A 0.9-2.6pW 0.1-0.25V 22nm 2-bit Supply-to-Digital Converter Using Always-Activated Supply-Controlled Oscillator and Supply-Dependent Activation Buffers for Bio-Fuel-Cell-Powered-and-Sensed Time-Stamped Bio-Recording

Hiroaki Kitaike, Masaharu Inada, Mitsuru Terauchi, Hironori Tagawa, Ryosuke Nagai, Shufan Xu, Ruilin Zhang, Kunyang Liu, and Kiichi Niitsu Kyoto University, Japan

Motivations of developing new converter

- Sensed-data-to-digital conversion is needed in IoT sensor
- In some IoT devices, difficult to drive existing converters due to power limitation

Contact lens health-care device [1-5] →The output voltage of the cell provides information on blood glucose levels

[1] A. F. Yeknami, ISSCC2018. [2] K. Hayashi, BioCAS 2018. [3] A.Tanaka, BioCAS2023. [4] A.Kobayashi, TBioCAS2019:1152. [5] A. Kobayashi, BioCAS2019.

Motivations of developing new converter

- Convert voltage of bio-fuel-cell to digital
- Use the supply voltage as sensed-data as well as circuit voltage source since couldn't access to stable voltage source → 1 input / 1 output
- →Different from ordinary AD converter

Performance Requirements

However, in condition with extremely low glucose levels, the power budget gained by bio-fuel-cell is much lower

[1] A. F. Yeknami et al., ISSCC 2018. [4] A.Kobayashi et al., TBioCAS 2019. [8]S. Arata, JJAP 2019.

Supply-Dependent-Activation-Buffer

Propose a SDC which the number of driven transistors varies dynamically according to the power generated, ensuring operation even at lower voltage

 Introduce a supply-dependent-activation-buffer which the buffer ON/OFF varies dynamically according to the power generated...operating as a comparator of V_{IN} and V_{DDth}

VDDth variation of SDABs

V_{DDth} variation of DLS-buffer V_{DDth} in schematic simulation

Parameter:

- Number of stacked transistors
- Transistor width

Proposed Circuit Architecture

- Supply-to-frequency-and-digital converter by using buffers with different V-threshold
- Could detect V_{IN} range by encoding outputs of activated/nonactivated buffers

Post Layout Simulation Result

Buffers gradually turn on and output shifts as V_{IN} rises

Test Chip Measurement

Fabricated prototype chip in 22nm-CMOS

Chip size: 0.00028mm²

 Successfully converted supply to binary signal

Comparison with Previous SDC

 Achieved lower power of 0.9-2.6 pW smaller area of 0.00028 mm² lower operational voltage of 0.1-0.25 V

	ISSCC'18 [1]	TBioCAS'19 [4]		BioCAS'19 [5]	This work	
Technology	180-nm Bulk CMOS	55-nm DDC CMOS	65-nm Bulk CMOS	180-nm Bulk CMOS	22-nm Bulk CMOS (Ultra Low Leakage, TGO Tr.)	
Topology	Delta-Sigma	Dual-Oscillators-Based		Burst Pulse Counting	SDAB & Probabilistic counter	SDAB & Thermo-binary encoder
Output	60dB SNDR	8-bit Code	9-bit Code	9-bit Code	9-bit Code	2-bit Code
Input Voltage Range	0.3 V	0.75-1 V	0.225-0.525 V	0.18-0.35 V	0.1-0.25 V (Simulation)	0.1-0.25 V
Footprint (mm ²)	0.1 mm ² (w/ I/O Pads)	0.0047 mm ²	0.0032 mm ²	0.018 mm ²	0.0069 mm²	0.00028 mm ²
Footprint (F ²)	3,090,000 F ²	1,550,000 F ²	757,000 F ²	556,000 F ²	14,300,000 F ²	579,000 F ²
Conversion Time	N/A	6.2 s @ 0.75V	2.9 s @ 0.25V	117-673 ms @0.18-0.35 V	510 ms @ 0.175V (Simulation)	2.13 ms @ 0.175V (Simulation)
Power Consumption	180 nW @ 0.3 V	30.2 nW @ 0.75 V	32.8 nW @ 0.25 V	4.5 nW @ 0.3 V	122.5 – 426.1 pW @0.1-0.25 V (Simulation)	<mark>0.9 – 2.6 pW</mark> @0.1-0.25 V
Necessary Glucose- Fuel-Cell Area (Tear)	18,000 mm ²	3,020 mm ²	3,280 mm ²	450 mm ²	42.6 mm ² (Accommodable in contact lens)	0.26 mm ² (Accommodable in contact lens)
Application	Glucose- powered skin- patch-type	Light-powered CGM contact	Light-powered CGM contact	Light -powered CGM contact	Glucose-powered-and- sensed standalone CGM contact	Glucose-powered-and- sensed standalone CGM contact

[1] A. F. Yeknami et al., ISSCC 2018. [4] A.Kobayashi et al., TBioCAS 2019. [5] A. Kobayashi et al., TBioCAS 2019.

Conclusion

- Proposed a new supply-to-digital converter by using buffers with different V_{DDth} (SDABs)
- Outperformed previous research in terms of power, footprint, and low operational voltage range
 - \rightarrow met the needed performance (<0.37V, <100pW)
 - → could realize conversion with the power only from bio-fuel-cell on a tiny contact lens
- For a higher resolution, higher-bit resolution SDC simulation must be conducted
- Since very weak to process variation, calibration method for eliminating process variation must be conducted

Thank you for your attention!