

A Coarse- and Fine-Grained LUT Segmentation Method Enabling Single FPGA Implementation of Wired-Logic DNN Processor

Yuxuan Pan, Dongzhu Li, Mototsugu Hamada, Atsutake Kosuge

The University of Tokyo

東京大学 THE UKANARSITY OF TOKYO

Wired-Logic Architecture Using NNN

- FPGAs are reconfigurable for AI tasks but less energy-efficient
- Wired-logic architecture using Non-linear Neural Network (NNN)
 - 1. Binarize weights to +1/-1
 - 2. Prune unnecessary synapses
 - 3. Learn the non-linear activation function at each neuron individually
- Low latency & high energy efficiency via eliminating memory access

Challenge of Processing Long-Bit-Width Data

- The implementation of Non-Linear Functions (NLFs) consumes significant LUT resources
- The sharp increase in LUT requirements makes it impossible to implement scaled NNN models with long-bit-width data on a single FPGA

Coarse- and Fine-Grained LUT Segmentation

 The output switching is realized by monitoring the upper bits of the input signal

東京大学

Redundant Bits to Restore Accuracy

- When high-order bits have meaningful values, information in the low-order bits is lost, leads to accuracy reduction for complex tasks
- Redundant bits are merged into the segmented input to improve accuracy

東京大学

Comparison with FPGA Implementations

• 15-20x more energy efficiency improvement than Ref. [1]

Index	Ref. [1]	This work			
		Baseline (#1)	Proposed method	Baseline (#2)	Proposed method
# of commmands	10 (1)	10	10	20	20 (2×)
Bit width	4/4	1/16	1/16	1/16	1/16
LUT segmentation	-	No	Yes	No	Yes
Redundant bits	_	_	2 bits	-	2 bits
LUTs	N/A	2,614,511	827,920	2,975,693	1,024,954
LUTs for NLF	-	1,925,048 (<mark>100%</mark>)	138,457 (- <mark>92.8%</mark>)	2,097,433 (<mark>100%</mark>)	146,694 (-93%)
Accuracy	90.1%	90% (<mark>0</mark>)	88.8% (-1.2%)	82% (<mark>0</mark>)	80.4% (-1.6%)
Power [W]	0.83	42.39	18.03	48.61	24.38
Throughput [Mfps]	1.43×10 ⁻³	0.625	0.625	0.625	0.625
Energy efficiency [µJ/inf.]	580 (1)	67.32	28.85 (1/20)	77.78	39 (1/15)

[1] Mazumder, A. N., & Mohsenin, T. M., arXiv preprint arXiv:2202.02361, 2022.

「亰大鸟