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• Signal Integrity (SI) Effect
• Crosstalk and noise propagation
• SI analyze typically in post-routing, electrical and logical

• Challenges in Pre-Routing Timing
• Absence essential physical info, i.e., routing, congestion

Motivation
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• Timing analyze throughout entire design flow
• Earlier the intervention stage, greater the room for optimization



Motivation
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(a) Difference between Elmore and sign-off at typical corner
(b) Path delay among different PVT corners. 

• Solution
• Develop SI-aware prediction model

• Multi-corner consideration

• Pre-routing wire timing challenges: 
• Lack of routing info

• Model oversimplification 

• Elmore vs. Sign-Off, gap >150 ps

• Even worse in multi-corner variations



• Problem Formulation: 
• Input: layout, cell library
• Golden timing reports in SI mode under multi-corners (For training and evaluation)

• Output: Wire delay, corresponding path AT, and critical path

• Objective: Minimizes the discrepancy between prediction and the golden timing. 

SI-Timing Prediction Formulation
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• Prior Machine Learning Predictions:
• Trade-off between accuracy and computationally expensive

• Pre-placement stage

• Placement stage

• Post-routing and sign-off stage



Overview
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Framework of our method 



Key Techniques: Feature Selection & Extraction Method 

• Routing info unavailable at pre-routing
• Lookahead RC Network: based on Steiner tree-based trial routing
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• Feature selection is critical, three kinds factors:
• Net-itself feature: Basic RC info

• Neighboring nets related feature: SI-Aware
• PVT corner: Multi-corner consideration

Location Fast Trial Routing Lookahead RC Tree



Key Techniques: Feature Selection & Extraction Method 

• Net-itself features (driver output pin to a target sink input pin)
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• Driver-related

• Sink-related
• Connection info

Lookahead trial routing



• Neighbor-net (SI-aware) features

• Routing congestion
• Detouring probability for long-range

• Crosstalk from adjacent nets

Key Techniques: Feature Selection & Extraction Method 
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Key Techniques: Feature Selection & Extraction Method 

• Temperature (i.e., −40∘C, 0∘C, 25∘C and 125∘C)

• Voltage (i.e., 0.81V, 0.9V, and 0.99V)

• RC (i.e., RC-best, RC-worst, C-best, C-worst, and etc.)
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• PVT Corner features



Key Techniques: Machine Learning Algorithm & Timing Inference

• ML-based timing prediction model:
• Decision tree models

• RF
• XGBoost
• LightGBM (3 × faster in training)

• GNNs
• Traditional models

• Advantages of LightGBM:
• Histogram-based feature discretization  
• Leaf-wise growth strategy  
• Parallel acceleration 
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LightGBM



Key Techniques: Machine Learning Algorithm & Timing Inference

• Path Timing:
• Delay from timing prediction

• Traverse netlist as Directed Acyclic Graph (DAG) in topology order

• Endpoint arrival time, slack 

• Implementation
• Delay prediction

• Integrated into OpenTimer tool
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Experimental Result: Dataset Preparation

• ITC’99, Risc-V benchmarks circuits

• 28-nm industry process

• SI-mode timing reports across multiple PVT corners
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Benchmark Suite Information 

~7 Million



Experimental Result: Typical Corner Timing Prediction Analysis

• Typical Corner:
• Comparison with DAC’20 and MLCAD’22 in SI mode, using our RC network and their features

• Achieve highest correlation for both Scorr and TCorr

• SI-sensitive dataset, our model outperforms SCorr about 10%

• SI-sensitive: Fanout number ≥ 8 or delay ≥ 5ps  

• S/Tmean, S/TMax, and S/TCorr are the mean and maximum error (ps), and correlation of SI-sensitive/Total dataset
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Analysis on Wire Delay Prediction under Typical Corner 



Experimental Result: Dataset Preparation
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Contribution rank of Top-10 features in wire delay 

• Sink-slew is the most crucial feature

• Other SI-associated features from neighboring nets also rank in top-10



Experimental Result: Multi-Corner Timing Prediction Analysis

• Multi-Corner:
• Ours achieves 0.98 correlation

• Compared to MLCAD’22, reducing 

"SMax" and "SMean" by 81% and 

64%

• Training dataset: 𝑚𝑙 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡 & 𝑤𝑐𝑙 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡
• Testing dataset: 𝑏𝑐 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡, 𝑡𝑐 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡, 𝑤𝑐 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡, and 𝑤𝑐𝑧 − 𝑟𝑐𝑤𝑜𝑟𝑠𝑡
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Wire Delay Prediction Analysis of Circuit CVA6 under Multi-Corner 



Experimental Result: Multi-Corner Timing Prediction Analysis
Wire delay prediction distribution under 𝒘𝒄 − 𝒓𝒄𝒘𝒐𝒓𝒔𝒕 corner

Wire delay prediction of SI-sensitive distribution under 𝒕𝒄 − 𝒓𝒄𝒘𝒐𝒓𝒔𝒕 corner
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Experimental Result: Path Timing under Typical Corner

• Gives best correlation

• Achieves the lowest average absolute error
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Path AT under Typical Corner 



Experimental Result: Path Timing under Multi-Corner

• Our correlation is the highest
• “Mean” error is 12ps smaller on average

• Path Slack:
• SI-sensitive paths contribute 80% to critical paths
• Since maximum error in our AT computation < 30ps, both TPR and TNR are 100%
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Path AT of Circuit CVA6 under Multi-Corner 



Conclusion

• Pre-routing wire timing prediction:
• Extract net-self RC info, neighboring nets and PVT corner

• Sophisticated model, avoiding pessimistic simplifications.

• Integrated with design-flow tool for path analysis

• Achieves > 0.98 correlation with sign-off under 28nm industry process
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