by the combination of multi-task learning and hierarchical graph representation learning.

• Future Enhancement Opportunities

- Improvements achieved with simple GNNs (i.e., GCN [7]) and basic recipe encoders (i.e., 1D convolution layers).
- Greater potential with advanced GNNs (e.g., GIN [10]) and more sophisticated recipe encoders (e.g., LSTM, Transformer).

- Datasets
- Baselines
- Metrics
- Implementation Details
- Results
- Ablation Study

$\mathsf{Experiments} \to \mathsf{Ablation} \ \mathsf{Study} \to \mathsf{Model} \ \mathsf{Components}$

Goal: Assess the impact of two components:

- Replacing Hierarchical Graph Representation Learning (HGRL) with Plain Graph Representation Learning (PGRL).
- Retaining the HGRL module from MTLSO but removing the graph classification task, resulting in a Single-task Learning (STL) setup.

Findings:

- Both multi-task learning and HGRL contribute significantly to better performance.
- Multi-task learning is more critical than HGRL, as even a simpler PGRL (trained in multi-task mode) surpasses the single-task (STL) variant.

Table: Ablation Study Results of Model Components in Terms of MAPE.

	Delay			Area		
	OpenABC-D	EPFL	CD	OpenABC-D	EPFL	CD
PGRL	23.49%	3.95%	16.48%	2.99%	2.24%	3.44%
STL	23.61%	4.51%	15.56%	2.69%	2.57%	3.45%
MTLSO	22.93%	3.94%	13.75%	2.57%	2.23%	3.33%

Experiments \rightarrow Ablation Study \rightarrow Number of Graph Encoding/Downsampling Layers (I)

• Ablation on the number of Graph Encoding/Downsampling layers (L).

Experiments \rightarrow Ablation Study \rightarrow Number of Graph Encoding/Downsampling Layers (II)

- More than one encoding layer consistently improves performance, highlighting the need for a hierarchical strategy for large AIGs.
- Optimal *L* is 2 for EPFL and CD, and 3 for OpenABC-D based on classification metrics.
 - Tuning *L* for each dataset can further enhance graph representation quality.

Experiments \rightarrow Ablation Study \rightarrow Node Retainment Ratio (α) (I)

• Ablation on the node retainment ratio α in the graph downsampling module.

Experiments \rightarrow Ablation Study \rightarrow Node Retainment Ratio (α) (II)

- $\alpha = 0.5$ yields the best performance, surpassing the extremes ($\alpha = 0.1$ or $\alpha = 0.9$).
- Retaining too many nodes (α = 0.9) degrades performance, indicating some nodes are less informative.
- Pruning too aggressively ($\alpha = 0.1$) harms the results, indicating that certain nodes play a significant role in the graph-level representation.
- The findings highlight:
 - The importance of adopting such a hierarchical strategy for encoding AIGs.
 - The need to set an optimal value for this hyperparameter.

• Novel Multi-Task Learning Approach for LSO:

- MTLSO mitigates overfitting caused by limited data availability.
- Combines multi-label graph classification and regression tasks.

• Hierarchical Graph Encoding:

- Employs multiple layers of Graph Encoding/Downsampling.
- Effectively handles large, complex AIGs where plain GNNs struggle.
- Key Results:
 - **Delay Minimization:** +8.22% improvement.
 - Area Minimization: +5.95% improvement.

Any Questions?

References I

- Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational benchmark suite. In *Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS)*, 2015.
- [2] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse hierarchical graph classifiers. arXiv preprint arXiv:1811.01287, 2018.
- [3] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint arXiv:2110.11292, 2021.
- [4] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems, 33: 13260–13271, 2020.

References II

- [5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30, 2017.
- [6] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A survey. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(5):1–46, 2021.
- [7] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.
- [8] Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. Lostin: Logic optimization via spatio-temporal information with hybrid graph models. In 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 11–18. IEEE, 2022.

- [9] Nan Wu, Yuan Xie, and Cong Hao. Ai-assisted synthesis in next generation eda: Promises, challenges, and prospects. In 2022 IEEE 40th International Conference on Computer Design (ICCD), pages 207–214. IEEE, 2022.
- [10] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019.
- [11] Chenghao Yang, Yinshui Xia, and Zhufei Chu. The prediction of the quality of results in logic synthesis using transformer and graph neural networks. *arXiv preprint arXiv:2207.11437*, 2022.