
30th Asia and South Pacific Design Automation Conference (ASPDAC ’25)

Tokyo, Japan

Jan. 21, 2025

APTO: Accelerating Serialization-Based Point Cloud 
Transformers with Position-Aware Pruning

Qichu Sun, Rui Meng, Haishuang Fan, Fangqiang Ding, Linxi Lu, Jingya Wu, Xiaowei Li, Guihai Yan
1. State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences 
2. University of Chinese Academy of Sciences  3. University of Edinburgh  4. YUSUR Technology Co., Ltd.

sunqichu22z@ict.ac.cn



Point Cloud Processing

Point cloud is a representation of 3D data, containing valuable geometry & color information 

Autonomous Driving Robotic Perception AR / VR

Accurate, real-time and energy-efficient point cloud processing is crucial



Point Cloud Transformers

Point-Based Models Serialization-Based Models

Repeated point access leads to redundant computation & 

memory use, while window size restricts accuracy
Regular memory access, less redundant 

computation, and better accuracy

• Farthest Point Sampling (FPS) & k-Nearest 

Neighbors (kNN) for down-sampling

• Attention mechanisms in local windows for

feature computation

• Organizes points onto a directed curve

(e.g. z-curve)

• 3D sparse convolution for down-sampling

• Larger attention windows based on the curve

FPS
& kNN

Attn
SpConv Attn



Motivation: Performance Bottleneck Analysis

➢ Inference time breakdown:

• Octformer: 46% SpConv & 27% attention

• PTv3: 32% SpConv & 50% attention

• Failed to meet real-time requirements

SpConv & attention are two key bottlenecks of serialization-based models

Serialization-based models

real-time: ~30ms

[1] Peng-Shuai Wang. 2023. Octformer: Octree-based transformers for 3d point clouds. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–11.
[2] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang Zhao. 2024. Point Transformer V3: Simpler Faster 
Stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4840–4851.



Motivation

➢ Challenges
• Chlg.1: Inefficient Neighbor Search in SpConv

• Chlg.2: Useless Attention Computation

• Chlg.3: Data Dependencies in Softmax

➢ Optimizations
• Opt.1: Serialization-Based Parallel Neighbor Search

• Opt.2: Position-Aware Attention Pruning

• Opt.3: Fine-Grained Attention Dataflow



Chlg.1: Inefficient Neighbor Search in SpConv

➢ Kernel mapping in SpConv

• Stride > 1 for down-sampling

• Stride = 1 for positional encoding

Neighbor search is the most complex step

𝑷𝟎

𝑷𝟏 𝑷𝟐

𝑷𝟑

𝑷𝟒

𝑸𝟎

𝑸𝟏

𝑸𝟑

𝒫𝑖𝑛 𝒫𝑜𝑢𝑡

𝑸𝟐

1

2

3

4

...

IN

𝑷𝟎

𝑷𝟎

𝑷𝟏

𝑷𝟑

...

OUT

𝑸𝟎

𝑸𝟏

𝑸𝟏

𝑸𝟏

...

W

𝑾𝟏,𝟏

𝑾−𝟏,−𝟏

𝑾𝟎,𝟎

𝑾𝟎,𝟏

...

stride = 2

Output Coordinate Generation

out = floor (in / stride) * stride
1

Neighbor Search finds non-empty input 

voxels around the output voxel
2

Kernel Map contains (in, out, weight) 

entries for aggregation
3

1 2 3

𝑸𝟎

𝑷𝟎

𝑷𝟑

𝑸𝟏
𝑷𝟏

𝑸𝟐
𝑷𝟐

𝑸𝟑 𝑷𝟒



Chlg.1: Inefficient Neighbor Search in SpConv

➢ Prior works: voxel merging

• Merge and compare all voxels (>105) serially

[1] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and Song Han. 2021. Pointacc: Efficient point cloud accelerator. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 449–461.

𝑸𝟎

𝑸𝟐

𝑸𝟑 𝑷𝟏 𝑷𝟐

𝑷𝟒

𝑾−𝟏,−𝟏

𝑾𝟎,−𝟏

𝑾𝟏,−𝟏

𝑾−𝟏,𝟎

𝑾𝟎,𝟎

𝑾𝟏,𝟎

𝑾−𝟏,𝟏

𝑾𝟎,𝟏

𝑾𝟏,𝟏

shift inputs

stride = 1

𝑸𝟎 𝑸𝟏 𝑸𝟐 𝑸𝟑𝑷𝟎 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒

1,1 2,2 2,4 3,2 4,3 1,1 2,2 2,4 3,2

𝑷𝟎 𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝟒

2,2 3,3 3,5 4,3 5,4

+(1,1) shift for W-1,-1

Merge & 
Build Map

𝑸𝟒

4,3

𝑸𝟎 𝑸𝟏 𝑸𝟐 𝑸𝟑

1,1 2,2 2,4 3,2

𝑷𝟎

2,2

𝑷𝟏 𝑷𝟐

3,3 3,5

𝑷𝟑 𝑷𝟒

4,3 5,4

= = = = = = =
(P0, Q1, W-1,-1)

𝑸𝟒

4,3

==
(P3, Q4, W-1,-1)

Shift the input voxels by one 

position along a specific direction
1

Merge the output and input voxels, 

and compare them to find voxels at 

the same position

2

1

2

Results in enormous operations and lacks parallelism



Opt.1: Serialization-Based Parallel Neighbor Search
➢ Z-curve transform unstructured point clouds into ordered sequences 

voxel coordinate (x, y, z)

x = {xn-1...x1x0}2

y = {yn-1...y1y0}2

z = {zn-1...z1z0}2

z-curve index Φ
Φ= {ϕn-1...ϕ1ϕ0}8

= {zn-1yn-1xn-1...z1y1x1z0y0x0}2

➢ Z-curve enables parallel search for voxels

• Organize voxels into 8 sets based on the last 3 bits ϕ0 of their z-curve indices

• Each set performs merging and comparison in parallel

combine x, y, z
binaries bit-wise

𝑸𝟎

𝑸𝟐

𝑸𝟑 𝑷𝟏 𝑷𝟐

𝑷𝟒

𝑾−𝟏,−𝟏

𝑾𝟎,−𝟏

𝑾𝟏,−𝟏

𝑾−𝟏,𝟎

𝑾𝟎,𝟎

𝑾𝟏,𝟎

𝑾−𝟏,𝟏

𝑾𝟎,𝟏

𝑾𝟏,𝟏

shift inputs

𝑸𝟏 𝑷𝟎

𝑷𝟏 𝑷𝟐

𝑸𝟑 𝑷𝟒

𝑸𝟒 𝑷𝟑

𝑸𝟎

𝑸𝟐ϕ0= 𝟎

ϕ0= 𝟏

ϕ0= 𝟐

ϕ0= 𝟑

ϕ0= 𝟎, Merger 0

𝑷𝟎

2,2

𝑸𝟏

2,2

𝑸𝟐

2,4

𝑸𝟏

2,2

𝑸𝟐

2,4

𝑷𝟎

2,2

Merge & 
Build Map

= =
(P0, Q1, W-1,-1)

𝑷𝟐

3,5

𝑸𝟎

1,1
Merge & 

Build Map

=

ϕ0= 𝟑, Merger 3

𝑷𝟏

3,3

𝑸𝟎

1,1

=

𝑷𝟐

3,5

𝑷𝟏

3,3

ϕ0= 𝟐, Merger 2ϕ0= 𝟏, Merger 1

𝑸𝟑

3,2

𝑸𝟒

4,3

𝑷𝟑

𝑷𝟒

4,3

5,4

Merge & 
Build Map

Merge & 
Build Map

𝑸𝟒

4,3

𝑸𝟑

3,2

𝑷𝟒

5,4

= =
(P3, Q4, W-1,-1)

𝑷𝟑

4,3

Parallel processing with a balanced task distribution



𝑷𝟎

𝑷𝟑

𝑷𝟐

𝑷𝟓

𝑷𝟔

𝑷𝟕

𝑷𝟏𝑷𝟒

𝑷𝟎

𝑷𝟏

𝑷𝟐

𝑷𝟑

𝑷𝟒

𝑷𝟓

𝑷𝟔

𝑷𝟕

𝑷𝟎𝑷𝟏𝑷𝟐𝑷𝟑𝑷𝟒𝑷𝟓𝑷𝟔𝑷𝟕
0.5

0.4

0.3

0.2

0.1

Chlg.2: Useless Attention Computation
➢ Attention in local windows

• Each voxel engages in attention calculations 

with every other voxel 

• Unimportant voxels have minimal impact on 

the results

Attention suffers from significant useless computation

➢ The increased window size

• A fixed point cloud size N and a window size w, 

the overall complexity is O(Nw)

• Grows rapidly as w increases

Attention Map



Chlg.2: Useless Attention Computation

➢ Static pruning method

• Adopt fixed pruning patterns

• Significant accuracy loss

➢ Dynamic pruning method 

• Pre-calculate a low-precision score matrix

• Additional computation & storage overhead

Both methods cannot suit serialization-based models

Fixed Patterns

Fi
n

e-
Tu

n
in

g

Pre-Trained Models

Config.

Lo
w

-B
it

 M
at

m
u

l

B
in

ar
iz

at
io

n

Dynamic Patterns

Q

K

Low-Bit S



Opt.2: Position-Aware Attention Pruning

➢ Boundaries are more crucial than interiors
• Once an object’s boundary is identified, it becomes feasible to be 

segmented from the background

• Pruning tokens from interior points minimally affects the results

➢ Get neighbor counts from neighbor search in SpConv
• Boundary points: voxels with fewer neighbors

• Interior points: voxels with more neighbors

Pruning
Pattern

Fine-Grained
Attention

Sparse Conv

Batch Norm

Position
Information

𝑷𝟎

𝑷𝟑

𝑷𝟐

𝑷𝟓

𝑷𝟔

𝑷𝟕

𝑷𝟏𝑷𝟒

𝑷𝟎

𝑷𝟏

𝑷𝟐

𝑷𝟑

𝑷𝟒

𝑷𝟓

𝑷𝟔

𝑷𝟕

𝑷𝟎𝑷𝟏𝑷𝟐𝑷𝟑𝑷𝟒𝑷𝟓𝑷𝟔𝑷𝟕
0.5

0.4

0.3

0.2

0.1

Boundary Point Interior Point

𝑷𝟎

𝑷𝟑

𝑷𝟐

𝑷𝟓

𝑷𝟔

𝑷𝟕

𝑷𝟏𝑷𝟒

21 3

1
2

3

Count neighbor 

numbers in SpConv
1

Divide points into 

boundary & interior points
2

Prune tokens generated 

from interior points
3

Eliminates redundant tokens without extra pre-calculations

interior points

boundary points



Chlg.3: Data Dependencies in Softmax

➢ Avoid numerical overflow in exponentials
• Subtract mi from each element in S

• mi is the maximum value of each row in S

➢ Maximum value causes data dependencies
• mi calculated after all kj multiplications

• Exponential calculation waits for mi

• Exponential sum computed before Matmul with V

𝑺𝑖 = 𝐪𝑖 ∙ 𝐾
𝑇 𝑚𝑖 = 𝑀𝐴𝑋(𝒔𝑖) 𝒆𝑖 = 𝐸𝑋𝑃(𝒔𝑖 −𝑚𝑖) 𝒐𝒖𝒕𝑖 = 𝒅𝑖 ∙ 𝑉

T

𝒅𝑖 = 𝒆𝑖/𝑆𝑈𝑀(𝒆𝑖)

Vec Mul Matrix 𝑴𝑨𝑿(𝒔𝒊𝟏, … , 𝒔𝒊𝒅) Vec Mul Matrix𝒆𝒊𝒋 = 𝑬𝑿𝑷(𝒔𝒊𝒋 −𝒎𝒊) 𝒅𝒊𝒋 = 𝒆𝒊𝒋/(𝒆𝒊𝟏 +⋯+ 𝒆𝒊𝒅)

Data Dependency Data Dependency Data Dependency

Inhibit efficient pipeline for computation of different kj, vj

M
at

m
u

l

M
at

m
u

l

output

Q

K
S

V

normalized S

So
ft

m
ax



Opt.3: Fine-Grained Attention Dataflow

➢ Use dynamic maximum value mi

• Decouble the computation of each kj, vj in K, V

• Use the mi of the scores sij already calculated

➢ Block-wise parallel attention calculation

• Partition keys & values into blocks along the sequence dimension

• Parallelize attention computation within different blocks

… …PE Stage1 Reducing Data Dependencies

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒚

Dataflow of 𝑷𝑬𝒊,𝒀

…

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …kj, vj in Block 1

kj, vj in Block Y

…

Eliminate data dependencies & avoid large intermediate results



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚

PE Stage1

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒀

… …

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …

➢ Stage 1

• qi and kj are multiplied to obtain sij



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚

PE Stage1

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒀

… …

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …

➢ Stage 2

• The stored mi is compared with sij to get a new mi



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚

PE Stage1

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒀

… …

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …

➢ Stage 3

• Exponentiation is calculated

• Subtracting the new mi



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚

PE Stage1

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒀

… …

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …

➢ Stage 4

• Multiplication of sij and vj is conducted

• The li, oi results updated by the difference between 

the stored and new mi 

• The stored mi is updated by the new one



Opt.3: Fine-Grained Attention Dataflow

… …

Dataflow of 𝑷𝑬𝒊,𝒚

PE Stage1

𝒐𝒖𝒕𝑖

s𝑖𝑟s𝑖𝑝s𝑖𝑗

𝐸𝑋𝑃

… …

… …
… …

𝑚𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

𝑙𝑖
(𝐵𝑦)

, 𝐨𝑖
(𝐵𝑦)

T

Stage 2

Stage 3

Stage 4

𝑚𝑖
(𝐵𝑦)

𝑚𝑖
(𝐵𝑦)

Dataflow of 𝑷𝑬𝒊,𝒀

… …

Dynamic Max

Vec Mul Vec : s𝑖𝑗 = 𝐪𝑖 ∙ 𝐤𝑗

Sum Stage : Sum of Vec

𝐸𝑋𝑃 𝐸𝑋𝑃

Stage 1 … …

➢ Sum Stage

• Obtain the global maximum value Mi of all local mi

• Updating li, oi from each block with the difference 

between their mi and Mi 

• The overall attention result outputi for qi is achieved



Overview of APTO Architecture

External Memory Bus

Attention Core

PE

SUM

SUM

PE

PE

PE

PE

PE

SUM

Q/K/V
Buffers

Weight
Buffer

GELU

Layer
Norm

Output Buffer

Index Encoding

N/2 
Sorter

Merge Buffer

Merge Module

N/2 
Sorter

Serial. & Mapping Core

Output Buffer

SpConv Core

Gather Control Unit

Weight
Buffer

PE Array

ReLU & BatchNorm

Ifmap
Cache



Serialization & Mapping Core

External Memory Bus

N/2 Sorter

N/2 Sorter

Merge
Buffer

N-Merge 
Module

offsetIndex
Encoding

(IE)

Load Voxels
Store
MapsLoad Input Points Merger 0 Concat Intersection

Detector

Merger 1 Concat Intersection
Detector

Merger 7 Concat Intersection
Detector

...

N-Merge Module (NMM)

C
o

n
tr

o
lle

r

...

Serialization Kernel Mapping Common

Store Indices

𝝓𝟎 = 𝟎

𝝓𝟎 = 𝟏

𝝓𝟎 = 𝟕

➢ Serialization

• Encodes and sorts points’ z-curve indices

① IE converts coordinates into z-curve indices

② N/2 sorter sorts N/2 indices 

③ NMM combines two sorted arrays into one 

➢ Kernel map creation

• Supports parallel neighbor searching

① Divides voxels into 8 sets based on ϕ0

② NMM merges the shifted input and output voxels

③ Intersection detector finds voxels in the same position

Enables parallel processing based on the z-curve indices



➢ Gather control unit

① Appends output coordinates to the ID FIFO

② Retrives entries based on the FIFO’s front element 

SpConv Core

Performs SpConv & uses neighbor counts to guide pruning 

External Memory Bus

𝑶𝟑 𝑾𝟏 𝑷𝟏

. . . . . . . . .

𝑶𝟑 𝑾𝟖 𝑷𝟕

Weight 
Buffer

Ifmap 
Cache

𝑶𝟑

𝑶𝟒

𝑶𝟓

𝑶𝟔

. . .

𝑶𝒎

Gather Control Unit

Load 
Output ID Load Map

ID
 F

IF
O

M
ap

 B
u

ff
e

r 𝑾𝟏 𝑭𝟏

PE Array

ReLU & BatchNorm

Output BufferMap
Req

Weight Index

Feature 
Index

Miss Get Feature 
Block

C
o

u
n

te
r

B
it

M
ap

Weight Load

Prepare data for aggregation1

Generate a bitmap to guide pruning2

Perform the aggregation in Spconv3

➢ Counter

① Resets to 0 when starts to load an output’s entries

② Counts the total number of entries

③ Sets the bitmap element to 1 if exceeds the threshold

1

2

3

4 Other operators: ReLU & BatchNorm4



Attention Core

➢ Each unit in the attention core performs 4 

stages in the fine-grained attention dataflow

➢ Parallel processing along the sequence dimension  

• qi is sent to each row of the array

• K, V is sent to each column in blocks

➢ Support the position-aware pruning strategy

• Pruned kj & vj are skipped according to the bitmap

High-throughput pipeline & efficient utilization of on-chip buffers 

CMP

DIV

EXP

EXP

EXP

𝒐𝒊
(𝑩𝟏)

𝒍𝒊
(𝑩𝟏)

𝒎𝒊
(𝑩𝟏)

𝒐𝒊
(𝑩𝟐)

𝒎𝒊
(𝑩𝟐)

𝒐𝒊
(𝑩𝒀)

𝒍𝒊
(𝑩𝒀)

𝒎𝒊
(𝑩𝒀)

MAC

Stage 1 Stage 2 Stage 3 Stage 4

MAC

0

𝒒𝒊

𝒌𝒋

Acc Reg

Max Reg

CMPPre Max 
Reg 

-

EXP

EXP

1

L Reg O Reg

𝒗𝒋

𝒐
𝒊

(𝑩𝒚)𝒍
𝒊

(𝑩𝒚)

𝒎
𝒊

(𝑩𝒚)

PE PE PE PE
𝒒𝟏

SUM

PE PE PE PE
𝒒𝟐

SUM

PE PE PE PE
𝒒𝟑

SUM

𝒒𝑿
PE PE PE PE

SUM

𝒐𝒑.𝟏

𝒐𝒑.𝟐

𝒐𝒑.𝟑

𝒐𝒑.𝑿

𝒐𝒑.𝟏

𝑶𝒊
𝑳𝒊
𝑴𝒊

𝒍𝒊
(𝑩𝟐)

𝑲𝟏, 𝑽𝟏 𝑲𝟐, 𝑽𝟐 𝑲𝟑, 𝑽𝟑 𝑲𝒀, 𝑽𝒀

𝒗𝟏𝒌𝟏
𝒗𝒍𝒌𝒍

𝒗𝒎𝒌𝒎
0

BitMap
Index

𝒗𝟑𝒌𝟑

pruning
K.V. FIFO



Experimental Setup

➢ Baseline
• Octformer & PTv3

• Implemented in PyTorch 1.12.1 & CUDA 11.8

➢ Dataset
• ModelNet40

• Small-scale, for object classification

• ScanNet & S3DIS

• Large-scale, for scene semantic segmentation

➢ Hardware platform
• NVIDIA RTX 4090 GPU

• State-of-the-art point cloud accelerators

• PointAcc & SpOctA

[1] Dongxu Lyu, Zhenyu Lil, Yuzhou Chen, Jinming Zhang, Ningyi Xu, and Guanghui He. 2023. SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding Based 
Map Search and Inherent Sparsity-Aware Processing. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 1–9.



Effectiveness of the pruning strategy

Achieves 35.27% sparsity with less than 1% accuracy loss

➢ Compared to BigBird, ours achieves higher accuracy under the same sparsity 

[1] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al.
2020. Big bird: Transformers for longer sequences. Advances in neural information processing systems 33 (2020), 17283–17297.

             

        

  

  

  

  

 

 
 
 
 
  
 
 
  
 
 
 
  
 
     

       



End-to-End Performance

Meets real-time processing requirements

➢ Compared with RTX 4090 GPU, PointAcc & SpOctA 

• Speedups of 10.22x, 3.53x, 2.70x

• Energy savings of 153.59x, 8.75x, 7.25x

                                   

 

 

  

  

  

 
 
 
 
 
 
 

                          

                                   
    

   

   

   

   

 
 
 
  

 
  
 
 
  
 

                          



Attention Optimization

Efficiently accelerate attention calculation in large-size windows

➢ Attention acceleration as window size increases   

• Window size is 32: 4.24x over PointAcc & 2.60x over SpOctA

• Window size is 1024: 7.95x over PointAcc & 7.35x over SpOctA

                 

           

 

  

  

  

  

  

  

  

 
  

 
  
 
 
 

  

  

  

  

  

  

 
 
 
  
 
  
 
  
 
 

                  

        



Ablation Study

Majority of optimization effects stems from PAP and FAD

➢ Optimizations for serialization-based models

• PNS (Parallel Neighbor Search): 1.14x

• PAP (Position-Aware Pruning): 1.52x

• FAD (Fine-Grained Attention Dataflow): 2.26x



Conclusion

➢ APTO optimizes SpConv’s mapping stage by searching neighbor voxels in 
parallel based on the lowest 3 bits of their z-curve indices

➢ APTO takes a position-aware attention pruning strategy to reduce 
redundant attention computations, which prunes tokens generated from voxels 
with more neighbors

➢ APTO adopts a fine-grained attention dataflow with dynamic maximum 
values to remove data dependencies and splits K, V into blocks for parallel 
processing

➢ APTO achieves average 10.22×, 3.53× and 2.70× speedups over RTX 4090 
GPU, PointAcc, and SpOctA, with 153.59×, 8.57× and 7.25× energy savings

This is the first work to accelerate serialization-based 

point cloud transformers



Thank you

Q & A

30th Asia and South Pacific Design Automation Conference (ASPDAC ’25)
Tokyo, Japan


