

AmPEC: Approximate MRAM with Partial Error Correction for Fine-grained Energy-quality Trade-off

Lan-yang Sun¹, Yaoru Hou², Hao Cai¹

¹Southeast University, Nanjing, China

²The Hong Kong University of Science and Technology, Hong Kong, China hao.cai@seu.edu.cn

Outline

- 1 Background
- **2 Proposed Approximate Scheme**
- **3** Evaluation
- 4 Conclusion

Outline

1 Background

- **2 Proposed Approximate Scheme**
- **3** Evaluation
- 4 Conclusion

Approximate Design Paradigms

□ Spin Transfer Torque-Magnetic RAM

- High current, long access time
- \rightarrow High energy consumption
- \rightarrow Approximate design for read/write access of MRAM

> Characteristics of various types of storage

	SRAM	DRAM	Flash	STT-MRAM	РСМ	RRAM
Cell size	120-150F ²	10-30F ²				
Non-volatility	YES	NO	YES	YES 😳	YES	YES
Write voltage	<1V	<1V	~10V	<1.5V	<3V	<3V
Write energy	~fJ	~10 fJ	~100 pJ	~1 pJ 🛞	~10 pJ	~1 pJ
Standby power	HIGH	MEDIUM	LOW	LOW	LOW	LOW
Write speed	~1 ns	~10 ns	0.1-1 ms	~5 ns	~10 ns	~10 ns
Read speed	~1 ns	~3 ns	~10 ns	~5 ns	~10 ns	~10 ns
Endurance	10^16	10^16	10^4-10^6	10^15	10^12	10^7

30th Asia and South Pacific Design Automation Conference

□ STT-MRAM

- Read: Simpler SA structure
- > Write: Modify write driver structure
- →sacrifice **precision** for lower **power and area** consumption

Data Mapping

- Different bit positions within a word have varying weights
- Different applications need varying accuracy
- Vniform approximate approach:
 - Coarse-grained, word-level precision adjustment
 - MSBs have greater influence: exponential increase in errors

✓ Bit-level approximate approach:

- Fine-grained precision adjustment
- Flexible adjustment based on specific needs of different applications

□ Error Correction Code (ECC)

- Cases like worse Process/Voltage/Temperature(PVT), accurate read and write cannot guarantee MSBs' correctness
- ECC: protect MSBs
- Traditional ECC need extra check bits: additional area

Outline

1 Background

2 Proposed Approximate Scheme

- 2.1 Approximate Read Scheme
- **2.2 Approximate Write Scheme**
- 2.3 Bit-level Data Mapping
- **2.4 Partial Error Correction**

3 Evaluation

4 Conclusion

2025/1/21

□ Approximate Scheme Structure

Approximate Read Scheme

Traditional scheme:
need multiple sets
of read circuits

Proposed read
scheme: Leverage
one shared circuit

Approximate Read Scheme

> Mode selection

- Normal:
 - ✓ Offset cancellation
 - ✓ Large sensing margin
 - ✓ Strong positive feedback
- Approximate:
 - ✓ Low energy consumption
 - ✓ Low correct rate
- Drop:
 - ✓ No power supply

Single read access

- 6.13uW ↓ 54.1% ↓ power
- 94.1% read correct rate

□ Approximate Write Scheme

- Level Shifter: common write driver structure that converts voltage levels
- Cross-coupled NMOSs' source: VSS \rightarrow VDD
- Lower the Vds and minimize the static leakage current

□ Approximate Write Scheme

Mode selection

• Normal : Near: 2 sets of transistors

Far: 3 sets of transistors

- Approx. : 1 set of transistors
- Drop : no power supply
- \succ IR-drop on BL/SL → Far boost

30th Asia and South Pacific Design Automation Conference

□ Approximate Write Scheme

- Static Leakage current
- 44.12% \downarrow leakage current
- 74.78% \checkmark static power

- Single write access
- 3.99pJ ↓ 45.6% ↓ energy (27°C)
- 95.1% write success rate

Bit-level Data Mapping

- Fine-grained: MSB precise, LSB approximate
- Distribute ratio: 3 modes distribute in 8 bits
- Quality determines the distribution schemes

Partial Error Correction

Hamming	Correct single-bit error	Low hardware complexity	Suitable for	
Reed-Solomon	Correct multi-bit errors	High complexity	fault-tolerant	
BCH	Correct multi-bit errors	High power consumption	applications	

 \succ Hamming(12,8): 8 information bits, 4 check bits

 \succ Use LSBs to store check bits: no additional arrays

Outline

- 1 Background
- **2** Proposed Approximate Scheme
- 3 Evaluation
- 4 Conclusion

2025/1/21

Simulation Settings

Approximate MRAM Design

□ Analysis Metrics: Normalized Error Distance (NED)

•
$$NED(ab) = \frac{ED(a,b)}{D} = \frac{\left|\Sigma_i a[i] * 2^i - \Sigma_j b[j] * 2^j\right|}{D}$$

- measure the error distance after approximation
- Reliable: regardless of the size of the word

Analysis Metrics

□ Trade-off

- power * NED & powersaving/NED
- Evaluate the energy-quality trade-off.
- A smaller power * NED , or larger powersaving/NED, means a better trade-off.

Image Processing

- Peak Signal-to-Noise Ratio(PSNR) Higher PSNR means less distortion in the image.
- Structural Similarity(SSIM)

The closer SSIM is to 1, the more similar the images are.

2025/1/21

Applications: Image Processing and Potential Silicon Demonstration

- $\checkmark\,$ Both read and write access approximation
- ✓ Power reduction of up to 49.5%
- ✓ Better energy-quality trade-off
- ✓ Negligible area overhead

	TOC'23[15]	DAC'15[16], DATE'17[17]	JETC'20[18]	Design& Test'23[19]	ICCAD'17[20]	This Work
Application Approximate Method	image reduce t_W	cache reduce t_W , additional SA	cache $I_R, I_R, t_R, t_W,$ retention	image reduce t_W , speculation	image reduce I_W	image read and write circuit structure
∆Read Power(%)	N/A	28	22.5	N/A	N/A	55.6
∆Write Power(%)	49.5	22	54.9	21.3	20	46.1
$\triangle \mathbf{Power}(\%)$	49.5	9-30	42.5	21.3	20	49.5
BER(%) ^b	5	1	12	6.4	4.8	6
NED ^a	0.0148	0.0073	0.0291	0.181	0.0153	0.0311
$\Delta \mathbf{Power/NED}^{a}$	33.45	12.33-41.1	14.6	11.77	13.07	15.92
Area Overhead	Y	Y	N/A	Y	Ν	Ν

^aEstimated from the data.

^bEstimated BER with partial error correction.

2025/1/21

30th Asia and South Pacific Design Automation Conference

Outline

- 1 Background
- **2** Proposed Approximate Scheme
- **3** Evaluation
- 4 Conclusion

2025/1/21

4 Conclusion

D Contributions of this work:

- A fine-grained approximate scheme for STT-MRAM is presented, allowing for dynamic modification to quality to achieve a better energy-quality trade-off
- Bit-level read and write approximate schemes are implemented by simply changing the control signals, resulting in an energy saving with negligible area overhead and minimal quality loss
- A partial error correction and bit-level data mapping method is proposed to protect the quality against the loss from TMR reduction.

Thank You!

Q & A