Analog Circuit Transfer Method Across Technology Nodes via Transistor Behavior

Haochang Zhi¹, Jintao Li²,

Yun Li², Weiwei Shan¹

1.Southeast University, Nanjing, China

2. Shenzhen Institute for Advanced Study, UESTC, Shenzhen, China

Content

Preliminaries

- Linear circuit sizing methodology
- Limitations of g_m/i_d design approach
- Challenges in design methodology

Framework

- Experimental Result
- Conclusions

Linear Circuit Sizing Methodology

Vov method fails.

V_{ov} fails in subthreshold region

Preset g_m/i_d to sizing *Saturation*

$$g_{m} = \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}} = \frac{2I_{d}}{V_{GS} - V_{TH}}$$
$$\frac{g_{m}}{I_{d}} = \frac{2}{V_{GS} - V_{TH}}$$
Sub-Threshold
$$g_{m} = \frac{\frac{W}{L}I_{ds0}e^{\frac{\gamma(V_{gS} - V_{th})}{nkT}}}{n\frac{kT}{q}} = \frac{I_{ds}}{n\frac{kT}{q}}$$
$$\frac{g_{m}}{I_{d}} = \frac{1}{n\frac{kT}{q}}$$

The g_m/i_d-based Sizing Methodology

- step0. Build LUT: g_m/i_d vs. i_d/W
- step1. Set g_m: calculate g_m-GBW relation from schematic
 - e.g. $g_m = 2\pi^* GBW^*C_L$
- step2.Preset L
 - High-speed: L=min, high gain: L=max
- step3.Preset g_m/i_d
 - Based on noise & swing requirements
- step4. Calculate i_d&W: extract W from i_d/w vs. g_m/i_d LUT

g_m/i_d&L selection experience-dependent, unscaling

- Subthreshold: PVT variations amplified exponentially, need to keep V_{ov} always >0, remains intuitive as overdrive voltage
- G_m/i_d method extends design space to weak inversion region
 - Process-dependent g_m/i_d and L selection
 - Less intuitive parameter (No unit) selection (even for V*)

Content

Preliminaries

- Linear circuit sizing methodology
- Limitations of gm/ID design approach
- Challenges in design methodology

Framework

- Invoke f_T: Transistor behavioral circuit representation
- TBCR-based sizing methodology
- Analog circuit transfer method across technology nodes
- Experimental Result
- Conclusions

Challenge

- To identify a design-centric parameter that minimizes the process-dependent variations in g_m/i_d.
- To develop a dynamic optimization method that calculate optimal g_m/i_d and L based on PVTs, thereby leveraging the advantages of g_m/i_d methodology.

DAC2023, g_m/I_D -RL

Pros: g_m/i_d closely related to the performance of the circuit. **Cons:** g_m/i_d and L process-dependent

DAC2020, GCN-RL

 $[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, V_{\text{sat}}, V_{\text{th0}}, V_{\text{fb}}, \mu_0, U_c]$

Cons:

1.Lots of parameter with unclear performance relationship2.Model was not scaling

F_T-Based Methodology gm = f(GBW, CL,...); ▷ ^{gm} f_t ▷ TBM() ▷ W,L

Parameter	Range in 22nm Tech.	Expression	Correlation
$g_m(A/V)$	[2e-7, ∞)	$\sqrt{2\mu C_{ox} \frac{W}{L} I_{ds}}$	$\sqrt{W/L}$
$f_t(Hz)$	[1e8,1e11]	$\frac{3\mu l_{ds}}{2\pi g_{m0}L^2}$	$1/L^2$
$\Delta V_{GS}(V)$	[-0.15,+0.15]	$\sqrt{\frac{4\pi f_{t0}g_{m0}L^3}{3\mu^2 C_{ox}W}}$	$L\sqrt{\frac{L}{W}}$
$V_{DS}(V)$	[0,0.8]	Non-analytic	$\sim L/W$

Design Example: 1MHz OTA

Bandwidth limit by node's Cgs

11

- GBW = 1MHz \rightarrow f_t \approx 10MHz
- f_t solely determined by specs

 $g_m, f_t: key design metrics independent of technology.$ $\Delta V_{gs}:$ bias point adjustment parameter, negligible (default=0). $V_{ds}:$ drain-source voltage for enhancing model accuracy.

Invoke F_T to Eliminate G_m/i_d and L

 $F_t \text{ represents the relationship between gate capacitances and transconductance,}$ independent of W and the number of series-connected devices. Thus, ft can be used to substitute gm/id. $How to calculate g_m/i_d and L using f_t?$

Physical Mechanism of F_T && Max. Self-gain

 $\begin{array}{l} \underline{\text{Main Concept}}: \quad \text{Find out which } \frac{g_m}{I_d} \text{ and } L \text{ brings} \max_{\frac{g_m}{2\pi C_{gs}} = f_{t0}} g_m r_o \\ \\ \text{Approximation 1: } r_o = \frac{1}{\lambda I_d} \ , \ \lambda \propto \frac{1}{L} \ , \ r_o \propto \frac{L}{I_d} = \frac{f(L)}{I_d} \\ \\ \text{Approximation 2: } \frac{\partial r_o}{\partial L} \xrightarrow{fixed Id} \frac{1}{I_d} \frac{\partial f(L)}{\partial L} > 0 \\ \\ \\ \text{Result: Find optimal {gm/id,L} by } \begin{cases} \frac{g_m}{2\pi C_{gs}} = f_{t0} \\ max{f(L)} \frac{g_m}{I_d} \end{cases} \end{array}$

Two equations to get two parameters.

Solving F_T && Max. Self-gain

Sweep

Result

Surface Plot: ft vs {gmid, L} Intersection points between the surface and reference plane.

 \Diamond

Circles: Valid solutions in the {gmid, L} Red crosses: Points satisfying both ft and maximum self gain conditions

Find the strategy for minimum gain degradation in the (gm/id, L) while increasing f_t

g_m-worst Driven g_m/i_d Sizing Under PVTs

All PVT variations ultimately affect the current. When both current and size are fixed, gm/id remains the only variable.

- Find lowest id/w at worst-case corner with same gm/id
- 2. Evaluate avg. gm/id & assess

performance metrics

- 3. Look-up: gm, vgt, vth, ro, Cgg, Cdd, n
- 4. Sizing at worst corner to meet gm specs

$$\Delta GBW = \frac{\Delta g_{m1}}{c_c} = \Delta g_{m1}\% \times GBW$$

Comparison of Size, G_m/i_d and F_T

Calibration between Technology Node

The TBCR (ft-based) inherently independent to technology, all we need is calibration.

18

Content

Preliminaries

- Framework
- Experimental Results
 - TBM Parameter Analysis
 - Transfer a n-MOSFET
 - 3-Stage Amplifier Transfer
 - Implementation of 102 Cases with Identical Topology
 - Implementation of 300 Cases across Four Topologies
- Conclusions

TBCR F_T Analysis

- 1. <u>Multiple g_m/i_d , L solutions</u>
- 2. Limited range at f_t extremes
- 3. ΔV_{gs} variation shown by error bars
- 1. <u>Specific g_m/i_d, L solution</u>
- 2. Simplified design at gm/id≈10
- 3. Conventional methodology alignment

Mapping Accuracy

 Error < 5% vs. SPICE simulation, comparable to MOSFET model KOP(Key output) fitting accuracy
 <u>Multiple PVTs ability & scalable</u>

Transfer a n-MOSFET

Calibration enables <10% variation (180nm→22nm)
 Error was 96× lower than gm/ld method
 <u>TBCR shows cross-process ability</u>

Implementation of 300 Cases across ² Four Distinct Topologies

Begins with small-signal circuit optimization, using TBM to get 300 individuals in different sizing, do it both in 180 and 22nm, then compare the result.

Implementation of 300 Cases across Four Distinct Topologies

Cross-node scaling benefits: 6.3%-38.2% (VDD-driven)

Conclusion

- Novel Transistor Behavioral Circuit Representation (TBCR)
 - Technology-independent parameters: gm, ft, VDS, ΔVGS
- Enabling Technology Node Transfer
 - Analytical conversion from TBCR to transistor sizing
 - Verified across $180nm \rightarrow 22nm$ nodes
- Key Advantages
 - Technology-independent circuit representation
 - Leverages scaling benefits

Thank you

Haochang Zhi 230238418@seu.edu.cn