PathGen: An Efficient Parallel Critical
Path Generation Algorithm

ASPDAC’25
Che Changt, Boyang Zhang+, Cheng-Hsiang Chiut,
Dian-Lun Lint, Yi-Hua Chungt, Wan-Luan Leef,
Zhizheng Guog, Yibo Ling§, and Tsung-Wei Huang+
University of Wisconsin, Madison
Peking University, Beijing §

What iIs Critical Path Generation? Why?

* What is Critical Path Generation (CPG)?

 Given a directed-acyclic circuit graph, report the top-k critical paths in
ascending order of path slack/delay

* Why is CPG important?
 Crucial for optimizing and verifying circuit timing
* Increasing design complexity makes CPG runtime a bottleneck in STA engines

Sequential CPG Algorithms

 iTimerCUl, jitRacel?, and OpenTimerl3! demonstrated good
performance

« However, large CPG queries can be slow, impacting the performance
of STA applications

* e.¢g., a CPG query of 1M paths takes 2.5 seconds, where STA applications
typically issue thousands of CPG queries

[1]P.-Y. Lee, I. H. -R. Jiang, C. -R. Li, W. -L. Chiu and Y. -M. Yang, "iTimerC 2.0: Fast incremental timing and CPPR
analysis,” 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2015, pp.
890-894, doi: 10.1109/ICCAD.2015.7372665.

[2]C. Peddawad, A. Goel, Dheeraj B and N. Chandrachoodan, "iitRACE: A memory efficient engine for fast incremental
timing analysis and clock pessimism removal,” 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, USA, 2015, pp. 903-909, doi: 10.1109/ICCAD.2015.7372667.

[3]T. -W. Huang, G. Guo, C. -X. Lin and M. D. F. Wong, "OpenTimer v2: A New Parallel Incremental Timing Analysis
Engine,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 4, pp. 776-

- 789, April 2021, doi: 10.1109/TCAD.2020.30073109.
3

Multi-threaded CPG Algorithms

« Existing GPU-parallel CPG algorithm (Guo et al.[*])
« Substantial runtime speedup (> 50x)
« GPU support requires significant investment and codebase modifications

« Some STA applications (e.g., incremental timing) lack sufficient data
parallelism for GPU benefits

* A CPU-parallel CPG algorithm is needed to co-enhance the
performance of STA applications

[4]G. Guo, T. -W. Huang, Y. Lin, Z. Guo, S. Yellapragada and M. D. F. Wong, "A GPU-Accelerated Framework for Path-
Based Timing Analysis," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42,
no. 11, pp. 4219-4232, Nov. 2023, doi: 10.1109/TCAD.2023.3272274.

CPU-parallel CPG iIs Challenging

 Cannot use the GPU approach out of the box
 The parallelism model is totally different
« GPU-specific data structure cannot be used

 Need to strategically partition generated paths into multiple groups
to run in parallel
 Also accommodate slack priorities

* Need to dynamically re-balance slack priorities in each partition

« As more paths are generated, slack priorities becomes unbalanced in certain
partitions, resulting in high contention

Technical Contributions

* We propose multi-level concurrent queue scheduling
 To categorize generated critical paths into multiple queues
* Paths in the same queue have similar slacks and can be processed in parallel

* We propose the geometric slack partitioning strategy
* To balance the path counts in each queue and minimize contention

 \We propose the node redistribution strategy
 To reassign slack priorities to paths for more accurate results

Background

« Implicit path representationls!

Suffix tree Prefix tree

(b)
Fig. 1: Implicit path representation using suffix tree and prefix tree.

Prefix (egc) + Suffix (ecr, epr)= Path (egc, ecr, err)-

Multi-Level Queue Scheduler

« Example walkthrough
- Three concurrent queues Suffix tree MLQ scheduler

» Two threads esa | eer
+1 1 +3 19, 5)
« Slack range of each queue :

* [0, 5) = highest-priority
* [5, 10) >, 10)
e [10, c0) = lowest-priorit

_) priority (10, o)

* Thread 1 generates €g,, €1, €5¢
and pushes them to their
corresponding queue

<

{.Thread 1 B Thread ZJ

IIIIIIIIIIIIIIIII

lllllllllllllllll

Multi-Level Queue Scheduler

« Example walkthrough
» Thread 1 pops es, and Suffix tree MLQ scheduler

generates eg

* Thread 2 pops egr and
generates nothing

« Now slack range [0, 5) is
empty, all the threads move
onto the next queue

(b)

Multi-Level Queue Scheduler

« Example walkthrough

* Thread 2 pops es and
generates e-¢ and eq¢

* Thread 1 pops e,z and
generates egt

« All threads continues popping
from slack range [5, 10) since
It IS not empty

Suffix tree

MLQ scheduler

[0, 5)

2ol [510)
+8 +9

(c)

Issue: Thread Contention

» Distribution of prefix tree nodes affects CPG performance

* When path counts become unbalanced, certain queues experience high thread
contention

* Need to determine a good range for each queue to balance the path counts
* Real circuits exhibit highly localized slack distribution

vga_lcd tv80
80 ' — 100 '

(=)
<
T

Path count
S
Path count
S

20f | 20
0 wideaRiwie Y. 0 sl
—~1,600—1,500—1,400—1,300—1,200 —650 —640 —630 —620 —610 —600

Path slack Path slack
Fig. 4: Top-1K path slack distribution reported by OpenTimer [33].

Balancing Path Counts in Each Queue

* We propose the geometric slack partitioning strategy

* (a) sets equal ranges for each queue

 The level-0 (highest-priority) queue manages significantly more paths than other
queues

* (b) sets ranges based on a geometric sequence
« More balanced path count in each queue

Paths in the
level-0 queue

Paths in the
level-0 queue

Path count

Path count

Path Slack Path Slack

(a) (b)

Issue: Inaccurate Path Results

» CPG Inaccuracy

 The slack range of the lowest-priority queue is too big, resulting in a mix of
high- and low-cost nodes

* Path generation becomes inaccurate

MLQ scheduler _ MLQ scheduler

| ()
19.5) 10, 15)
]] Cul [5>40)
17 [15, 20)
S | ek |.. [1D5%)
+ + [20, o)

(b)

+237 is processed before +17, inaccurate!

Reassigning Slack Priorities to Paths

 The node redistribution (NR) strategy

 Reassigns priority to the nodes in the lowest-priority queue
 Results in a more accurate processing order and higher accuracy

MLQ scheduler : MLQ scheduler
| 0.9 10,19
Z oo (]
oot oe — [Su)la])- e
(a) (b)

+17 is processed before +237, correct!

Experimental results

» PathGen Is implemented in C++17 with optimization flag -O3
« Using Taskflow!®! and Moodycamell8! as parallel computing libraries

« Machine spec
« CPU: 4.8-GHz Intel core 15-13500
e OS: Ubuntu 22.04

 We compare PathGen with OpenTimerl3l
« OpenTimer outperforms existing methods in both time and space complexities

« With six circuit benchmarks generated from OpenTimer

[5]T. -W. Huang, D. -L. Lin, C. -X. Lin and Y. Lin, "Taskflow: A Lightweight Parallel and Heterogeneous Task Graph
Computing System," in IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp. 1303-1320, 1 June
2022, doi: 10.1109/TPDS.2021.3104255.

[6]Moodycamel Concurrent Queue, 2014, https://github.com/cameron314/concurrentqueue

Overall Performance Comparison

« Comparison between OpenTimer and PathGen with 16 threads

| OpenTimer [33] | PathGen (16 threads)
Path count | Runtime Mem. Runtime Mem. Avg. accuracy

Circuit Vv E

v IE (K) (ms) (MB) (ms) (MB) (%)
wb_dma 13124 16593 20 4.3 19.3 4.1 (1.03X) 24.5 99.9
des_perf 303690 387291 500 341.6 347.9 122.3 (2.7X 461.3 100
vga_lcd 397816 498873 1000 1076.5 5524 401.9 (2.6 X 954.5 100
leon3m 3376842 4148798 1000 2243.1 3261.7 400.5 (5.6X 4540.9 100
netcar 3999174 4903397 1000 2135.8 3574.6 292.5 (7.3X 4199.7 100

leon2 4328285 5273106 1000 2552.8 4065.4 3449 (7.4X) 5774.3 100

Speedup of PathGen over OpenTimer

 Speedup of PathGen over OpenTimer at different thread count
* The more threads we use, the faster we can clear a queue and generate paths

* Using the maximum thread count does not always yield the optimal
performance
« Thread contention can slow down queue access

netcard (3.9M vertices) leon2 (4.3M vertices)

Speedup
S I I - S ¥) B Y e]

Speedup
— N W e U O] OO

2 4 8 12 16 ZIO 2 4 8 12 16 20
- Thread count Thread count
17

Accuracy of PathGen

 Accuracy of PathGen w/ NR and w/o NR at different thread counts
» The accuracy of PathGen w/o NR ranges from 82-95%
« The accuracy of PathGen w/ NR ranges from 86-100%
* 4%/5% Improvement on min/max accuracy

—— InaxW/ONR - @- nunW/ONR _-_maXW/NR -~ ImnW/NR

leon?2 leon3mp

100} =»—= = ! = = 100 =—= = =
- "-)]
95} S 95F
>) '
Q Q
g 90 g 90
3 S
< g5 < g5/

80 2 4 8 12 16 20 80 2 4 8 12 16 20

Thread count Thread count

Runtime of Different Slack Partitioning Strategies

 Runtime of OpenTimer, PathGen"EQ and PathGenWGEC at different
thread counts

* In leon2, PathGenW/GEO s 1.5x%, 2%, and 2.2x faster than PathGen"/EQ at eight
threads, 12 threads, and 16 threads

« Demonstrates the effectiveness of geometric slack partitioning

-10% netcard .10% leon2
1 5 15 1

@ 0.8)
g . g :
~ 0.6 —+— OpenTimer *-; 1 —— OpenTimer
E ' . —e— PathGen"/ FQ g —e— PathGen"/ FQ
:'g 041 | —=- PathGen"/ GEO | 'g 0.5 , ~&— PathGen™/ GEO

& ' A

S—o o | EQ:equalranges
0 GEO: geometric ranges

2 4 8 12 16 20 2 4 8 12 16 20
- Thread count - Thread count
19

Conclusion

* \We have Introduced PathGen

« Efficiently groups paths into multiple queues of different slack priorities to run
In parallel

 Balances the number of paths in each queue to minimize contention

* Transfers the paths between queues to adjust slack priorities to process paths
In @ more accurate order

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

