

# Modeling and Simulation of Silicon Photonics Systems in SystemVerilog & *XMODEL*

Prof. Jaeha Kim

**Seoul National University & Scientific Analog, Inc.** CEDA/CASS/SSCS Joint Session on Silicon Photonics ASP-DAC 2025

# **Silicon Photonics**

• Integration of photonic and electronic components to realize dense, high-bandwidth I/Os with low power



Silicon photonics switch IC based on Mach-Zehnder interferometers (MZI) [F. G. de Magalhaes, et al., "Silicon Photonic Interconnects: Minimizing the Controller Latency" GLSVLSI, 2018]

# **Challenge with Verifying SiPh Systems**



C. Sun, et al., "A 45nm SOI Monolithic Photonics Chip-to-Chip Link with Bit-Statistics-Based Resonant Mirroring Thermal Tuning, VLSI Symp. 2015.

#### **Goal: Model SiPh in SystemVerilog**

- Want to run efficient simulation of silicon photonics, analog, and digital electronics in *one unified platform* 
  - Can't verify the system by simulating each of them separately
- Want that platform to be *SystemVerilog* 
  - The established platform for verifying most chips (UVM)
  - Validated digital models can be directly synthesized

#### **XMODEL** by Scientific Analog

- A plug-in extension that enables *fast and accurate analog/mixed-signal* simulation in *SystemVerilog* 
  - Event-driven: 10~100x faster than Real-Number Verilog
  - **Analog**: supporting both functional and circuit-level models
  - SystemVerilog: enabling analog verification in UVM



#### **Event-Driven Simulation of Analog**

 How do we extend the Verilog's event-driven algorithm to simulating analog circuits?



### **Expressing Analog Signals**

• XMODEL expresses analog signals in functional forms instead of using a series of time-value pairs:



#### **Expressing Optical Waves**

#### **Baseband Equivalent**

**XMODEL** 



- XMODEL can express optical waves with fewer events!
- Even when multiple wavelength signals are mixed

#### **XMODEL's Event-Driven Simulation**

• With the signals transformed into Laplace s-domain:

$$x(t) = \sum_{i} c_i t^{m_i - 1} e^{-a_i t} u(t) \xrightarrow{\mathcal{L}} X(s) = \sum_{i} \frac{b_i}{(s + a_i)^{m_i}}$$

• The response of a system can be computed in an eventdriven manner without time-step integration:



## **Simulating an Electrical Transceiver**

#### • *XMODEL* successfully extends the Verilog's eventdriven algorithm to analog circuits!



# Simulating an Optical Transceiver

• And also to silicon photonics systems communicating by modulating ~200THz signals!



### Modeling Optical Waveguides

- Optical waves can propagate in both directions, couple to other waveguides, and get reflected at the ends
- Not a typical phenomenon modeled by SystemVerilog



# **Circuit-Level Modeling (CLM)**

- With *XMODEL*, you can simulate circuit-level models by listing the circuit primitives directly in SystemVerilog
  - Solving V & I; yet still fast with event-driven simulation!



# **Modeling Waveguides**

- Waveguides can be modeled using a combination of circuit elements and signal-flow elements
  - Circuits at ports model the reflections due to Z-mismatch
  - $H_{ij}(s)$  can model the delay and frequency-dependent TF



#### **Modeling Multi-port Waveguides**



## Modeling Y-Branch and Dir. Coupler

• You can model various optical elements by defining their port-to-port transfer functions *H*<sub>ij</sub>



#### **Modeling Phase Shifters**

- Phase shifters are just another optical waveguides
  - Vary the delays of  $H_{21}(s)$  and  $H_{12}(s)$  with the control input
  - In SystemVerilog, schedule the events with variable delay



#### **XMODEL** Primitives for Si Photonics

•*XMODEL* offers primitives for basic photonic elements



### **Build Models with XMODEL Primitives**

• You can also model your analog circuits by putting together *XMODEL* primitives as building blocks



#### **GLISTER:** Build Top-Down Models

- *GLISTER* is a graphical modeling interface integrated into schematic editors (e.g. Cadence Virtuoso)
- Simply place the *XMODEL* primitives on a schematic and connect them with wires; no coding is necessary!



#### **Modeling Mach-Zehnder Modulators**

- MZM modulates the transfer gain by varying the interference between two paths
- Can be modeled using the Y-branch, waveguide, phase shifter primitives of XMODEL



### Simulating MZM-based Transceiver

#### • With a testbench described using *XMODEL* primitives



# **Simulated Waveforms**

- Data is transmitted by modulating the optical power
- The low number of events makes the simulation fast



# **Problem in Modeling Ring Resonators**

- When you form a ring using the basic SiPh primitives, you will form a loop propagating events indefinitely
  - Causing slow simulation speeds



# **SiPh Primitives for Ring Resonators**

- We can model these ring-based elements as multi-port waveguides with their port-to-port transfer functions
  - And avoid the propagation of events inside the rings



### **Approximating Port-to-Port TFs**

- Some TFs don't fit into canonical forms due to delays
- They can be approximated as a sum of canonical TFs

**Ring Resonator:** 



# Modeling Micro Ring Modulator (MRM)

- The control terminals may have finite impedance (C<sub>J</sub>)
- May also model temperature sensitivity and/or integrated heater



# **Simulating MRM Characteristics**

• We can simulate the MRM's transfer characteristics by sweeping the wavelength and measuring output power



### **Simulated Results**

# • Varying the round-trip delay of the ring changes the resonance frequency and modulates the output power



#### MRM for WDM

# • Checking crosstalk between MRMs with resonances at 1310, 1311, 1312 and 1313nm



#### **Predistortion and Equalization**

- Predistortion (PD) compensates errors in PAM<sub>4</sub> levels
- Equalization (EQ) compensates freq.-dependent loss
- A look-up table (LUT)-based implementation:



#### PAM<sub>4</sub> TX with PD and FFE



Modeling & Simulation of Si Photonics Systems in SystemVerilog/XMODEL

32

# **Simulated Eye Diagrams**



siph\_pam4.tx\_pam4\_ffe:tb\_run

### Simulating MRM Transceiver

#### • Driving MRM with PAM<sub>4</sub> TX and receiving with TIA



#### siph\_pam4.tb\_trx\_mrm\_1ch:schematic

Modeling & Simulation of Si Photonics Systems in SystemVerilog/XMODEL

34

# **Simulated Waveforms**



# **Simulated Eye Diagram**

#### • Eye diagram of the RX TIA output



#### **4-Channel WDM Transceiver**



Modeling & Simulation of Si Photonics Systems in SystemVerilog/XMODEL

37

#### **4-Channel WDM Eye Diagrams**



### MRM Thermal Control Loop (TCL)

- Closed-loop control of MRM temperature with an integrated heater
  - Adjust temperature so that V1=V2  $\rightarrow$   $I_{out}/I_{in}$  = R1/R2
  - MRM loss at detuning is set by the ratio R1/R2



#### [H. Li, et al., JSSC 01/2021]

# **Modeling MRM TCL**



Modeling & Simulation of Si Photonics Systems in SystemVerilog/XMODEL

40

# **Simulated Results**



### Summary

- Presented ways to extend the XMODEL's event-driven simulation approach to silicon photonic systems
  - Expressing optical waves in equation forms
  - Modeling optical waveguides as transmission lines
  - Approximating TFs of ring resonator elements
- Demonstrated that we can model & simulate:
  - 4-channel wavelength-division multiplexing (WDM)
  - PAM<sub>4</sub> MRM-based transceiver with PD and EQ
  - Thermal control loops for MRMs