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• Similar electronic systems have 
different components. E.g., low-end  
vs. high-end cars

What
• Runtime hardware-aware architecture and 

design flow that is able to automatically 
accelerate compiled programs based on 
underling hardware

Why
• Reduces development time (design and 

verification)

How
• Map accelerators to Coarse-grain 

Reconfigurable array which his 
programmed with accelerator based on 
runtime detection of piece of SW which 
can be accelerated

Motivation

HW dependent re-write

1: --------------
2: --------------
3: --------------
:   :   :    :    :
N: -------------- (Cin)

Application

C1 C2 + HW extensions

µC zµC HWacc

Compile
(e.g., msp430-gcc, msp432-gcc)

Compile 
(custom compiler)

Low-end car with simple 
electronic system 

High-end car with complex 
electronic system

Source code verification



• High-Level Synthesis
• Design circuits using software languages
• Definition:

“Automatic conversion of a behavioral, untimed 
description into efficient hardware that implements that 
behavior” 

• Benefits
1. Software programmability and hardware 

performance
2. Faster verification
3. Decouples functionality from 

implementation → allows to easily re-
target any behavioral description to new 
technologies and newer design constraints 
(i.e., area, power, performance)

High-Level Synthesis
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High-Level Synthesis in Practice

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS

(ASIC, FPGA)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0]; 
// pragma3
for (i= 1; i< 16; i++) 

sum += buffer[i]; 
return (sum/16);

HLS Inputs

pragma.h

fHLS

Allocation

Scheduling

Binding

High-Level 

Synthesis

HLS

RTL
( .v/.vhdl)

RTL (Verilog, VHDL)

Reports  (Area, timing, power)

Area

Latency 

ത𝑃

Logic synthesis scripts

Testbench, simulation models

HLS Outputs

array=reg

loop=all

loop=all
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loop=partial

loop=partial
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High-Level Synthesis Made Easy - www.hlsbook.com



Coarse-grain Runtime Reconfigurable Array
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• Coarse Grained Runtime Reconfigurable FPGAs

• Often  included as reconfigurable IP in heterogeneous SoCs



Stream Transpose Processor (STP)
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• Runtime Coarse Grain Reconfigurable Architecture (1ns to reconfigure)
• Programmed using High-Level Synthesis (HLS)

http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp



Stream Transpose Processor cont
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• The main building blocks are 
called tiles

• Each tile consists of an array of 
8x8 PEs. Each PE contains:
• 8-bit arithmetic logic unit (ALU), 

an 8-bit data manipulation unit 
(DMU) for 1-bit logic operations 
and 8-bit shifting and masking 
and an 8-bit flip-flop unit (FFU).

• Surrounded by embedded 
memory and embedded 
multipliers

• The STP can hold up to 64 
contexts in its State Transition 
Controller located in the middle 
of the PE array



STP Configuration Flow

• Input : Sequential description in C

• Synthesis : High-Level Synthesis

• Output:
o FSM mapped to State Transition Controller (STC)
o Data Path mapped to PEs in the form for contexts 

which the STC uses to reconfigure the reconfigurable 
fabric every clock cycle

STC

PE config

ANSI C

High-Level Synthesis

(1) Resource Allocation, (2) 

Scheduling and (3) Binding

Technology Mapping

Place and Route

STC code PE code

FSM
Context N

STP

STC 
code

PE config



13

HAMMER Flow and Architecture

Flow Architecture 
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• Inputs: Applications in C

• Outputs: 
1. Synthesized (HLS) kernels mapped 

onto CGRA
2. Hash value that identifies the kernel 

based on instruction sequence
Kernels are compiled with different 
compiler options (-O1, O2, etc..) and 
their hash values included in database
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HAMMER - Flow

Extract computationally 
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Step 1 : Extract kernels 
that can be accelerated

Step 2: Perform a full 
HLS pragma-based HLS 
Design Space 
Exploration (DSE)

Step 3: Kernel selection

Step 4: Generate Hash 
for each kernel
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Kernel Pre-Characterization
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• Processor 5-stage 
pipelined RISC-V with 
imem and dmem and 
CGRA

• CGRA .bit contain 
database with kernels 
that can be 
accelerated

• Two Program 
Counters (PCHW) is 
ahead of PC to 
compute hash values 
in advance
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HAMMER - Architecture

Architecture (b)
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Experimental Setup

● HLS Tools : Renesas Electronics Musketeer 1.2

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 200 MHz

● Power Simulator: Synopsys PrimePower v.P-2019.03-SP5

● RTL and gate-level simulator: Synopsys VCS 0-2018.06 

● Process Compiler: riscv-gcc v. 20191213

● Applications: MiBench and CHstone

Tools

Benchmark Source #Instr (-O1) #Instr (-O3) Kernels

ispell MiBench 82K 115k 1

dct Chstone 130K 179k 1

fft Mibench 141K 142K 2

cholesky MiBench 144K 110K 2

gsm MiBench 170K 257k 3

adpcm CHStone 186K 186l 1

Evaluation



18

Experimental Results : Speedup and Energy

Observation 1: Our proposed architecture was able to accelerate at least one kernel in all of the 

benchmarks which lead to different speedup and energy reduction in all of the 

benchmarks

Observation 2: The average speedup achieved was 4.12 and 2.64 for the -O1 and -O3 cases 

respectively

Observation 3: On average the energy could be reduced by 56% and 33% for the-O1 and -O3 cases 

respectively.

-O1       -O3
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Experimental Result –CGRA Fabric Size (JPEG Case Study)

Observation 1: The CGRA size does not impact the number of kernels that can be accelerated 

→ determined by the memory that holds the CGRA bitstreams

Observation 2: The speedup is highly correlated with the size of the CGRA. Larger fabric 

allows larger and faster kernel implementations

100% 80% 60% 40%

-O1 Speedup      
kernels

4.6
5

3.8
5

3.2
5

1.9
5

-O3 Speedup 
kernels

4.8
5

3.7
5

2.9
5

1.8
5

CGRA fabric size

100% = 64 STP tiles each with 64 PEs



• Proposed a processor system based on a standard 
RISC-V augmented with a CGRA that can accelerate 
sequential code without recompilation

• The system detects at runtime if a portion of the code can 
be accelerated or not

• High-Level Synthesis is used to pre-characterize the 
hardware accelerators (HLS DSE)
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Conclusions
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