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Cosmic ray-induced
neutrons and muons are falling into VLSI chips



Example of nuclear reaction
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Example of reaction in VLSI chip
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[1] S. Abe, et. al, ”Multi-scale Monte Carlo simulation of soft errors using PHITS-
HyENEXSS code system,” IEEE Trans. Nuclear Science, 2012

Injected charge 
may result in 
bit flip called 
soft error.



α @ 3.76 MeV

α @ 1.37 MeV

α @ 3.43 MeV

n @ 100 MeV

Example @ 65nm

20m

20m

Memory cell
(2.0 x 0.5 m2)



Multi-physics multi-layer phenomena with 
diverse temporal and spatial scales
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10-14m
10-6m



Multi-physics multi-layer phenomena with 
diverse temporal and spatial scales
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10-14m
10-6m

SRAM Soft Error Rate Characterization (Focus of this talk)



Multi-physics multi-layer phenomena with 
diverse temporal and spatial scales
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10-14m
10-6m

Control flow monitoring (6D-5, Wed.)



Agenda

• Background: soft error
• Conventional soft error rate (SER) simulation 

and its challenges
• Proposed method and experiments
• Future directions and conclusions
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Conventional SER simulation
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(3) SRAM Cell behavior(2) Charge deposition(1) Nuclear physics

Simulators: PHITS[2], Geant4 [3], etc

10-14m
10-6m

Monte Carlo simulation aiming to reproduce nuclear 
physics, charge deposition and SRAM cell behavior. 

A number of event data are generated.
(particle type, energy, location, direction, 
resultant charge deposition)

[2] T. Sato, et al., “Recent improvements of 
the particle and heavy iontransport code 
system – PHITS version 3.33,” J. Nuclear Sci. 
& Tech., 2024.
[3] S. Agostinelli, et al., “Geant4 - a 
simulation toolkit，” Nuclear Instruments 
and Methods in Physics Res. Sec. A，2003．



Conventional SER simulation
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(3) SRAM Cell behavior(2) Charge deposition(1) Nuclear physics

Simulators: PHITS, Geant 4, etc

10-14m
10-6m

A number of event data are generated.
(particle type, energy, location, direction, 
resultant charge deposition)

For each event, 
how can we know if 
an upset occurs or 
not?

Monte Carlo simulation aiming to reproduce nuclear 
physics, charge deposition and SRAM cell behavior. 



α @ 3.76 MeV

α @ 1.37 MeV

α @ 3.43 MeV

n @ 100 MeV

Example @ 65nm

20m

20m

Memory cell
(2.0 x 0.5 m2)

For each cell, how can we know if an 
upset occurs or not ?



α @ 3.76 MeV

α @ 1.37 MeV

α @ 3.43 MeV

n @ 100 MeV

Example @ 65nm

20m

20m

Memory cell
(2.0 x 0.5 m2)

For each cell, how can we know if an 
upset occurs or not ?

Spatial distribution of upsets affects ECC efficiency.
-> eager to estimate accurate error patterns



Conventional sensitive volume (SV) method
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Qcoll (=Qdep*Ceff) > Qcrit?

Is the charge collected to 
drain (Qcoll) large enough?

Qdep: charge deposited in SV
Ceff: charge collection efficiency
Qcrit: critical charge (threshold)

Pro: very fast discrimination 
(upset or not)

Con: determining SV, Qcrit, 
Ceff is difficult
low event-wise accuracy



For better discriminator accuracy
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• Assign multiple SVs (MSV) to consider spatial Ceff difference [4]
– Fast, yet not sufficiently accurate.

• Give each charge deposition to TCAD and perform transient 
simulation [5]
– Very accurate, but prohibitively slow

• Construct and use ML-based classifiers [6, 7]
– Validated for 65nm SOI only

• Not validated for recent FinFET SRAMs
– Prepared training data using TCAD

• Suffering from long TCAD simulations

[4] K.M. Warren, et al., IEEE Trans. Nucl. Sci., 2007. [5] S. Abe et al., IEEE Trans. Nucl. Sci., 2012. 
[6] S. Hirokawa, et al., RADECS, 2016. [7] M. Hashimoto, SISPAD, 2017.



Contribution of this work

• Propose an active learning-based classifier 
construction method w/ less TCAD 
simulations 

• Validate it with 12nm FinFET SRAM
• Discuss future directions
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Agenda

• Background: soft error
• Conventional soft error rate (SER) simulation 

and its challenges
• Proposed method and experiments
• Future directions and conclusions
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Active learning (AL)

• Identifies unlabeled samples which are most 
likely to improve the model if labeled

• Repeats the process of labeling, retraining and 
unlabeled sample selection

• Pros
– Reduced labeling costs
– Efficient esp. when 

labeling is expensive
– Faster accuracy 

improvements
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TCAD in our case
[8] B. Settles, “Active Learning,” Springer, 2009.



Flow of AL-based training
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As # of labeled 
samples increases, 
more complex models 
can be trained for 
higher accuracy.

HP: hyperparameter 

Sorted by |p-0.5|
p: estimated upset 
probability



Simulation setup
• DUT: 12nm 6T-SRAM (Vdd=0.8V)
• Physics simulation (nuclear reaction and particle 

transport): PHITS [2]
• TCAD (device simulation) : HyENEXSS [9]
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[9] N. Kotani, SISPAD, 1998.

PHITS model TCAD model



Sensitive volumes allocation
• Charges deposited to individual SVs are input 

variables of the classifier.
• SVs are allocated to off-state NMOS.
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Region (Ceff > 0.05) is 
considered for SV allocation Allocated 40 SVs



学習用 テスト用

• LightGBM [10] is adopted.
• Split the dataset into an 8:2 ratio for training 

and testing, ensuring that the label distribution 
remains the same in both sets.

• Initial 10 samples for labeling is selected 
randomly.

• HP is updated every time # of labeled samples 
increases by 10.

ML setup
22

[10] G. Ke, et al., NIPS, 2017.

For training For test   



Procedure of hyperparameter update

1. Split the current training data into stratified 5-
folds randomly.

2. Explore hyperparameters using Optuna [11]. 
For each fold, construct a discriminator using 
the other four folds and evaluate its accuracy.

3. Repeat Step 2 100 times and adopt the 
hyperparameters with the highest average 
accuracy across the 5-folds.
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[11] T. Akiba, et al., KDD, 2019.



Accuracy vs. # of training data
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Multiple SVs

Single SV

ML-based classifiers outperform conventional SV methods.
Only 18 data to reach MSV accuracy.

18

Std. dev. for 
100 trials.



Accuracy vs. # of training data
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41% reduction at 80% accuracy

31% reduction at 85% accuracy

Compared with ML w/o AL and HP update, 
the proposed method achieves



Runtime reduction

• 12 hours per one TCAD simulation in 
average

• 160 simulations (80% accuracy w/ conv. 
training) require 1,920 hours (80 days)

-> 30 to 40% reduction is significant.
• Compared with TCAD, training and 

hyperparameter tuning are negligible.
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Accuracy vs. # of training data
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AL vs non-AL



Accuracy vs. # of training data
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HPupdate (solid) vs HPfix (dashed)



Future directions

• Validate the proposed SER estimation 
using measurement data focusing on 
multiple cell upsets (MCUs).

• Extend the proposed method to 
account for particles striking multiple 
transistors within a cell since such 
events alter sensitivity to charge 
deposition [6]. GAA and CFET are likely 
to encounter these events.

• Accelerate TCAD simulations using ML 
[12]. TCAD could be directly integrated 
into the Monte Carlo flow.
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[12] R. Novkin, et al., “ML-TCAD: Perspectives and Challenges on Accelerating 
Transistor Modeling using ML,” MLCAD, 2023. 



Conclusions

• Proposed an SEU discriminator construction 
method w/ active learning and periodic 
hyperparameter tuning
– enhancing both the accuracy and training efficiency.
– systematically constructing the discriminator w/o 

empirical determination of SV and critical charge.
• Applied to a 12-nm FinFET SRAM using LightGBM.

– both active learning and hyperparameter updating 
effectively reduce the necessary training data

– 41% and 31% reductions for 80% and 85% 
discrimination accuracy, respectively

• Discussed future directions
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