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• Current video generation models excel due to the diffusion

paradigm and the Video Diffusion Transformer backbone.

[1] https://www.vidu.studio/ [2] https://sora.com

Sora [2] : Clifftop Waves and WaterfallsVidu [1] : Toy boat on silk

Paradigm: Diffusion Process

Backbone: Video Diffusion Transformer
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• The Paradigm: What is diffusion model ?
• Frames are iteratively denoised, with noise predicted by VDiT.
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• The Backbone: What is Video Diffusion Transformer (VDiT) ?
• A transformer-based noise predictor with a spatial and temporal 

patching structure.
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• The Backbone: What is Video Diffusion Transformer (VDiT) ?
• A transformer-based noise predictor with a spatial and temporal 

patching structure.
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• Video generation is slow due to large inference data.
• It costs over 1 hour to generate a one-minute video.[1]

Multi-steps

Denoising

Multi-steps

Denoising

Spatial 

attention

Temporal 

attention
MLP

Noise predictor: VDiT

[1] https://www.wired.com/story/openai-sora-generative-ai-video/

Inference: reverse diffusion

VDiT is the main bottleneck!

Take up over 90% of the inference time. 

*Other processes include initialization and noise handling.
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• How to accelerate VDiT ?
• We can learn from traditional video processing.

Video Processing[1]

[1] Research on Key Technologies of H.264/HEVC Video Coding & Decoding Standard.
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Lack of compression process!
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• How to accelerate VDiT ?
• We can learn from traditional video processing.

Video Processing Video Generation

Transfer Inference

Similarity-based

storage reduction
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High storage Low storage High computations Low computations

Similarity-based

computations reduction
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VDiT Operator Prop.
Act-W* Act-Act Others

56.97% 

Unaccelerated!

19.50% 
23.53% 

• VDiT exists large unaccelerated computations.
• Existing token reduction methods[1][2] fail to accelerate Act-Act 

operator due to accuracy loss caused by dimension mismatch.

[1] Song Z, et al. CMC: Video Transformer Acceleration via CODEC Assisted Matrix Condensing [ASPLOS 2024]  

[2] Wang X, et al. InterArch: Video Transformer Acceleration via Inter-Feature Deduplication with Cube-based Dataflow [DAC 2024]

Q × K
A × V

QKV/O 

Projection

Activation 0 (Ref.) 

Activation 1
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Similarity- based
Act × Weight 

Act × Act 

token reduction

*Considering computing compression
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𝑸𝟐𝑲𝟐
𝑻

= 𝑸𝟏∆𝑲𝟐
𝑻 + ∆𝑸𝟐𝑲𝟏

𝑻 + ∆𝑸𝟐∆𝑲𝟐
𝑻 + 𝑸𝟏𝑲𝟏

𝑻

≈ 𝑸𝟐∆𝑲𝟐
𝑻 + 𝑸𝟏𝑲𝟏

𝑻

Dense computing 

More computations

Sparse computing

• Algorithm-hardware co-design for Act-Act operator 

acceleration.
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Tech 1 (algorithm): Differential Approximation Method

Tech 2 (hardware): Column-concentrated Processing Element
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• What is differential computing？
• Reducing redundant computations by leveraging the similarity 

between activations.
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GEMM*2 SpMM*1 & GEMM*1  

𝐴2 = ∆𝐴2+ 𝐴1
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• How can differential computing be applied to Act-Act 

operator ?

Normal dense computing

𝑄1
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𝑄2 = ∆𝑄2 + 𝑄1
𝐾2 = ∆𝐾2 + 𝐾1

𝑄2 ∗ 𝐾2 = (∆𝑄2 + 𝑄1)(∆𝐾2 +𝐾1)

Employ differential computing 

for Act-Act operator
Naive differential computing
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SpMM*3 & GEMM*1

𝑄2 = ∆𝑄2 + 𝑄1 𝐾2 = ∆𝐾2 + 𝐾2

SpMM GEMM
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• How can differential computing be applied to Act-Act 

operator ?

𝑄1
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Act-Act
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Naive differential computing

SpMM*3 & GEMM*1
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Differential approximation computing

SpMM*1 & GEMM*1

The value of ∆𝑲𝟐 is smaller than 𝑲𝟐. Thus, 

some term can be skipped for efficiency.

Act-Act

𝑸𝟏×∆𝑲𝟐

Act-Act

∆𝑸𝟐×𝑲𝟏

Act-Act

∆𝑸𝟐×∆𝑲𝟐

We can reduce the computations of Act-Act operator by 51.67% with 

negeligible accuracy loss.
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• How to perform SpMM introduced by differential computing 

efficiently ? 

Non-zero elements are mainly clustered in some columns.

Red: Non-zero elements 

Blue: zero elements

• Observation: Column-split computing existing column-sparse 

pattern.
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• How to perform SpMM introduced by differential computing 

efficiently ? 
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Allocation Computing
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Non-zero elements are mainly clustered in some columns.

• Column-split computing based on column-sparse pattern.

1) Allocation 2) Computing
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• How to perform SpMM introduced by differential computing 

efficiently ? 
1) Allocation: determine dense and sparse columns by thresholds.
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1.10x / 1.56x higher area 

efficiency compared with 

dense-only and sparse-only 

architectures.

Area efficiency
1.56x

Dense OursSparse

1.10x
1.00x

• How to perform SpMM introduced by differential computing 

efficiently ? 
2) Computing: Compute outer products of allocated columns 

using sparse and dense arrays.
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Operational intensity[1] = computations / memory accesses

• Large operational intensity (OI) difference among operators 

leads to inefficient hardware utilization.

QKV/O 

Projection
Compute-bound

Q × 𝐾𝑇

A × V
Memory-bound

<40% utilization for 

static architecture

[1] https://crd.lbl.gov/divisions/amcr/computer-science-amcr/par/research/roofline/
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• Use intensity adaptive dataflow architecture design for 

dynamically allocate resources for different operators.

Tech 3 (dataflow): Intensity Adaptive Dataflow Architecture

Dataflow

Architecture
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Intensity adaptive dataflow

Compute-bound operators Memory-bound operators

O ALQKV QKV proj. O proj. Q*K S*V

Naive dataflow
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Low latency 🚀

• Dataflow: Intensity adaptive dataflow for reasonable 

resource allocation.
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• Architecture: Reconfigurable architecture including routing 

controller to support flexible resource allocation.
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Accuracy evaluation 
• Models: STDiT.1, Latte, VDT 

• Datasets: UCF101, MSR-VTT

• Baselines
• NVIDIA A100 GPU
• SOTA Vision Accelerators

• CMC[1] [ASPLOS 2024]
• InterArch[2] [DAC 2024]

• Metrics
• FVD, FID, CLIPSIM

*We use opensora1.0 (STDiT) demo prompts 

and 10 UCF101 labels for accuracy test.

[1] Song Z, et al. CMC: Video Transformer Acceleration via CODEC Assisted Matrix Condensing [ASPLOS 2024]  

[2] Wang X, et al. InterArch: Video Transformer Acceleration via Inter-Feature Deduplication with Cube-based Dataflow [DAC 2024]

FVD↓ CLIPSIM↑
Average 

loss

STDiT(dense) 477.97 0.264 ---

VIDA-STDiT 479.56 0.262 0.55%

CMC-STDiT 483.53 0.263 0.77%

Latte(dense) 505.27 0.294 ---

ViDA-Latte 514.33 0.293 1.07%

CMC-Latte 518.59 0.293 1.45%

We further test the full UCF-101 dataset for 

ViDA and the SOTA CMC.
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Area evaluation
• Simulation process library

• 32nm standard librabry

• Tools
• Synopsys Design Compiler
• CACTI 7

• Architecture
• 4 x PE group 

• 8 x column-concentrate PEs
• 4 x 4 DPUs
• 1 x 4 SPUs 
• Allocation unit
• Merge unit

*Scale to 7𝑛𝑚 with a frequency of 1GHz for

comparing with other works
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• ViDA achieves average 16.44x/2.18x speedup and 

18.39x/2.35 area efficiency compared with A100 GPU/SOTA 

Vision Accelerator.

You H, et al. Vitcod: Vision transformer acceleration via dedicated algorithm and accelerator co-design

Song Z, et al. CMC: Video Transformer Acceleration via CODEC Assisted Matrix Condensing [ASPLOS 2024]  

Wang X, et al. InterArch: Video Transformer Acceleration via Inter-Feature Deduplication with Cube-based Dataflow [DAC 2024]

Speedup
x16.44

x5.27

x3.12

2.18x

To GPU To CMC

x1.92

x1.14

Contribution 1 Contribution 2
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Conclusion

ViDA: Video Diffusion Transformer Acceleration with 

Differential Approximation and Adaptive Dataflow

𝑨𝟐𝑩𝟐≈ 𝑨𝟐∆𝑩𝟐 + 𝑪

&
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Communication e-mail : daiguohao@sjtu.edu.cn

Thank you for your attention!
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