High-Parallel In-Memory NTT Engine with Hierarchical Structure and Even-Odd Data Mapping

Bing Li¹, Huaijun Liu², Yibo Du^{3,4}, Ying Wang^{3,4}

Institute of Microelectronics, Chinese Academy of Sciences¹ Capital Normal University² Institute of Computing Technology, Chinese Academy of Sciences³, University of Chinese Academy Sciences⁴

Outline

- Background and Motivation
- Proposed Method
 - Overview
 - Architecture & Data Mapping
- Evaluation and Results
- Conclusion

Fully Homomorphic Encryption

- Data Security
- Powerful Functionality
- High Computational Overhead

> FHE Review

[Viand A, et al., S&P 2021]

Classic NTT Challenges & Advantages

Serially stage computation Complex data transfer μω with n/2 size

MVM-Based NTT Challenges & Advantages

 \mathbf{I} $\boldsymbol{\omega}$ with \mathbf{n}^2 size

High Parallelism and Efficiency

Digital in-SRAM Computing

- High-Efficiency Parallel Computation
- Computing-in-Memory Capacity
- Digital Matrix-Vector Multiplication

> All-Digital SRAM-Based ML Edge Applications

[Yu-Der Chih, et al., ISSCC 2021]

Outline

- Background & Motivation
- Proposed Method
 - Overview
 - Architecture & Data Mapping
- Evaluation and Results
- Conclusion

Overview

Outline

- Background & Motivation
- Proposed Method
 - Overview
 - Architecture & Data Mapping
- Evaluation and Results
- Conclusion

MVM Module-Data Mapping

MVM Module-Data Mapping

MVM Module-Computation

MVM Module-Reduction

Large-scale NTT Operations

> Karatsuba multiplication algorithm

 $a \cdot \omega = a_{h} \cdot \omega_{h} \ll 2^{\log_{2}q} + (a_{h} \cdot \omega_{l} + a_{l} \cdot \omega_{h}) \ll 2^{(\log_{2}q)/2} + a_{l} \cdot \omega_{l}$

Mod Algorithm Optimization

> Adapt the original Barrett algorithm to the efficient implementation on CIM

Mod Algorithm Optimization

Mod Module-Data Mapping

Mod Module-Computation

Outline

- Background & Motivation
- Proposed Method
 - Overview
 - Architecture & Data Mapping
- Evaluation and Results
- Conclusion

Evaluation Setup

Design	Platform	Algorithm	NTT Parameters (n, log ₂ q)
HP-CIM(Ours)	6T SRAM	MVM	(32K,32)
BP-NTT	6T SRAM	CT Butterfly	(1024,16)
MeNTT	6T SRAM	CT Butterfly	(32K,32)
RM-NTT	ReRAM	MVM	(1024,16)
CryptoPIM (Baseline)	ReRAM	Butterfly	(32K,32)
HP-CIM Settings			
MVM Module	16 PEs, 32 KB/PE 256 SubArrays/PE, 64×16 SubArray		
MOD Module	2 PEs, 8 KB/PE 128 SubArrays/PE, 8×64 SubArray		

HP-CIM achieves a latency reduction of up to 3.08× compared to the fastest existing CIM-based NTT accelerator, RM-NTT

HP-CIM provides significant energy savings of up to 4.96× over the most energy-efficient prior solution, MeNTT

n=32K, $log_2q=32$

Under large-scale NTT parameter settings, HP-CIM outperforms other designs in terms of latency and energy

➢ HP-CIM reduces execution time by over 2.4× compared to CPU

Conclusion

- 1. High Parallelism with Hierarchical SRAM Architecture
- Introduced a digital SRAM-based CIM NTT engine, utilizing a hierarchical structure to achieve high parallelism and scalability for large-scale NTT operations.

2. Novel Even-Odd Data Mapping Strategy

• Proposed an even-odd data mapping approach to optimize memory utilization, enabling efficient reuse of intermediate computation results for better scalability.

3. Integrated Mod Computation within CIM Arrays

• Developed efficient mod operations directly within CIM arrays using SRAM read-write capabilities, eliminating the need for extra peripheral circuits and enhancing area and energy efficiency.

4. Significant Performance and Energy Improvements

• Achieved up to 3.08× faster execution and 4.96× energy savings compared to prior CIMbased designs, validated through extensive comparisons with state-of-the-art methods.

THANK YOU

High-Parallel In-Memory NTT Engine with Hierarchical Structure and Even-Odd Data Mapping

Bing Li¹, Huaijun Liu², Yibo Du^{3,4}, Ying Wang^{3,4}

Institute of Microelectronics, Chinese Academy of Sciences¹ Capital Normal University² Institute of Computing Technology, Chinese Academy of Sciences³, University of Chinese Academy Sciences⁴

Reference

[1] Gentry C. Fully homomorphic encryption using ideal lattices[C]. Proceedings of the forty-first annual ACM symposium on Theory of computing, Bethesda, Maryland, 2009: 169-178.

[2] Fan J, Vercauteren F. Somewhat Practical Fully Homomorphic Encryption[J]. IACR Cryptology ePrint Archive,2012,2012(2012):144-162.

[3] Kim S, Kim J, Kim M J, et al. Bts: An accelerator for bootstrappable fully homomorphic encryption[C]. Proceedings of the 49th Annual International Symposium on Computer Architecture, New York, 2022: 711-725.

[4] Samardzic N, Feldmann A, Krastev A, et al. F1: A fast and programmable accelerator for fully homomorphic encryption[C]. MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, Greece, 2021: 238-252.

[5] He Y, Qu S, Lin G, et al. Processing-in-SRAM acceleration for ultra-low power visual 3D perception[C]. Proceedings of the 59th ACM/IEEE Design Automation Conference, San Francisco California, 2022: 295-300.
[6] Li D, Pakala A, Yang K. MeNTT: A compact and efficient processing-in-memory number theoretic transform (NTT) accelerator[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(5): 579-588.

[7] Albrecht M, Chase M, Chen H, et al. Homomorphic encryption standard[J]. Protecting privacy through homomorphic encryption, 2021: 31-62.