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 With the advance of chip technology, circuits with billions or even more 

nodes need to be simulated efficiently and effectively.

 Simulation for large-scale integrated circuits is of significance.
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Circuit Simulation
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Circuit Simulation

 A typical framework: 

(1) With numerical methods, transform differential 

equations into non-linear equations.

(2) With Newton method, transform non-linear equations 

to linear equations.

(3) Solve the constructed linear equations. (the key 

process)

Differential Equations

Linear Equations

Nonlinear Equations

Backward Euler 

or Trapezoidal Method

Newton or

Quasi-Newton Method



 The two key properties of  linear equations from circuit simulation problem:

(1) Sparse: while the nodes of circuits are enormous, their connections are very sparse. 

Therefore, the coefficient matrices are sparse.

(2) Unsymmetric: the dissymmetry can be caused by many factors. The increasing 

dissymmetry can be observed if the integrated chips grow larger.

 We should leverage the above two properties for more efficient solution.
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Circuit Simulation



 The two typical types of methods for solving linear equations:

(1) Direct methods: decompose the matrix and solve by substitution.                                         

Two main weaknesses: because of the fill-ins in the decomposition process and we 

cannot control the accuracy of the solution.

(2) Iterative methods: transform the solution process into many-times matrix-vector 

multiplication (keep the sparsity), and return the solution when the demanded 

accuracy is met. 
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Solution for Linear Equations



 The two most commonly used iterative methods for solving linear equations:

(1) conjugate gradient (CG) method: O(n) time complexity per iteration, but only applicable for 

symmetric positive definite (SPD) matrix.                                                                                 

Only 235 cases in the 2893 cases in SuiteSparse Matrix Collection are SPD.

0 case after 2015 in SuiteSparse Matrix Collection is SPD.

(1) generalized minimal residual (GMRES) method: applicable for general linear equations.
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CG VS GMRES

https://sparse.tamu.edu/
https://sparse.tamu.edu/


 The incredible popularity: Since the 

birth of GMRES, it has been cited more 

than 15000 times (the most cited 

numerical algorithm in our best 

knowledge).

 The main shortcoming: increasing 

computational cost with iterations, 

caused by its core: the Arnoldi process. 9

GMRES



 The efficient and effective of orthogonalization

is of significance: the orthogonalization is the 

rooted reason for the high complexity of GMRES 

and its effectiveness directly influence its 

convergency.

 The efficient and effective relative error 

estimation is of significance: we should know 

the error to know when to return the solution. 10

GMRES



 The theoretical analysis shows that 

randomized Gram-Schmidt process can 

promote effectiveness of Arnoldi process.

 However, it is not practical, for the 

following three oblivious drawbacks:

(1) High computational cost of sketching.

(2) Low efficiency of residual estimation.

(3) Low efficiency of solving sketched LS.
11

Randomized GMRES



 We aim to develop a practical and more efficient randomized GMRES algorithm, 

and can replace GMRES algorithm at least in circuit simulation. 

 The contribution of this work can be summarized as follows:

(1) Propose a practical randomized Arnoldi process, which can efficiently and 

effectively estimate residual in each iteration. 

(2) Propose a linear-time complexity sketching algorithm.

(3) Develop a practical randomized GMRES (PRGMRES) solvers.

(4) Theoretical analysis of PRGMRES algorithm. 12

The Aim of This Work
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 The norm of S and V is not equal with high probability due to the low 

rank of the sketching matrices. Therefore, the (2) does not hold and 

original residual estimation does not work for randomized GMRES in [3]. 

 To make the efficient residual estimation, we should make (2) work for 

randomized GMRES.

 The key: Enforce orthonormality of V. 14

The Practical Randomized Arnoldi Process
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The Practical Randomized Arnoldi Process



 The sketching process cannot guarantee the fully orthogonality of V. 

Therefore, the residual estimation is still not accurate in some extreme 

cases.

 The key: implement an inner tolerance (double tolerance), which is 

smaller than demanded tolerance to avoid redundant restarting.
16

The Practical Randomized Arnoldi Process



 The Sketching: 

 The theoretical bound of Rademacher sketching is better than P-SRHT, 

while the time complexity of Rademacher sketching is O(nk) and the time 

complexity of P-SRHT is O(nlogn) or O(nlogk).

 We aim to implement sketching in linear complexity by leveraging  

special structure.
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The Linear-Time Sketching
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The Linear-Time Sketching: Implicit Generation
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The Linear-Time Sketching: Sketching in Linear-Time
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Other Skills for PRGMRES

 Incremental Solution of the sketched least squares problem in 

randomized Arnoldi process with Householder transforms.

 The time complexity of solving sketched least-squares problems:             

to             . 
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The Overall Algorithm

 With the above 

techniques, we can obtain 

the overall algorithm for 

PRGMRES algorithm.



22

Theoretical Analysis

 Results on proposed sketching algorithm.
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Theoretical Analysis

 Results supporting smaller sketching size can be summarized in brief.

(1) Oblivious subspace embedding for m-dimensional Krylov subspace is 

not worse than any m-dimensional subspace of       .

(2) Oblivious subspace embedding for the first k (k is a small number) basis 

vectors of Krylov subspace may have good results as well.

 The smaller sketching dimensions can be just fine.
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Experiments Results

 Experimental setting:

(1) Machine: Intel Xenon Gold 6230R CPU@2.10GHz and 128 RAM.

(2) Preconditioning: ILU(k) (k=3)

(3) Tolerance: 1E-8 (to show the stability of our PRGMRES algorithm)

mailto:CPU@2.10GHz


26

Experiments Results



27

Experiments Results



28

Contents

 Background

 Proposed Method

 Experimental Results

 Conclusion



29

Conclusion

 A practical randomized Arnoldi process which can efficiently estimate residual.

 A linear-time sketching algorithm.

 The overall PRGMRES algorithm

 The theoretical analysis on PRGMRES

 The practical ILU-PRGMRES solver.



 Below are some of other possible applications in EDA:

(1) Capacitance Extraction

(2) Multi-physics simulation

(3) Other EDA applications as long as linear equation solvers are needed

 Below are some of other possible applications besides EDA:

(1) Solving eigenvalue: proposed practical randomized Arnoldi process.

(2) Randomized singular value decomposition: proposed sketching 

algorithm.
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Other Possible Applications
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