
HAMMER : Hardware-aware Runtime
Program Execution Acceleration through

runtime reconfigurable CGRAs

Qilin Si, and Benjamin Carrion Schaefer

Qilin.si@utallas.edu, schaferb@utdallas.edu

30th Asia and South Pacific Design Automation Conference

ASP-DAC 2025

Department of Electrical and Computer Engineering

January 21, 2025, Tokyo

2

3

• Similar electronic systems have
different components. E.g., low-end
vs. high-end cars

What
• Runtime hardware-aware architecture and

design flow that is able to automatically
accelerate compiled programs based on
underling hardware

Why
• Reduces development time (design and

verification)

How
• Map accelerators to Coarse-grain

Reconfigurable array which his
programmed with accelerator based on
runtime detection of piece of SW which
can be accelerated

Motivation

HW dependent re-write

1: --------------
2: --------------
3: --------------
: : : : :
N: -------------- (Cin)

Application

C1 C2 + HW extensions

µC zµC HWacc

Compile
(e.g., msp430-gcc, msp432-gcc)

Compile
(custom compiler)

Low-end car with simple
electronic system

High-end car with complex
electronic system

Source code verification

• High-Level Synthesis
• Design circuits using software languages
• Definition:

“Automatic conversion of a behavioral, untimed
description into efficient hardware that implements that
behavior”

• Benefits
1. Software programmability and hardware

performance
2. Faster verification
3. Decouples functionality from

implementation → allows to easily re-
target any behavioral description to new
technologies and newer design constraints
(i.e., area, power, performance)

High-Level Synthesis

ANSI-C/C++/SystemC

High-Level
Synthesis

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

GDSII

Techlib
Target freq

SWaP-C

High-Level Synthesis in Practice

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS

(ASIC, FPGA)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0];
// pragma3
for (i= 1; i< 16; i++)

sum += buffer[i];
return (sum/16);

HLS Inputs

pragma.h

fHLS

Allocation

Scheduling

Binding

High-Level

Synthesis

HLS

RTL
(.v/.vhdl)

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Area

Latency

ത𝑃

Logic synthesis scripts

Testbench, simulation models

HLS Outputs

array=reg

loop=all

loop=all

array=reg

loop=partial

loop=partial

array=ram

loop=0

loop=0

High-Level Synthesis Made Easy - www.hlsbook.com

Coarse-grain Runtime Reconfigurable Array

9

• Coarse Grained Runtime Reconfigurable FPGAs

• Often included as reconfigurable IP in heterogeneous SoCs

Stream Transpose Processor (STP)

10

• Runtime Coarse Grain Reconfigurable Architecture (1ns to reconfigure)
• Programmed using High-Level Synthesis (HLS)

http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp

Stream Transpose Processor cont

11

• The main building blocks are
called tiles

• Each tile consists of an array of
8x8 PEs. Each PE contains:
• 8-bit arithmetic logic unit (ALU),

an 8-bit data manipulation unit
(DMU) for 1-bit logic operations
and 8-bit shifting and masking
and an 8-bit flip-flop unit (FFU).

• Surrounded by embedded
memory and embedded
multipliers

• The STP can hold up to 64
contexts in its State Transition
Controller located in the middle
of the PE array

STP Configuration Flow

• Input : Sequential description in C

• Synthesis : High-Level Synthesis

• Output:
o FSM mapped to State Transition Controller (STC)
o Data Path mapped to PEs in the form for contexts

which the STC uses to reconfigure the reconfigurable
fabric every clock cycle

STC

PE config

ANSI C

High-Level Synthesis

(1) Resource Allocation, (2)

Scheduling and (3) Binding

Technology Mapping

Place and Route

STC code PE code

FSM
Context N

STP

STC
code

PE config

13

HAMMER Flow and Architecture

Flow Architecture

ALU

General Purpose
Registers (GPR)

imem dmem

HW Accelerators
Hash Table

kernel1

hash01 hash03

kernel2

kernelN

PCHW

PC

Hash Registers
(HashR)

Runtime Hash
Generator

: : : : :

Hash Generator

CGRA (STP)
.bit

STC

CGRA

Instr.
window

Data
controller

addrdata

start|endhashi

hash address

hash02 hash04

hash01 hash03hash02 hash04

hash01 hash03hash02 hash04

Flag start

Extract
computationally
intensive kernels

fHLS
Applications

(ANSI-C)

kernel1
1:--------
2:--------

: :
N:-------

kernel2

kernelN

High-Level
Synthesis

RTL (.v/.vhdl)

Logic Synthesis
Technology Mapping

Place and Route
Bitstream Generation

gcc

Hash
Generator

Capps

Compiler options
(-O1,-O3)

gcc

Cnew Compiler options
(-O1,-O3)

Flow

• Inputs: Applications in C

• Outputs:
1. Synthesized (HLS) kernels mapped

onto CGRA
2. Hash value that identifies the kernel

based on instruction sequence
Kernels are compiled with different
compiler options (-O1, O2, etc..) and
their hash values included in database

14

HAMMER - Flow

Extract computationally
intensive kernels

fHLS

Applications
(ANSI-C)

kernel1
1:--------
2:--------

: :
N:-------

kernel2

kernelN

High-Level
Synthesis

RTL (.v/.vhdl)

Logic Synthesis
Technology Mapping

Place and Route
Bitstream Generation

gcc

Compiler options
(-01,-03)

Hash
Generator

Capps

hashes

STP
(.bit)

Inputs

Outputs

Step 1 : Extract kernels
that can be accelerated

Step 2: Perform a full
HLS pragma-based HLS
Design Space
Exploration (DSE)

Step 3: Kernel selection

Step 4: Generate Hash
for each kernel

15

Kernel Pre-Characterization

DCT Quantz RLE Huffman
Input
image

Output
image

HLS DSE HLS DSE HLS DSE HLS DSE

Kernel-level Exploration

jpeg encoder

Extract
kernels

Extract
kernels

Extract
kernels

Extract
kernels

Kernel selection
Maximize : speedup

(minimize Energy)
Subject to : CGRA

Kernels JPEG =
{kernelDCT1,
kernelquant1,
kernelrle1, kernelhuf1}

(b) Kernel
selection
flow

A
re

a

Latency

A
re

a

Latency

A
re

a

Latency

A
re

a

Latency

Step 1

Step 2

Step 3

ത𝑃kernel1
ത𝑃kernel2

ത𝑃kernel3
ത𝑃kernel4

Hash
Generation

Step 4

ANSI-C ANSI-C ANSI-C ANSI-C

• Processor 5-stage
pipelined RISC-V with
imem and dmem and
CGRA

• CGRA .bit contain
database with kernels
that can be
accelerated

• Two Program
Counters (PCHW) is
ahead of PC to
compute hash values
in advance

16

HAMMER - Architecture

Architecture (b)

ALU

General Purpose
Registers (GPR)

gcc

Cnew Compiler options
(-01,-03)

imem dmem

HW Accelerators
Hash Table

kernel1

hash01 hash03

kernel2

kernelN

PCHW

PC

Hash Registers
(HashR)

Runtime Hash
Generator

: : : : :

Hash Generator

CGRA (STP)
.bit

STC

CGRA

Instr.
window

Data
controller

addrdata

start|endhashi

hash address

hash02 hash04

hash01 hash03hash02 hash04

hash01 hash03hash02 hash04

Flag start

Experimental Setup

● HLS Tools : Renesas Electronics Musketeer 1.2

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 200 MHz

● Power Simulator: Synopsys PrimePower v.P-2019.03-SP5

● RTL and gate-level simulator: Synopsys VCS 0-2018.06

● Process Compiler: riscv-gcc v. 20191213

● Applications: MiBench and CHstone

Tools

Benchmark Source #Instr (-O1) #Instr (-O3) Kernels

ispell MiBench 82K 115k 1

dct Chstone 130K 179k 1

fft Mibench 141K 142K 2

cholesky MiBench 144K 110K 2

gsm MiBench 170K 257k 3

adpcm CHStone 186K 186l 1

Evaluation

18

Experimental Results : Speedup and Energy

Observation 1: Our proposed architecture was able to accelerate at least one kernel in all of the

benchmarks which lead to different speedup and energy reduction in all of the

benchmarks

Observation 2: The average speedup achieved was 4.12 and 2.64 for the -O1 and -O3 cases

respectively

Observation 3: On average the energy could be reduced by 56% and 33% for the-O1 and -O3 cases

respectively.

-O1 -O3

19

Experimental Result –CGRA Fabric Size (JPEG Case Study)

Observation 1: The CGRA size does not impact the number of kernels that can be accelerated

→ determined by the memory that holds the CGRA bitstreams

Observation 2: The speedup is highly correlated with the size of the CGRA. Larger fabric

allows larger and faster kernel implementations

100% 80% 60% 40%

-O1 Speedup
kernels

4.6
5

3.8
5

3.2
5

1.9
5

-O3 Speedup
kernels

4.8
5

3.7
5

2.9
5

1.8
5

CGRA fabric size

100% = 64 STP tiles each with 64 PEs

• Proposed a processor system based on a standard
RISC-V augmented with a CGRA that can accelerate
sequential code without recompilation

• The system detects at runtime if a portion of the code can
be accelerated or not

• High-Level Synthesis is used to pre-characterize the
hardware accelerators (HLS DSE)

20

Conclusions

21

Thank YouThank You

