SI-Aware Wire Timing Prediction at Pre-Routing Stage with Multi-Corner Consideration

Yushan Wang¹, **Xu He**¹, Renjun Zhao¹, Yao Wang², Chang Liu², Yang Guo²

¹Hunan University, ²National University of Defense Technology

Changsha, China

30th Asia and South Pacific Design Automation Conference

ASP-DAC 2025

Motivation

- Timing analyze throughout entire design flow
- Earlier the intervention stage, greater the room for optimization

Motivation

- Pre-routing wire timing challenges:
 - Lack of routing info
 - Model oversimplification
 - Elmore vs. Sign-Off, gap >150 ps
 - Even worse in multi-corner variations
- Solution
 - Develop SI-aware prediction model
 - Multi-corner consideration

(a) Difference between Elmore and sign-off at typical corner(b) Path delay among different PVT corners.

SI-Timing Prediction Formulation

- Prior Machine Learning Predictions:
 - Trade-off between accuracy and computationally expensive
 - Pre-placement stage
 - Placement stage
 - Post-routing and sign-off stage
- Problem Formulation:
 - Input: layout, cell library
 - Golden timing reports in SI mode under multi-corners (For training and evaluation)
 - Output: Wire delay, corresponding path AT, and critical path
 - Objective: Minimizes the discrepancy between prediction and the golden timing.

- Feature selection is critical, three kinds factors:
 - Net-itself feature: Basic RC info
 - Neighboring nets related feature: SI-Aware
 - PVT corner: Multi-corner consideration
 - Routing info unavailable at pre-routing
 - Lookahead RC Network: based on Steiner tree-based trial routing

• Net-itself features (driver output pin to a target sink input pin)

Туре	Feature	Reference	
	Sink-slew	Lookahead RC tree/predict	 Driver-related
	Driver-slew	Lookahead RC tree & lib	
	Sink-cap		Sink-related
	Driver-cap		Connection info
	Elmore	Lookahead RC tree	
Net-Itself	Context-Elmore		
	D2M		Lookahead trial routing
	Driver-strength	Netlist	
	Fanout-num	i i i i i i i i i i i i i i i i i i i	
	Distance	Steiner-Tree	
	Steiner-demand		
	Max-dist	Placement input	

- Neighbor-net (SI-aware) features
 - Routing congestion
 - Detouring probability for long-range
 - Crosstalk from adjacent nets

Туре	Feature	Reference		
	Neigh-num			
	Long-neigh-num			
Neighbor Net	Neigh-overlap-max/mean	Placement input		
Neighboi-Net	Neigh-dist-max/mean	r lacement input		
	RUDY			
	Long-RUDY			

- PVT Corner features
 - Temperature (i.e., −40°C, 0°C, 25°C and 125°C)
 - Voltage (i.e., 0.81V, 0.9V, and 0.99V)
 - RC (i.e., RC-best, RC-worst, C-best, C-worst, and etc.)

Key Techniques: Machine Learning Algorithm & Timing Inference

- ML-based timing prediction model:
 - Decision tree models
 - RF
 - XGBoost
 - LightGBM (3 × faster in training)
 - GNNs
 - Traditional models
- Advantages of LightGBM:
 - Histogram-based feature discretization
 - Leaf-wise growth strategy
 - Parallel acceleration

Key Techniques: Machine Learning Algorithm & Timing Inference

• Path Timing:

- Delay from timing prediction
- Traverse netlist as Directed Acyclic Graph (DAG) in topology order
- Endpoint arrival time, slack
- Implementation
 - Delay prediction
 - Integrated into OpenTimer tool

Experimental Result: Dataset Preparation

Benchmark Suite Information

Circuit	#Cells/Corner	#Nets/Corner	#FFs/Corner	#Samples
b11	3,000	3,120	132	9,794
b12	5,644	6,100	476	19,426
b13	1,124	1,272	180	3,288
b14	41,304	42,108	1,024	122,710
b20	106,248	108,304	2,068	313,920
b21	87,968	90,056	2,104	275,848
b17	104,172	110,124	6,084	371,510
b22	92,800	95,980	3,120	316,698
CV32	120,537	129,804	8055	477,048
CVA6	194,702	197,240	23,195	4,814,028
m 1 ·		1 0 11 1	1	

The circuit data is the total number of all implementations.

~7 Million

- ITC'99, Risc-V benchmarks circuits
- 28-nm industry process
- SI-mode timing reports across multiple PVT corners

Experimental Result: Typical Corner Timing Prediction Analysis

				•	•							
		DAC	20 [4]		MLCAD'22 [5]				Ours			
Circuit	SCorr / TCorr	SMax / TMax	SMean / TMean	SCPU / TCPU	SCorr / TCorr	SMax / TMax	SMean / TMean	SCPU / TCPU	SCorr / TCorr	SMax / TMax	SMean / TMean	SCPU / TCPU
b11	0.632 / 0.824	46.66 / 46.66	10.44 / 3.54	0.001 / 0.003	0.601 / 0.801	43.27 / 43.27	12.25 / 4.78	0.001 / 0.003	0.806 / 0.902	45.80 / 45.80	9.64 / 3.74	0.002 / 0.008
b12	0.717 / 0.872	42.65 / 49.36	11.37 / 4.02	0.002 / 0.010	0.661 / 0.846	42.54 / 44.58	13.31 / 5.42	0.002 / 0.007	0.793 / 0.906	52.75 / 53.20	11.38 / 4.57	0.015 / 0.015
b13	0.496 / 0.758	48.59 / 48.59	12.81 / 7.10	0.001 / 0.002	0.417 / 0.724	46.67 / 46.67	14.23 / 9.31	0.001 / 0.002	0.668 / 0.836	46.53 / 46.53	13.79 / 8.54	0.001 / 0.004
b14	0.673 / 0.839	65.63 / 65.63	10.06 / 5.82	0.016 / 0.032	0.681 / 0.854	62.08 / 62.08	12.77 / 7.76	0.015 / 0.030	0.736 / 0.878	74.28 / 74.28	8.50 / 5.21	0.026 / 0.060
b17	0.697 / 0.817	83.11 / 83.11	6.89 / 4.14	0.047 / 0.091	0.700 / 0.825	71.18 / 71.18	7.66 / 4.78	0.045 / 0.088	0.779 / 0.874	67.80 / 67.80	5.45 / 3.41	0.075 / 0.179
b20	0.668 / 0.821	78.84 / 78.84	6.71 / 3.68	0.036 / 0.075	0.691 / 0.843	70.05 / 70.05	8.31 / 4.79	0.035 / 0.075	0.731 / 0.866	56.36 / 56.36	4.96 / 2.89	0.057 / 0.122
b21	0.655 / 0.810	77.93 / 77.93	7.12 / 4.08	0.033 / 0.068	0.656 / 0.820	81.71 / 81.71	8.61 / 5.16	0.031 / 0.071	0.721 / 0.858	71.98 / 71.98	5.30 / 3.20	0.055 / 0.113
b22	0.710 / 0.839	62.22 / 62.22	6.71 / 3.60	0.034 / 0.076	0.694 / 0.836	54.20 / 54.20	8.04 / 4.51	0.033 / 0.078	0.784 / 0.890	57.58 / 57.58	5.23 / 2.95	0.056 / 0.159
CV32	0.788 / 0.879	57.24 / 57.24	5.13 / 2.39	0.043 / 0.115	0.736 / 0.847	54.68 / 54.68	6.18 / 3.04	0.041 / 0.114	0.881 / 0.934	61.95 / 61.95	4.84 / 2.33	0.062 / 0.189
Avg.	0.671 / 0.829	62.54 / 63.29	8.58 / 4.26	0.024 / 0.053	0.649 / 0.822	58.49 / 58.71	10.15 / 5.51	0.023 / 0.052	0.767 / 0.883	59.45 / 59.50	7.68 / 4.09	0.039 / 0.094

Analysis on Wire Delay Prediction under Typical Corner

- SI-sensitive: Fanout number ≥ 8 or delay ≥ 5 ps
- S/Tmean, S/TMax, and S/TCorr are the mean and maximum error (ps), and correlation of SI-sensitive/Total dataset

• Typical Corner:

- Comparison with DAC'20 and MLCAD'22 in SI mode, using our RC network and their features
- Achieve highest correlation for both Scorr and TCorr
- SI-sensitive dataset, our model outperforms SCorr about 10%

Experimental Result: Dataset Preparation

Contribution rank of Top-10 features in wire delay

- Sink-slew is the most crucial feature
- Other SI-associated features from neighboring nets also rank in top-10

Experimental Result: Multi-Corner Timing Prediction Analysis

- Training dataset: ml rcworst & wcl rcworst
- Testing dataset: bc rcworst, tc rcworst, wc rcworst, and wcz rcworst

Wire Delay Prediction Analysis of Circuit CVA6 under Multi-Corner

SCorr / TCorr 0.928 / 0.943	SMax / TMax	SMean / TMean	SCPIL / TCPIL			
0.928 / 0.943			SCIU/ICIU			
	129.20 / 129.20	3.84 / 2.07	0.092 / 0.202			
0.930 / 0.944	200.73 / 200.73	5.08 / 2.69	0.101 / 0.207			
0.927 / 0.941	210.62 / 210.62	4.98 / 2.86	0.098 / 0.203			
0.922 / 0.938	155.46 / 155.46	4.20 / 2.27	0.111 / 0.208			
0.927 / 0.942	174.00 / 174.00	4.53 / 2.47	0.100 / 0.205			
	MLCAI	D'22 [5]				
SCorr / TCorr	SMax / TMax	SMean / TMean	SCPU / TCPU			
0.926 / 0.941	130.35 / 130.35	4.19 / 2.38	0.086 / 0.197			
0.929 / 0.943	201.41 / 201.41	5.37 / 2.98	0.091 / 0.194			
0.925 / 0.939	210.53 / 210.53	5.44 / 3.00	0.091 / 0.191			
0.921 / 0.936	156.67 / 156.67	4.65 / 2.65	0.090 / 0.194			
0.925 / 0.940	174.74 / 174.74	4.91 / 2.75	0.089 / 0.194			
Ours						
SCorr / TCorr	SMax / TMax	SMean / TMean	SCPU / TCPU			
0.977 / 0.981	96.00 / 96.00	2.82 / 1.58	0.088 / 0.301			
0.981 / 0.984	88.49 / 88.49	2.82 / 1.60	0.106 / 0.282			
0.978 / 0.981	99.03 / 99.03	3.25 / 1.87	0.114 / 0.376			
0.979 / 0.982	101.81 / 101.81	3.08 / 1.81	0.097 / 0.279			
0.979 / 0.982	96.33 / 96.33	2.99 / 1.72	0.101 / 0.310			
	0.930 / 0.944 0.927 / 0.941 0.922 / 0.938 0.927 / 0.942 SCorr / TCorr 0.926 / 0.941 0.929 / 0.943 0.925 / 0.939 0.921 / 0.936 0.925 / 0.940 SCorr / TCorr 0.977 / 0.981 0.981 / 0.984 0.978 / 0.981 0.979 / 0.982 0.979 / 0.982	0.930 / 0.944 200.73 / 200.73 0.927 / 0.941 210.62 / 210.62 0.922 / 0.938 155.46 / 155.46 0.927 / 0.942 174.00 / 174.00 MLCAI SCorr / TCorr SMax / TMax 0.926 / 0.941 130.35 / 130.35 0.929 / 0.943 201.41 / 201.41 0.925 / 0.939 210.53 / 210.53 0.921 / 0.936 156.67 / 156.67 0.925 / 0.940 174.74 / 174.74 Ottomes SCorr / TCorr SMax / TMax 0.977 / 0.981 96.00 / 96.00 0.981 / 0.984 88.49 / 88.49 0.978 / 0.981 99.03 / 99.03 0.979 / 0.982 101.81 / 101.81 0.979 / 0.982 96.33 / 96.33	0.930 / 0.944 200.73 / 200.73 5.08 / 2.89 0.927 / 0.941 210.62 / 210.62 4.98 / 2.86 0.922 / 0.938 155.46 / 155.46 4.20 / 2.27 0.927 / 0.942 174.00 / 174.00 4.53 / 2.47 MLCAD'22 [5] SCorr / TCorr SMax / TMax SMean / TMean 0.926 / 0.941 130.35 / 130.35 4.19 / 2.38 0.929 / 0.943 201.41 / 201.41 5.37 / 2.98 0.925 / 0.939 210.53 / 210.53 5.44 / 3.00 0.921 / 0.936 156.67 / 156.67 4.65 / 2.65 0.925 / 0.940 174.74 / 174.74 4.91 / 2.75 SCorr / TCorr SMax / TMax SMean / TMean 0.977 / 0.981 96.00 / 96.00 2.82 / 1.58 0.981 / 0.984 88.49 / 88.49 2.82 / 1.60 0.978 / 0.981 99.03 / 99.03 3.25 / 1.87 0.979 / 0.982 101.81 / 101.81 3.08 / 1.81 0.979 / 0.982 96.33 / 96.33 2.99 / 1.72			

Multi-Corner:

- Ours achieves 0.98 correlation
- Compared to MLCAD'22, reducing "SMax" and "SMean" by 81% and 64%

Experimental Result: Multi-Corner Timing Prediction Analysis

Wire delay prediction of SI-sensitive distribution under *tc* – *rcworst* corner

Experimental Result: Path Timing under Typical Corner

	DAC'20 [4]				MLCAD'22	[5]	Ours		
Corner	Corr	Max(ps)	Mean(ps)	Corr	Max(ps)	Mean(ps)	Corr	Max(ps)	Mean(ps)
b11	0.917	89.085	38.170	0.888	109.499	51.320	0.947	66.335	38.073
b12	0.861	95.251	31.901	0.847	120.914	46.965	0.879	78.026	37.274
b13	0.812	82.843	29.009	0.820	102.189	42.037	0.842	80.921	37.615
b14	0.984	230.087	142.020	0.973	316.732	200.127	0.985	190.163	120.066
b17	0.972	179.296	56.488	0.965	246.181	97.602	0.980	128.105	43.712
b20	0.971	153.476	63.592	0.961	230.480	113.060	0.978	119.584	53.524
b21	0.967	181.662	75.909	0.957	252.989	118.909	0.978	127.107	55.784
b22	0.978	201.364	88.965	0.971	259.817	130.011	0.986	142.347	69.576
CV32	0.998	140.681	59.179	0.998	156.617	71.702	0.999	101.618	54.036
Avg.	0.940	150.416	65.026	0.931	199.491	96.859	0.953	114.912	56.629

Path AT under Typical Corner

- Gives best correlation
- Achieves the lowest average absolute error

Experimental Result: Path Timing under Multi-Corner

	DAC'20 [4]			MLCAD'22 [5]			Ours		
Corner	Corr	Max(ps)	Mean(ps)	Corr	Max(ps)	Mean(ps)	Corr	Max(ps)	Mean(ps)
bc – rcworst	0.955	43.320	28.032	0.968	36.190	24.054	0.982	20.360	3.657
tc – rcworst	0.955	43.140	27.882	0.966	52.260	37.397	0.982	26.810	9.742
wc – rcworst	0.953	52.810	28.506	0.967	35.290	9.350	0.977	33.010	11.264
wcz – rcworst	0.958	26.980	12.503	0.968	36.190	24.009	0.984	36.250	20.491
Avg.	0.955	41.563	24.231	0.967	39.982	23.702	0.981	29.108	11.289

Path AT of Circuit CVA6 under Multi-Corner

- Our correlation is the highest
- "Mean" error is 12ps smaller on average
- Path Slack:
 - SI-sensitive paths contribute 80% to critical paths
 - Since maximum error in our AT computation < 30ps, both TPR and TNR are 100%

Conclusion

- Pre-routing wire timing prediction:
 - Extract net-self RC info, neighboring nets and PVT corner
 - Sophisticated model, avoiding pessimistic simplifications.
 - Integrated with design-flow tool for path analysis
 - Achieves > 0.98 correlation with sign-off under 28nm industry process

Reference

- 1. [n. d.]. CV32E40P:PULP-Platform 32-bit 4-stage RISC-V CPU Core. https://github. com/openhwgroup/cv32e40p.
- 2. [n. d.]. CVA6 RISC-V CPU. https://github.com/openhwgroup/cva6.
- 3. Erick Carvajal Barboza and et al. 2019. Machine Learning-Based Pre-Routing Timing Prediction with Reduced Pessimism. In DAC. 1–6.
- Hsien-Han Cheng, Iris Hui-Ru Jiang, and Oscar Ou. 2020. Fast and Accurate Wire Timing Estimation on Tree and Non-Tree Net Structures. In DAC. 1–6.
- 5. Vidya A. Chhabria, Wenjing. Jiang, Andrew B. Kahng, and Sachin S. Sapatnekar. 2022. From Global Route to Detailed Route: ML for Fast and Accurate Wire Parasitics and Timing Prediction. In MLCAD. 7–14.
- 6. D. G. Chinnery and K. Keutzer. 2000. Closing the Gap between ASIC and Custom: An ASIC Perspective. In DAC. 637–642.
- 7. C. Chu. 2004. FLUTE: fast lookup table based wirelength estimation technique. In ICCAD. 696–701.
- 8. S. Davidson. 1999. Characteristics of the ITC'99 Benchmark Circuits. In IEEE International Test Synthesis Workshop.
- 9. Luis Guerra E Silva, L Miguel Silveira, and Joel R Phillips. 2007. Efficient computation of the worst-delay corner. In Design, Automation & Test in Europe Conference & Exhibition. IEEE, 1–6.
- 10. Z. Guo, M. Liu, J. Gu, and et al. 2022. A timing engine inspired graph neural network model for pre-routing slack prediction. In DAC. 1207–1212.
- 11. S. S Han, A. B. Kahng, S. Nath, and et al. 2014. A deep learning methodology to proliferate golden signoff timing. In DATE. IEEE, 1–6.
- 12. Xu He, Zhiyong Fu, and et al. 2022. Accurate timing prediction at placement stage with look-ahead RC network. In DAC. 1213–1218.
- 13. Tsung-Wei Huang and Martin D. F. Wong. 2015. OpenTimer: A high-performance timing analysis tool. In ICCAD. 895–902.
- D. Hyun, Y. Fan, and Y. Shin. 2019. Accurate wirelength prediction for placementaware synthesis through machine learning. In DATE. IEEE, 324– 327.
- Andrew B Kahng, Mulong Luo, and Siddhartha Nath. 2015. SI for free: machine learning of interconnect coupling delay and transition effects. In SLIP. IEEE, 1–8.

