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Circuit Simulation

= With the advance of chip technology, circuits with billions or even more

nodes need to be simulated efficiently and effectively.

= Simulation for large-scale integrated circuits is of significance.




Circuit Simulation

= Atypical framework:

(1) With numerical methods, transform differential

eqguations into non-linear equations.

(2) With Newton method, transform non-linear equations

to linear equations.

(3) Solve the constructed linear equations. (the key

process)

Differential Equations

Backward Euler
| or Trapezoidal Method

Nonlinear Equations

Newton or
| Quasi-Newton Method

Linear Equations




Circuit Simulation

= The two key properties of linear equations from circuit simulation problem:

(1) Sparse: while the nodes of circuits are enormous, their connections are very sparse.

Therefore, the coefficient matrices are sparse.

(2) Unsymmetric: the dissymmetry can be caused by many factors. The increasing

dissymmetry can be observed if the integrated chips grow larger.

= \We should leverage the above two properties for more efficient solution.



Solution for Linear Equations

= The two typical types of methods for solving linear equations:

(1) Direct methods: decompose the matrix and solve by substitution.
Two main weaknesses: because of the fill-ins in the decomposition process and we

cannot control the accuracy of the solution.

(2) Iterative methods: transform the solution process into many-times matrix-vector
multiplication (keep the sparsity), and return the solution when the demanded

accuracy Is met.
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CGVS GMRES

= The two most commonly used Iterative methods for solving linear equations:

(1) conjugate gradient (CG) method: O(n) time complexity per iteration, but only applicable for

symmetric positive definite (SPD) matrix.

Only 235 cases In the 2893 cases in SuiteSparse Matrix Collection are SPD.

0 case after 2015 in SuiteSparse Matrix Collection is SPD.

(1) generalized minimal residual (GMRES) method: applicable for general linear equations.

8


https://sparse.tamu.edu/
https://sparse.tamu.edu/

GMRES

= The incredible popularity: Since the

Algorithm 1 The Arnoldi Process with Modified Gram-Schmidt
birth of GMRES, it has been cited more Input:A€R™", bR x €R", m.

Output: Vy,,q € R+ F e pim+l)xm

than 15000 tlmeS (the mOSt Clted 1: Calculate residual r < b — Axy

r
2: U1 &— +—
L5 Tl

3: for j=1,2,--- ,mdo

numerical algorithm in our best £ wj— Ay
5: fori=1,---,jdo > modified Gram-Schmidt (MGS)
6: hj,j «— W?Ui

knowledge). ?: W w) - hi o
8 end for

. . . . o hj+1,j — ||wj||
= The main shortcoming: increasing 0 0 ol

11: end for !

computational cost with iterations, 12 Return Vinty = [01,02,- -, 0m+1], Hm = (hi j) (1) xm-

caused by Its core: the Arnoldi process. ;



GMRES

Algorithm 2 The Restarted GMRES Algorithm

= The efficient and effective of orthogonalization  wpusaczberm < 2% mpw. ol

Output: xgppro € R™.

is of significance: the orthogonalization is the it ol —
- ] 4; for j =11, 2,(?’-- ,fnmax d(; 1 9
rooted reason for the high complexity of GMRES ;< mabequvenor e n by appending e
7: hjs1,j < ||wJ|| > hj,j denotes element of matrix Hn,
and Its effectiveness directly influence its s ek S

10:
11:

convergency.
= The efficient and effective relative error B
estimation is of significance: we should know

Compute the Givens matrix G; for h. j to make hj41 j=0
Apply the Givens transformation G; to g
Y < gj+1 > last element of vector g
if |y| < tol then

Break
end if

end for

me«j

Solve y;, with the transformed matrix Em and g
x0 < x0 + Vinym, with Vi, = [01, -+ ,om]

20: end while
21: Return xgppro = Xo.

the error to know when to return the solution.
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Randomized GMRES

= The theoretical analysis shows that

;&lgorithm 3 The Randorilized Arnoldi Process [3]

randomized Gram-Schmidt process can

Input: AeR™" beR", xoeR", m, random sketching © € Rkxn.
Output: V41 € Rrx(m+l) F c R(m+l)xm

promote effectiveness of Arnoldi process.

1: Calculate residual r « b — Axy
2: Initialize H to be an (m + 1) X m zero matrix
. - = 3: — ﬂ, — I B li
= However, it is not practical, for the P I
_ L 5: wj «— Avj
following three oblivious drawbacks: 6 pj e Ow, > random sketching
7: Solve zj = argmin,, |[Sjz — pj||, with Sj = [s1,- -, 5]
] ] ] 8: vj+1 «— wj — Vjzj, with Vj = [o1,- -+ ,0j]
(1) High computational cost of sketching. o sjr1 — Ovju > random sketching
10: Hijenj o (2], lsjealll”
(2) Low efficiency of residual estimation. e Tal> S Tl > normalize s
12: end for
13: Return V41 = [01,02, -+ , 0m+1], H,, = H.

(3) Low efficiency of solving sketched LS.



The Aim of This Work

= \We aim to develop a practical and more efficient randomized GMRES algorithm,

and can replace GMRES algorithm at least in circuit simulation.
= The contribution of this work can be summarized as follows:

(1) Propose a practical randomized Arnoldi process, which can efficiently and

effectively estimate residual in each iteration.
(2) Propose a linear-time complexity sketching algorithm.
(3) Develop a practical randomized GMRES (PRGMRES) solvers.

(4) Theoretical analysis of PRGMRES algorithm. :
s
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The Practical Randomized Arnoldi Process

I7mll = b = Axml| = lIro = AVimym|l = lIro = Vis1Hmym||
:”Vmﬂ(ﬁfl_ﬁmym)”:”ﬁfl—ﬁmym” (2)
= |yl
= The norm of S and V is not equal with high probability due to the low

rank of the sketching matrices. Therefore, the (2) does not hold and

original residual estimation does not work for randomized GMRES in [3].

= To make the efficient residual estimation, we should make (2) work for

randomized GMRES.

= The key: Enforce orthonormality of V. :
S



The Practical Randomized Arnoldi Process

Vi
sk
Vi

subspace of R"

etching T;'Sl

subspace of R¥

(a) all s; is normalized

Vi

subspace of R"

sk

letching
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subspace of R

(b) all v; is normalized

Figure 1: Two different sketching schemes in (a) the RGMRES
algorithm in [3] and (b) the proposed algorithm. Notice that
the two sets of orthogonal bases satisfy s; = Qu;,i =1,2,---.




The Practical Randomized Arnoldi Process

Irmll = 16 = Axm|l = Iro — AVinymll = lIro = Vins1 Hmym||
=||Vin+1(Ber —Hmym)|| = fer —Hmym|| (2)
= lyl,

= The sketching process cannot guarantee the fully orthogonality of V.
Therefore, the residual estimation is still not accurate in some extreme

CaSes.

= The key: implement an inner tolerance (double tolerance), which is

smaller than demanded tolerance to avoid redundant restarting.
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The Linear-Time Sketching

= The Sketching: compute y = Ox

= The theoretical bound of Rademacher sketching is better than P-SRHT,

while the time complexity of Rademacher sketching is O(nk) and the time

complexity of P-SRHT is O(nlogn) or O(nlogk).

= \We aim to implement sketching in linear complexity by leveraging

special structure.



The Linear-Time Sketching: Implicit Generation

Algorithm 4 Generate the Matrices for Linear-time Sketching

Input: n, k, &, .
Output: D € NkX4 F e NkXu F e Nkxu p ¢ RéXn,
u— [{7]
2. Generate random matrix P € R5*™ whose element is —= with

Vi

-

probability 0.5 and — % with probability 0.5
fori=12---,kdo

Partition integer array 1 : n into u segments
for j=1,2,---udo
dj j < the left endpoint of j-th segment
ej j < the right endpoint of j-th segment
fi,j < a uniformly random integer between 1 and ¢.

W0 1 o U e W

end for
10: end for

11: Return D = (d;,j)kxus E = (€i,j)kxus F = (fi,j)kxcus P-




The Linear-Time Sketching: Sketching in Linear-Time

Algorithm 5 Perform Random Sketching in Linear Time

Input: x € R", D € ZK*¥ E e Zk¥u F e ZkXu p ¢ REXn .
Output: y € Rk. > compute y = Ox
: fori=1,2,---,¢do

for j=1,2,--- ,ndo

Compute (i, j) with (6)

end for
end for
fori=1,2---,kdo

Compute y; with (7), where u = [ {7 |
end for
Return y = [41, 4, -, )T

o~
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Other Skills for PRGMRES

= |ncremental Solution of the sketched least squares problem in

randomized Arnoldi process with Householder transforms.

= The time complexity of solving sketched least-squares problems: O(k j?)
0 O(kj) -

(BVj)z ~ Ow;, i.e. min [(®Vj)z — Ow;|],

9: Solve zj = argmin, ||Sjz—pj||, where S; = [s1,-- -, s/]



The Overall Algorithm

= With the above
technigues, we can obtain

the overall algorithm for

PRGMRES algorithm.

Algorithm 6 The Practical Randomized GMRES Algorithm

Input: A € R™" b e R", xg € R"”, mpax, tol, a, k, &, .
Output: xgppro € R™ .

o e
M Rg

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

o A A U S o

Generate matrices D, E, F and P with Alg. 4.
reb-Axo, g |rl
V] — g > normalize 01
s; « sketching of v; with Alg. 5 > linear-time sketching
while ||7|| > tol do > check the accurate residual
for j=1,2,---, mmax do
wj « Avj, make g a vector € R/*! by appending a zero
pj < sketching of w; with Alg. 5
Solve zj = argmin, ||Sjz—pj||, where Sj = [sq,-- -, 5]
vj+1 — wj — Vjzj, with V; = [01,- -+, vj]
sj+1 < sketching of v, with Alg. 5
hij+1,j < [z}!, ||Uj+1||]T
Vjp1 ﬁ, Sj+1 ﬁ > normalize v,
Apply the Givens transformations Gy,---,Gj—1 to h. ;
Compute the Givens matrix G| for h. j to make hj+1,;=0
Apply the Givens transformation G; to g
Y < gj+1 > last element of vector g
if |y| < a - tol then > a slightly tighter criterion
Break
end if
end for
mej
Obtain y,, with the transformed matrix H,, and g
x0 « x0 + Vinym, with Vi, = 01, , 0m]
r «— b— Ax > an extra computation of residual
g lrl, ot
end while
Return x4ppr0 = Xo.
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Theoretical Analysis

= Results on proposed sketching algorithm.

THEOREM 1. Suppose © € RXX™ is a random matrix generated
with the above method, then the expectation

E[6T0] =1, (8)

where I denotes the identity matrix. Moreover, every diagonal element
of ©1 O is always 1.

22




Theoretical Analysis

= Results supporting smaller sketching size can be summarized in brief.

(1) Oblivious subspace em

pedding for m-dimensional Krylov subspace is

not worse than any m-o

Imensional subspace of R™.

(2) Oblivious subspace embedding for the first k (k is a small number) basis

vectors of Krylov subspace may have good results as well.

= The smaller sketching dimensions can be just fine.
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Experiments Results

= Experimental setting:

(1) Machine: Intel Xenon Gold 6230R CPU@2.10GHz and 128 RAM.

(2) Preconditioning: ILU(K) (k=3)

(3) Tolerance: 1E-8 (to show the stability of our PRGMRES algorithm)



mailto:CPU@2.10GHz

Experiments Results

Table 1: Computational results of solving sparse linear equations. The convergence tolerance of GMRES method is all set to 1E-8,
the restarting parameter is my,,x = 200, and the sketching size k of RGMRES and our PRGMRES are 1500 and 500 respectively.
GMRES RGMRES [3] PRGMRES (ours)

iter  Tior(s) iter Tior(s) iter Tioi(s) Sp1 Spo

ibmpg3t 1.0E6 4.2E6 202 41.9 200 33.6 198 25.7 1.6 1.3
ibmpg4t 1.2E6 4.8E6 146 29.0 150 22.6 149 18.5 1.6 1.2
ibmpg5t 1.6E6 5.7E6 645 206 670 128 701 122 1.7 1.0
thupg1 53E6 2.2E7 137 132 140 103 141 96.9 1.4 1.1
thupg?2 9.5E6 4.1E7 140 292 150 213 143 180 1.6 1.2
thupg3 1.2E7 5.3E7 140 402 150 290 143 245 1.6 1.2
thupg4 1.6E7 6.9E7 143 583 150 386 146 317 1.8 1.2
thupg5 2.0E7 88E7 150 972 150 477 154 452 2.2 1.1
scircuit 1.7E5 9.6E5 642 19.2 650 15.2 664 12.1 1.6 1.3
rajat31 4.7E6 2.0E7 113 84.4 120 68.0 115 61.4 1.4 1.1
FullChip 3.0E6 2.7E7 17 7.44 210 98.8 20 9.60 0.8 10.3
Freescalel 34E6 19E7 275 188 280 119 284 118 1.6 1.0
nxpl 41E5 2.7E6 151 11.7 160 9.86 157 8.49 1.4 1.2
nlcircuit 1.6E5 7.3E5 21 0.535 30 0.636 22 0.449 1.2 1.4
Average 1.5 1.8

Case n nnz

n and nnz are the dimension and the number of nonzeros in coefficient matrix, respectively. iter and T;,; denote the number of iterations and runtime of
GMRES iterations, respectively. Sp; denotes the speedup ratio of PRGMRES to GMRES, while Sp, denotes the speedup ratio of PRGMRES to RGMRES. 5



Experiments Results
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Figure 2: Convergence behavior of the relative residual error
within the proposed PRGMRES algorithm for case “ibmpg3t”.
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Conclusion

= A practical randomized Arnoldi process which can efficiently estimate residual.

= A linear-time sketching algorithm.

= The overall PRGMRES algorithm

= The theoretical analysis on PRGMRES

= The practical ILU-PRGMRES solver.
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Other Possible Applications

m Below are some of other possible applications in EDA:

(1) Capacitance Extraction

(2) Multi-physics simulation

(3) Other EDA applications as long as linear equation solvers are needed
m Below are some of other possible applications besides EDA:

(1) Solving eigenvalue: proposed practical randomized Arnoldi process.

(2) Randomized singular value decomposition: proposed sketching
algorithm.
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