Humanoid Robot Control: A Mixed-Signal Footstep Planning SoC with ZMP Gait Scheduler and Neural Inverse Kinematics

Qiankai Cao¹, Yiqi Li¹, Juin Chuen Oh¹, Jie Gu¹

UNIVERSITY

¹ Northwestern University

Challenges of Humanoid Robot Control

- Computationally heavy for 3D footstep planning on humanoid robot
- Special trajectory control of the robot's center of mass (CoM) for balancing
- High computation for 10-20 DoF robot joint control compared with wheeled robot

Contribution of This Work

 Time-domain Graph Search Engine for 3D Foot planning

 Neural Network Approximator for Inverse Kinematics

Mixed-signal Circuit for Efficient
ZMP Pattern Generation

• In-situ Demo on Humanoid Robot

Time-Domain Computing (TC)

Encode and process information in "Time"

• Key benefits: energy/area efficiency, digital implementation

2025 Asia and South Pacific Design Automation Conference

Novel Time-domain Graph Search Engine

- A 40x40 vertex array is deployed for mapping information
- Each vertex consists of eight directions
 - four planar directions & four 3D directions

D* Algorithm: 3D Footstep Planning

Example of footstep replanning

Time-domain Wavefront Propagation

- Time-domain Graph Search Engine
 - 10.5X improvement over digital counterpart

Zero Moment Point (ZMP) Gait Scheduler for Balancing

 $T_{zmp}=mg(x+p_x)-m\ddot{x}z_c=0$ Falling down CoM is out of

ZMP rigion

- Balancing for fall prevention
- Zero moment point of the cart-table model
 - robot's total moment at the ground is zero

Mixed-signal Circuit for ZMP-based Fall Prevention

- Synthesize the targeted sinusoidal-like CoM trajectory
 - 3.4X power saving compared with equivalent digital counterpart

Neuro-Kinematics for Complex Inverse Kinematics

- A neural network is used to approximate the calculation
 - 21.8X energy saving over complex trigonometric calculation

Hardware Implementation of Neuro-Kinematics

- A hybrid neuro-kinematic circuit consists of 8-bit MAC
- A 2% loss of accuracy is observed using neuro-kinematics

Chip Implementation and Comparison Table

		ISSCC'18[3]	ISSCC'20 [4]	ISSCC'19[5]	ISSCC'23 [6]	This work
Application		A* shortest path	SLAM	Swarm intelligence	Motion control	3D footstep planning+ Motion control
Hardware		65nm/Time	Mixed-signal	65nm	28nm/Digital	65nm/MS Time
Graph size		40 x 40	7x7	-	-	40 x 40
Total area (mm ²)		0.4	5	2	3.56	3.34
Memory size		2.3 kB	37.9 kB	16 kB	-	22 kB
Frequency		-	78.2-130.8MHz	1kHz-1.5MHz	200MHz	1MHz
Peak Power		26.4 mW	17.87mW	3.4uW	142mW	432.8uW
Enerav	for control	-	-	-	35 Hz/mW	645 Hz/mW ¹⁾
Efficiency	for NN	-	8.0 TOPS/W	1.1-9.1TOPS/W	-	3.2 - 6.5TOPS/W
Path	Energy per task	1166.2 pJ ²⁾	-	-	-	424.7 pJ
Planning	Search Rate (edges/sec)	559M ³⁾	-	-	-	910M ³⁾

1) Efficiency for control = Control rate/Power (20Hz control rate is used in this work from motor spec.) 2) a 55% cache access energy is used as reported in [3] 3) MTEPS=Million Traversed Edges Per Second

- The Very First Humanoid System-on-Chip Design
- A 18.4x improvement is achieved on energy efficiency of motion control over prior work
- A 2.7X improvement is achieved on energy per task for path planning over prior work

Demonstration on Humanoid Robot

2F-3

2025 Asia and South Pacific Design Automation Conference

Slide 11

Demo Video

Conclusions

- This work presents the first footstep planning SoC for humanoid robot
- A time-domain graph search engine for 3D footstep plan is proposed
 - 10X latency improvement over digital solution
- A mixed-signal ZMP-based gait scheduler for robot balance
 - 3.4X Saving over digital solution
- A mixed-signal neuro-kinematic module for inverse kinematics
 - 21.8X improvement over inverse kinematics
- A 2.7X~18.4X improvement is achieved on energy efficiency over prior work

Thank You!

2025 Asia and South Pacific Design Automation Conference

Slide 14