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Background

B SRAM CIiM enhances performance in data-intensive Al tasks, but due to

oroposed to address the

iImited capacity, it suffers from frequent weights reload
Recently, a high-density

ROM CIM (G. Yin et al., 2023) has been

Imited capacity chal

SRAM CiM challenge:
Frequent weights reload
due to limited capacity
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Background

B By introducing SRAM CIM as finetuning weights, YOLoC and Hidden-
ROM (Y. Chen et al., 2022) are proposed to release the bottleneck of

flexibility issue
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Motivation

B Computing density of analog ROM CIM is limited by ADC
B Memory density of digital SRAM CIiM is limited by adder tree
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@ Computing density
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Motivation

B YOLoC demonstrates a new concept of cutting off off-chip parameters
loading with large-capacity ROM CiM and finetuning to various tasks

B Further area reduction by MAC reusing has not to be exploited
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Contributions

® How to further improve the density of ROM CiM?

M The key contributions of this work DCIROM:

A ROM-logic fusion design approach that achieves both high memory density
and high computing density by greatly simplified ROM circuit and adder tree

dTwo methods that achieve low extra circuit overhead flexibility of DCIROM on
different datasets by ROM CiM resource reusing

dA 65nm DCIROM chip that has built-in with all weights of ResNet-56, achieving
experimentally measured ultra-high 2.06 TOPS/mm? computing density and 487
Kb/mm?2 memory density on end-to-end inference task
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Proposed Design

B Proposed DCIROM: A synthesizable ROM-logic fusion CiM

design approach

1 Density enhancement process from general digital SRAM CiM to ROM-

logic fusion CiM
— Digital SRAM CiIM  —
Addr[1:0]

Digital ROM CiM
w/o opt.

ROM-logic fusion

(this work)

. A
Addr[L0] N

Merged memory-logic block

Increased cell density

Improved PPA
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Proposed Design

B Implementation of DCIROM on ResNet-56 convolutional layers
d PPA comparison of SRAM CiM, ROM CiM and ROM-logic fusion CiM
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Proposed Design

B PPA improvement space of ROM-logic fusion CiM

d *Memory-compute ratio: Select 1 column from a 4/8/16-column memory block
to perform MAC operation
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Proposed Design

B Two methods of ROM CiM reusing: ACSEL and ACINJ

1 ACSEL: Select a column including sufficient 1’s for accumulating
1 ACINJ: Add a redundant column including enough 1’s to ROM

Baseline IFM (input feature map)
* 1
[
ROM CiM + | SRAM |=»@=—>( Accum.
W, Prod,
Trunk Branch Computation units

| > D < |
Trunk out Q? Branch out
OFM (output feature map)

Proposed approach |gpm

7

ROM CiM
&
Accum.

|_>€|9<_|
OFM

Act
v
—>®—>

Trunk parameters

Original ROM CiM

+ (A

n

— X -

Prod, W

Trunk out " Branch out

Method

»

n

SRAM

Branch parameters

ACSEL
v

: Prod
v

1 > |+




Proposed Design

B ROM CiM reuse evaluation: Feasibility and area reduction
d ACSEL/ACINJ reduce 56%/47% area overhead at most
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Measurement

B Structure of ResNet-56

1 The precision of input/weight is 8bit/4bit
4 All convolutional layers are mapped on chip
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Measurement

B DCIROM chip architecture
1 High efficiency ROM-logic fusion synthesis

L1/L2/L3 DCiROM
Clock Address[3:0] Act[M-%:O] (Quantified in 4b)
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Measurement

B Die micrograph and chip summary

4mm

d FoM: Memory density x Computing density

3mm

L1 L2 L3

Capacity (Kb) 144 576 2304
Voltage (V) 06 | 1.2 | 06 | 1.2 | 0.6 1.2
Energy efficiency (TOPS/W)| 34.8 | 86 356 | 9.0 | 39.2 | 9.1

Memory density (Kb/mm?) 620 495 479

Computing density

(TOPS/mm?) 085| 3.3 |057] 24 | 051 | 1.6
FoM (TOPS/mm?Kb/mm?) | 527 | 2046 | 282 | 1188 | 244 | 766

19



Measurement

B Area/Power breakdown and inference accuracy
4 More than 80% area/power to compute

4 Less than 3% accuracy loss compared with FP32 baseline
Power Breakdown

Area Breakdown

4%
5%
3% E—

13%

1% 7V

1%
3%

L1 Macro
mL2 Macro
m L3 Macro
Global SRAM
®m FP_Macro
m Ctrl etc.

CIFAR-10 | MNIST | Fashion-MNIST
Baseline (FP32) | 93.39% 99.64% 92.65%
This work (4b/8b)| 91.23% 99.38% 90.10%
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Measurement

B Task-level chip measurement results
1 Energy efficiency and computing density at different voltages
d Inference energy consumption compared with SRAM CiM

-+ Computing density -=Energy efﬁzi(c)ancy . ISSCC'24 [3] This work
™
L 2 = = 100 I CE T
D v T 1 2.9X
(%1.5 30 o =k 5.5x
2l |9 £ 9.9x
0.5 10 >
®
0 c 1
LI 32x32x3 128x128x3 224x224x3

06070809 1 1.11.2
VDD (V)

Image size
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Comparison with SOTA CiIM works

B Achieving high computing density (> 30x than ROM CiM), high Memory
density (> 4x than SRAM CiM) by ROM-logic fusion, and breaking
through the SOTA works trade-off

ISSCC’24 [3] | ISSCC’24 [4] | CICC’24 [5] This work JSSC’23[10] | CICC’24 [7]
Technology 65nm 28nm 22nm 65nm 28nm 28nm
CiM operation Analog SRAM Hybrid SRAM Digital SRAM Digital ROM Analog eDRAM Analog ROM
Capacity (Kb) 80 192 128 3024 9600 22528
Voltage (V) 0.6~1.1 0.7~0.95 0.6~0.8 0.6 1.2 1.1 0.7~-1.1
Energy efficiency (TOPS/W)* 255 16.9~37.6 4.2~11.1 38.0 9.0 21.49 14.9~31.2
Memory density (Kb/mm?2)* 31 18 115 487 181 1656
Computing density (TOPS/mm?2)* 0.78 1.02 0.21~0.28 0.55 2.06 0.19 0.030~0.059
FoOM (TOPS/mm?2-Kb/mm?) 24 1085 3629~5000 268 1004 1975 2856~5713
FoM (TOPS/mm?2-Kb/mm?2)* 24 18 24~32 268 1004 34 49~98

*Normalized to 65nm
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Conclusion

® Highlight of DCIROM

4 Ultra-high density FoM (computing density x memory density)

Computing density (TOPS/mm?)

t This work *
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SRAM) 105
m < Isscc24 | %
~ g (Analog
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clcc’23 JSSC’23 " (Analog
(Digital ® _ (Analog . ROM)
SRAM) eDRAM) '
10 100 1000

Memory density (Kb/mm?)
"Normalized to 65nm.
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Conclusion

B Proposed DCIROM design approach
dHigh memory density and high computing density
dLess area overhead to realize flexibility

B Features:

A fully digital ROM with local computing units supports 10.2x-55.7x density FoM
of SOTA CiM works

dTask evaluation shows 9.9x system-level energy efficiency improvement over
SRAM CIiM

dReduce 53%-85% YOLoC branch area overhead through ROM CiM reusing
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