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Point Cloud Processing

Point cloud is a representation of 3D data, containing valuable geometry & color information 

Autonomous Driving Robotic Perception AR / VR

Accurate, real-time and energy-efficient point cloud processing is crucial



Point Cloud Transformers

Point-Based Models Serialization-Based Models

Repeated point access leads to redundant computation & 

memory use, while window size restricts accuracy
Regular memory access, less redundant 

computation, and better accuracy

• Farthest Point Sampling (FPS) & k-Nearest 

Neighbors (kNN) for down-sampling

• Attention mechanisms in local windows for

feature computation

• Organizes points onto a directed curve

(e.g. z-curve)

• 3D sparse convolution for down-sampling

• Larger attention windows based on the curve

FPS
& kNN

Attn
SpConv Attn



Motivation: Performance Bottleneck Analysis

➢ Inference time breakdown:

• Octformer: 46% SpConv & 27% attention

• PTv3: 32% SpConv & 50% attention

• Failed to meet real-time requirements

SpConv & attention are two key bottlenecks of serialization-based models

Serialization-based models

real-time: ~30ms

[1] Peng-Shuai Wang. 2023. Octformer: Octree-based transformers for 3d point clouds. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–11.
[2] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang Zhao. 2024. Point Transformer V3: Simpler Faster 
Stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4840–4851.



Motivation

➢ Challenges
• Chlg.1: Inefficient Neighbor Search in SpConv

• Chlg.2: Useless Attention Computation

• Chlg.3: Data Dependencies in Softmax

➢ Optimizations
• Opt.1: Serialization-Based Parallel Neighbor Search

• Opt.2: Position-Aware Attention Pruning

• Opt.3: Fine-Grained Attention Dataflow



Chlg.1: Inefficient Neighbor Search in SpConv

➢ Kernel mapping in SpConv

• Stride > 1 for down-sampling

• Stride = 1 for positional encoding

Neighbor search is the most complex step
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Chlg.1: Inefficient Neighbor Search in SpConv

➢ Prior works: voxel merging

• Merge and compare all voxels (>105) serially

[1] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and Song Han. 2021. Pointacc: Efficient point cloud accelerator. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 449–461.
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Opt.1: Serialization-Based Parallel Neighbor Search
➢ Z-curve transform unstructured point clouds into ordered sequences 

voxel coordinate (x, y, z)

x = {xn-1...x1x0}2

y = {yn-1...y1y0}2

z = {zn-1...z1z0}2

z-curve index Φ
Φ= {ϕn-1...ϕ1ϕ0}8

= {zn-1yn-1xn-1...z1y1x1z0y0x0}2

➢ Z-curve enables parallel search for voxels

• Organize voxels into 8 sets based on the last 3 bits ϕ0 of their z-curve indices

• Each set performs merging and comparison in parallel

combine x, y, z
binaries bit-wise
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Chlg.2: Useless Attention Computation
➢ Attention in local windows

• Each voxel engages in attention calculations 

with every other voxel 

• Unimportant voxels have minimal impact on 

the results

Attention suffers from significant useless computation

➢ The increased window size

• A fixed point cloud size N and a window size w, 

the overall complexity is O(Nw)

• Grows rapidly as w increases

Attention Map



Chlg.2: Useless Attention Computation

➢ Static pruning method

• Adopt fixed pruning patterns

• Significant accuracy loss

➢ Dynamic pruning method 

• Pre-calculate a low-precision score matrix

• Additional computation & storage overhead

Both methods cannot suit serialization-based models
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Opt.2: Position-Aware Attention Pruning

➢ Boundaries are more crucial than interiors
• Once an object’s boundary is identified, it becomes feasible to be 

segmented from the background

• Pruning tokens from interior points minimally affects the results

➢ Get neighbor counts from neighbor search in SpConv
• Boundary points: voxels with fewer neighbors

• Interior points: voxels with more neighbors
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Chlg.3: Data Dependencies in Softmax

➢ Avoid numerical overflow in exponentials
• Subtract mi from each element in S

• mi is the maximum value of each row in S

➢ Maximum value causes data dependencies
• mi calculated after all kj multiplications

• Exponential calculation waits for mi

• Exponential sum computed before Matmul with V

𝑺𝑖 = 𝐪𝑖 ∙ 𝐾
𝑇 𝑚𝑖 = 𝑀𝐴𝑋(𝒔𝑖) 𝒆𝑖 = 𝐸𝑋𝑃(𝒔𝑖 −𝑚𝑖) 𝒐𝒖𝒕𝑖 = 𝒅𝑖 ∙ 𝑉

T

𝒅𝑖 = 𝒆𝑖/𝑆𝑈𝑀(𝒆𝑖)

Vec Mul Matrix 𝑴𝑨𝑿(𝒔𝒊𝟏, … , 𝒔𝒊𝒅) Vec Mul Matrix𝒆𝒊𝒋 = 𝑬𝑿𝑷(𝒔𝒊𝒋 −𝒎𝒊) 𝒅𝒊𝒋 = 𝒆𝒊𝒋/(𝒆𝒊𝟏 +⋯+ 𝒆𝒊𝒅)

Data Dependency Data Dependency Data Dependency

Inhibit efficient pipeline for computation of different kj, vj
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Opt.3: Fine-Grained Attention Dataflow

➢ Use dynamic maximum value mi

• Decouble the computation of each kj, vj in K, V

• Use the mi of the scores sij already calculated

➢ Block-wise parallel attention calculation

• Partition keys & values into blocks along the sequence dimension

• Parallelize attention computation within different blocks

… …PE Stage1 Reducing Data Dependencies
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Stage 1 … …kj, vj in Block 1

kj, vj in Block Y

…

Eliminate data dependencies & avoid large intermediate results



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚
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➢ Stage 1

• qi and kj are multiplied to obtain sij



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚
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➢ Stage 2

• The stored mi is compared with sij to get a new mi



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚
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Stage 1 … …

➢ Stage 3

• Exponentiation is calculated

• Subtracting the new mi



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚
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Stage 1 … …

➢ Stage 4

• Multiplication of sij and vj is conducted

• The li, oi results updated by the difference between 

the stored and new mi 

• The stored mi is updated by the new one



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚
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Sum Stage : Sum of Vec
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Stage 1 … …

➢ Sum Stage

• Obtain the global maximum value Mi of all local mi

• Updating li, oi from each block with the difference 

between their mi and Mi 

• The overall attention result outputi for qi is achieved



Overview of APTO Architecture
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Serialization & Mapping Core

External Memory Bus

N/2 Sorter

N/2 Sorter

Merge
Buffer

N-Merge 
Module
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Load Voxels
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Serialization Kernel Mapping Common

Store Indices

𝝓𝟎 = 𝟎

𝝓𝟎 = 𝟏

𝝓𝟎 = 𝟕

➢ Serialization

• Encodes and sorts points’ z-curve indices

① IE converts coordinates into z-curve indices

② N/2 sorter sorts N/2 indices 

③ NMM combines two sorted arrays into one 

➢ Kernel map creation

• Supports parallel neighbor searching

① Divides voxels into 8 sets based on ϕ0

② NMM merges the shifted input and output voxels

③ Intersection detector finds voxels in the same position

Enables parallel processing based on the z-curve indices



➢ Gather control unit

① Appends output coordinates to the ID FIFO

② Retrives entries based on the FIFO’s front element 

SpConv Core

Performs SpConv & uses neighbor counts to guide pruning 
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Prepare data for aggregation1

Generate a bitmap to guide pruning2

Perform the aggregation in Spconv3

➢ Counter

① Resets to 0 when starts to load an output’s entries

② Counts the total number of entries

③ Sets the bitmap element to 1 if exceeds the threshold
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4 Other operators: ReLU & BatchNorm4



Attention Core

➢ Each unit in the attention core performs 4 

stages in the fine-grained attention dataflow

➢ Parallel processing along the sequence dimension  

• qi is sent to each row of the array

• K, V is sent to each column in blocks

➢ Support the position-aware pruning strategy

• Pruned kj & vj are skipped according to the bitmap

High-throughput pipeline & efficient utilization of on-chip buffers 
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Experimental Setup

➢ Baseline
• Octformer & PTv3

• Implemented in PyTorch 1.12.1 & CUDA 11.8

➢ Dataset
• ModelNet40

• Small-scale, for object classification

• ScanNet & S3DIS

• Large-scale, for scene semantic segmentation

➢ Hardware platform
• NVIDIA RTX 4090 GPU

• State-of-the-art point cloud accelerators

• PointAcc & SpOctA

[1] Dongxu Lyu, Zhenyu Lil, Yuzhou Chen, Jinming Zhang, Ningyi Xu, and Guanghui He. 2023. SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding Based 
Map Search and Inherent Sparsity-Aware Processing. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 1–9.



Effectiveness of the pruning strategy

Achieves 35.27% sparsity with less than 1% accuracy loss

➢ Compared to BigBird, ours achieves higher accuracy under the same sparsity 

[1] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al.
2020. Big bird: Transformers for longer sequences. Advances in neural information processing systems 33 (2020), 17283–17297.

             

        

  

  

  

  

 

 
 
 
 
  
 
 
  
 
 
 
  
 
     

       



End-to-End Performance

Meets real-time processing requirements

➢ Compared with RTX 4090 GPU, PointAcc & SpOctA 

• Speedups of 10.22x, 3.53x, 2.70x

• Energy savings of 153.59x, 8.75x, 7.25x

                                   

 

 

  

  

  

 
 
 
 
 
 
 

                          

                                   
    

   

   

   

   

 
 
 
  

 
  
 
 
  
 

                          



Attention Optimization

Efficiently accelerate attention calculation in large-size windows

➢ Attention acceleration as window size increases   

• Window size is 32: 4.24x over PointAcc & 2.60x over SpOctA

• Window size is 1024: 7.95x over PointAcc & 7.35x over SpOctA

                 

           

 

  

  

  

  

  

  

  

 
  

 
  
 
 
 

  

  

  

  

  

  

 
 
 
  
 
  
 
  
 
 

                  

        



Ablation Study

Majority of optimization effects stems from PAP and FAD

➢ Optimizations for serialization-based models

• PNS (Parallel Neighbor Search): 1.14x

• PAP (Position-Aware Pruning): 1.52x

• FAD (Fine-Grained Attention Dataflow): 2.26x



Conclusion

➢ APTO optimizes SpConv’s mapping stage by searching neighbor voxels in 
parallel based on the lowest 3 bits of their z-curve indices

➢ APTO takes a position-aware attention pruning strategy to reduce 
redundant attention computations, which prunes tokens generated from voxels 
with more neighbors

➢ APTO adopts a fine-grained attention dataflow with dynamic maximum 
values to remove data dependencies and splits K, V into blocks for parallel 
processing

➢ APTO achieves average 10.22×, 3.53× and 2.70× speedups over RTX 4090 
GPU, PointAcc, and SpOctA, with 153.59×, 8.57× and 7.25× energy savings

This is the first work to accelerate serialization-based 

point cloud transformers
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