ﬁlb THE UNIVERSITY OF TEXAS AT DALLAS

Department of Electrical and Computer Engineering

HAMMER : Hardware-aware Runtime
Program Execution Acceleration through
runtime reconfigurable CGRAS

Qilin Si, and Benjamin Carrion Schaefer
Qilin.si@utallas.edu, schaferb@utdallas.edu

ASIA SOUTH PACIFIC

nHEHESIEN

th Aci e) .
AUTOMATION 30t Asia and South Pacific Design Automation Conference

LINFERENCE January 21, 2025, Tokyo ASP-DAC 2025

AUTOS

How Covid led to a $60 billion global
chip shortage for the auto industry

FUEBLISHED THU, FEE 11 2021-7:17 AM EST

Michael Wayvland
aMIKEWAYLAND

gg}_ : s -~

- 3 ’t"- - gj :ﬁ " Q_ o b

Administrati = <E EECD ﬁ"e"'e'; ccﬁ‘ﬁ%" ¢ XMy
i 1 i ministration o e A tfr'F SIS AREI P B "
. "‘:f‘:é Sgaaa s i el =

JUNE 17, 2021

Why the Pandemic Has Disrupted
Supply Chains

» CEA » WRITTEN MATERIALS » BLOG

By Susan Helper and Evan Soltas

Motivation

« Similar electronic systems have
different components. E.g., low-end
vs. high-end cars

What

* Runtime hardware-aware architecture and
design flow that is able to automatically
accelerate compiled programs based on
underling hardware

Why

* Reduces development time (design and
verification)

How

« Map accelerators to Coarse-grain
Reconfigurable array which his
programmed with accelerator based on
runtime detection of piece of SW which
can be accelerated

3: cmmememeeeen —

Application
(Cin)

A

HW dependent re-write [«

v
Source code verification
C, | | C, + HW extensions
v v
Compile Compile

(e.g., msp430-gcc, mspd32-gec)

(custom compiler)

Low-end car with simple
electronic system

High-end car with complex
electronic system

High-Level Synthesis

* High-Level Synthesis ANSI-C/C++/SystemC
. Des.lg.n.arcwts using software languages — _ ! —
“Automatic conversion of a behavioral, untimed e Target freq
description into efficient hardware that implements that I
behavior” e .
* Benefits ohesien

1. Software programmability and hardware
performance TS

2. Faster verification Syh‘;ﬁiecsis

3. Decouples functionality from I
implementation = allows to easily re- Place and Route
target any behavioral description to new I
technologies and newer design constraints cbsi

(i.e., area, power, performance)

C,, (ANSI-C/C++/SystemC)

#include "pragma.h”

int buffer[16]; //pragmal

// pragma2

for(i=7;i>0;i--)
buffer[i]=buffer[i-1];

buffer[0] =in0;

sum= buffer[0];

// pragma3

for (i= 1; i< 16; i++)
sum += buffer[i];

return (sum/16);

.

pragma.h

#define pragmal array=reg
#define pragma2 loop=all

#define pragma3 loop=all

techliby s
(ASIC, FPGA)

fH LS

\ 4

~
High-Level

Synthesis

Allocation

v

HLS Inputs

Scheduling

v

Binding

J

RTL
(.v/.vhdl)

HLS

High-Level Synthesis in Practice

| array=reg
(Area o o \/i I00p=aII
./'/ | loop=all
_____ /\\.. . \
AN K [) (
‘m e ® array=reg
P “w_ e | iloop=partial
(m) loop=partial
Latency
array=ram
loop=0
loop=0

HLS Outputs

High-Level Synthesis Made Easy - www.hIsbook.com

QHLS Made Easy HOME OVERVIEW AUTHOR PRICE DOWNLOAD

High-Level Synthesis

Synthesizing Behavioral Descriptions

M ad S Easy directly into Hardware Circuits

Synthesizing Behavioral Descriptions directly into Hardware Circuits.

Download pdf Purchase Hard Copy
| is directi) i Functional Units

Constraints

High-Level Synthesis
Made Easy

Coarse-grain Runtime Reconfigurable Array

* Coarse Grained Runtime Reconfigurable FPGAs
* Often included as reconfigurable IP in heterogeneous SoCs

DSP Macros Data out (8bits)
LT 444444
Pe|PE]PE]re] LPE]|PE] [re] LeE] [A
|

Register File
PEIPEJIPE|IPE]|IPEIPEIPE]IPE &
CGRA
Core N

(STP) PEJ|PE]|PE]|PE]|PE||PELLPE] | PE \\\ aw || omu
:
Qu
=

State Transition Controller (STC)

PEJIPE||PE||PE]IPE]] PELlPE]]PE N
_L Fr4A 4544
Data in (2x8bits)

On-chip Bus

Memory

PERIPEL|PE]IPE]|PEJJPE||PE]|PE

PEJIPELIPE]IPEJIPELIPE]JPE]|PE

CPU Ext. Memory
Controller

PEJLPE]lPE | PE]| PE]| PE I PE || PE

PEJJPEJIPEL|{PEJIPEIPE]IPE]]PE

DSP Macros

tream Transpose Processor (STP)

* Runtime Coarse Grain Reconfigurable Architecture (1ns to reconfigure)
* Programmed using High-Level Synthesis (HLS)

Other
.z ENESAS Search by keyword or Part Name ﬂ

l Products Applications Development Tools Support/Design Buy/Samples

About Renesas

Home Products SoC [System LS| ASIC Programmable LS|

= H i TEXT SIZE
STP Engine (IP Core) S £] v [+]+ [

Products

The STP engine is a reconfigurable processor (ORP: Dynamically Reconfigurable Processor) core that combines the flexibility of
software and the speed of hardware. The firmware defining processing can be reconfigured in an instant, allowing an almost
ASIC infinite variety of functions to be integrated into a system. A 40 nm process is currently available for ASIC.

Programmable LS| STP* : Stream Transpose ®

" High-performance STP engine structure

XBridge Precessing BementPE) | The STP engine has an array of processing elements (DRP) + DMA
Applications — controller structure.
e P=) 05
E=aliz) - = Data transfer (DMA) is dedicated and is divided from processing (array of
:hrrw of P 'Eli processing elements). This helps to improve performance and mounting
B area efficiency, reducing the CPU workload and improving overall system
.::."'... ';;; performance.
DMA controller An array of processing elements (PEs) consists of processing elements
- and memory. Memory and a multiplier encircle an array of PEs. With an
Click on image to enlarge STP engine, processing is performed in parallel using multiple computing

units and memory, realizing higher performance.

http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp

Stream Transpose Processor cont

* The main building blocks are

called tiles
e Each tile consists of an array of T TR e S A SN
8x8 PEs. Each PE contains: ' e —
. . . .] PElleEllPElLPE]lPE I PEHeE]l PE
* 8-bit arithmetic logic unit (ALU), ammimimimimie
an 8-bit data manipulation unit AW | omu
(DMU) for 1-bit logic operations i | 143|143 | 53] 143 K3 XS | 13

N
_L LW W W W
Data in (2x8bits)

Memory /

and 8_b|t Shlftlng and masking E‘ State Transition Controller (STC)
and an 8-bit flip-flop unit (FFU). 2 | Leedlee] ee] fre | [eedfre f[re] fre
 Surrounded by embedded F:E F:; F:; F:; Z'; Z'; Z'; F:E
memor-y and embedded PEJIPE]|PEJJPE||PE]]PE]|PE]]PE
multipliers
DSP Macros

contexts in its State Transition
Controller located in the middle
of the PE array

STP Configuration Flow

* Input : Sequential description in C
e Synthesis : High-Level Synthesis

* OQutput:
o FSM mapped to State Transition Controller (STC)

o Data Path mapped to PEs in the form for contexts
which the STC uses to reconfigure the reconfigurable
fabric every clock cycle

I DSP Macros I

Data out (8bits)
,/'LA+4 AAAT

Register File

ALU DMU

FEF 557

™ Datain (2x8bits) ™1

EWEEHHIEE“HHH
[| | | | | o | e
[| 3 | | e | | o e

I DSP Macros I

[ANSI C]

y

High-Level Synthesis
(1) Resource Allocation, (2)
Scheduling and (3) Bindin

Technology Mapping

A 4

Place and Route

L)

HAMMER Flow and Architecture

(ANSI-C) C,.., Compiler options
(-01,-03)
Extract Runtime Hash | | ALU
Computat|ona||y gCC 11y imem Generator dmem
intensive kernels Y hash address
l [kernelN il i PCHW by hash, start|end - .
A 4
” ke';';elz Compiler options <
 rernel (-01,-03) ',“-‘:’- u PC
e i window r_’ data) addr
Nl: _______ B 5e Hash Generator K Hash Registers T G | P Data
eneral Furpose
) controller
- il HW Accelerators (HashR) Registers (GPR) B
" High-Level Hash Hash Table |
Synthesis Generator
l RTL (:v/.vhdl) hashy, | hashy, | hashy; | hashg,| kernely
. . ; ; ; ; ; Flag start
Logic Synthesis N Thaen Tras T o Tragn—] kernel ag star EmEQEEENEEE
Technology Mapping o1 02 03 04 2 > STC
hashgy, | hashg, | hash,; | hash,,| kernel; . . .
y CGRA (STP)
Place and Route bit CGRA
Bitstream Generation . 5 -
Flow Architecture

HAMMER - Flow

_ ——— Applications
HLS (ANSI-C)

Inputs

v

Extract computationally
intensive kernels

l kernelN
kernel2

kernell
1

A 4

High-Level
Synthesis

} RTL (w/.vhdl)

Logic Synthesis
Technology Mapping

A 4

Place and Route

Compiler options
(-01,-03)

Y

gcc

Hash
Generator

Outputs

Bitstream Generation

* Inputs: Applicationsin C

* Outputs:
1. Synthesized (HLS) kernels mapped
onto CGRA

2. Hash value that identifies the kernel
based on instruction sequence

Kernels are compiled with different
compiler options (-O1, O2, etc..) and
their hash values included in database

14

Kernel Pre-Characterization

jpeg encoder ANC ANSI-C ANSI-C ANSI-C

Step 1: Extract kernels Input._| o\ |, output
that can be accelerated maes image
Step 2: Perform d fU” [Ext‘ract] [Ext‘rzact] Ext‘l:act [Ext;;ct] Step 1
HLS pragma-baSEd HLS (b) Kernel kernels kernels kernels kernels
lection

Design Space flow :]]]

. HLS DSE HLS DSE HLS DSE HLS DSE Step 2
Exploration (DSE) [] [] [] [!]

Step 3: Kernel selection

Area

Step 4: Generate Hash
for each kernel

Latency | | Latency | | Latency [| Latency | |

| | Kernel-lev$l Exploration | |

Step 3 Step 4

v
Kernels JPEG =
Maximize : speedup {kernel Hash
.. ; DCTL _
(minimize Energy) —’[Kernel selection]——» ernel,, o (T . .

Subject to : CGRA kernel ., kernel, ,}

HAMMER - Architecture

gcc Runtime Hash ALU
» imem Generator || dmem
T 1 hash address
C,ew Compiler options ~ hash; | start|end T x
(-01,-03) I PCHW
* Processor 5-stage nstr. L PC
. : . ind

pipelined RISC-V with | window < data) addr

Imem and dmem and e enerator [T _ Data

CG RA aof weneraor Hash Registers | General Purpose controller
. CG RA b|t C(?ntain HW Ac;ele;?tors (HashR) Registers (GPR)

database with kernels Hash Table : Hl m

that |Cantb?j hashg, | hashg, | hashy, | hashg,| kernely

accelerate 2 e i
* Two Progr(am) hashy, | hashy, | hashy; |hashy,| kernel, > STC

Counters (PCHW) is —

k I

ahead of PC to hashy, | hashg, | hashg; | hashg,| kernel, || . . .

compute hash values bit CGRA

In advance Architecture (b) 16

Experimental Setup

HLS Tools : Renesas Electronics Musketeer 1.2

e Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1
e Target technology: Nangate Opencell 45nm

e Target synthesis frequency: 200 MHz

e Power Simulator: Synopsys PrimePower v.P-2019.03-SP5

e RTL and gate-level simulator: Synopsys VCS 0-2018.06
e Process Compiler: riscv-gcc v. 20191213 mmmm
e Applications: MiBench and CHstone ispell MiBench 115k 1
dct Chstone 130K 179k 1
fft Mibench 141K 142K 2
cholesky MiBench 144K 110K 2
gsm MiBench 170K 257k 3
adpcm CHStone 186K 186l 1

Experimental Results : Speedup and Energy

Speedup [x] Energy Reduction [%)]
l l l l l l l

-0l M-03

Observation 1: Our proposed architecture was able to accelerate at least one kernel in all of the
benchmarks which lead to different speedup and energy reduction in all of the
benchmarks

Observation 2: The average speedup achieved was 4.12 and 2.64 for the -O1 and -O3 cases
respectively

Observation 3: On average the energy could be reduced by 56% and 33% for the-O1 and -O3 cases 1

respectively.)

Experimental Result —CGRA Fabric Size (JPEG Case Study)

CGRA fabric size

| 100%

-0O1 Speedup 4.6

kernels 5 5 5 5
-03 Speedup 4.8 3.7 2.9 1.8
kernels 5 5 5 5

100% = 64 STP tiles each with 64 PEs

Observation 1: The CGRA size does not impact the number of kernels that can be accelerated
- determined by the memory that holds the CGRA bitstreams

Observation 2: The speedup is highly correlated with the size of the CGRA. Larger fabric
allows larger and faster kernel implementations

19

Conclusions

* Proposed a processor system based on a standard
RISC-V augmented with a CGRA that can accelerate
sequential code without recompilation

* The system detects at runtime If a portion of the code can
0e accelerated or not

* High-Level Synthesis Is used to pre-characterize the
nardware accelerators (HLS DSE)

20

Thank You

