
PathGen: An Efficient Parallel Critical 
Path Generation Algorithm

ASPDAC’25

Che Chang†, Boyang Zhang†, Cheng-Hsiang Chiu†, 

Dian-Lun Lin†, Yi-Hua Chung†, Wan-Luan Lee†, 

Zhizheng Guo§, Yibo Lin§, and Tsung-Wei Huang†

University of Wisconsin, Madison †

Peking University, Beijing §



2

What is Critical Path Generation? Why?

• What is Critical Path Generation (CPG)?
• Given a directed-acyclic circuit graph, report the top-k critical paths in 

ascending order of path slack/delay

• Why is CPG important?
• Crucial for optimizing and verifying circuit timing

• Increasing design complexity makes CPG runtime a bottleneck in STA engines



3

Sequential CPG Algorithms

• iTimerC[1], iitRace[2], and OpenTimer[3] demonstrated good 
performance

• However, large CPG queries can be slow, impacting the performance 
of STA applications

• e.g., a CPG query of 1M paths takes 2.5 seconds, where STA applications 
typically issue thousands of CPG queries

[1]P. -Y. Lee, I. H. -R. Jiang, C. -R. Li, W. -L. Chiu and Y. -M. Yang, "iTimerC 2.0: Fast incremental timing and CPPR 

analysis," 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2015, pp. 

890-894, doi: 10.1109/ICCAD.2015.7372665.

[2]C. Peddawad, A. Goel, Dheeraj B and N. Chandrachoodan, "iitRACE: A memory efficient engine for fast incremental 

timing analysis and clock pessimism removal," 2015 IEEE/ACM International Conference on Computer-Aided Design 

(ICCAD), Austin, TX, USA, 2015, pp. 903-909, doi: 10.1109/ICCAD.2015.7372667.

[3]T. -W. Huang, G. Guo, C. -X. Lin and M. D. F. Wong, "OpenTimer v2: A New Parallel Incremental Timing Analysis 

Engine," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 4, pp. 776-

789, April 2021, doi: 10.1109/TCAD.2020.3007319.



4

Multi-threaded CPG Algorithms

• Existing GPU-parallel CPG algorithm (Guo et al.[4])
• Substantial runtime speedup (> 50×)

• GPU support requires significant investment and codebase modifications

• Some STA applications (e.g., incremental timing) lack sufficient data 
parallelism for GPU benefits

• A CPU-parallel CPG algorithm is needed to co-enhance the 
performance of STA applications

[4]G. Guo, T. -W. Huang, Y. Lin, Z. Guo, S. Yellapragada and M. D. F. Wong, "A GPU-Accelerated Framework for Path-

Based Timing Analysis," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, 

no. 11, pp. 4219-4232, Nov. 2023, doi: 10.1109/TCAD.2023.3272274.



5

CPU-parallel CPG is Challenging

• Cannot use the GPU approach out of the box
• The parallelism model is totally different

• GPU-specific data structure cannot be used

• Need to strategically partition generated paths into multiple groups 
to run in parallel
• Also accommodate slack priorities

• Need to dynamically re-balance slack priorities in each partition
• As more paths are generated, slack priorities becomes unbalanced in certain 

partitions, resulting in high contention



6

Technical Contributions

• We propose multi-level concurrent queue scheduling
• To categorize generated critical paths into multiple queues

• Paths in the same queue have similar slacks and can be processed in parallel

• We propose the geometric slack partitioning strategy
• To balance the path counts in each queue and minimize contention

• We propose the node redistribution strategy
• To reassign slack priorities to paths for more accurate results



7

Background

• Implicit path representation[3]



8

Multi-Level Queue Scheduler

• Example walkthrough
• Three concurrent queues

• Two threads

• Slack range of each queue

• [0, 5) → highest-priority

• [5, 10)

• [10, ∞) → lowest-priority

• Thread 1 generates eSA, eET, eSC

and pushes them to their 
corresponding queue



9

Multi-Level Queue Scheduler

• Example walkthrough
• Thread 1 pops eSA and 

generates eAE

• Thread 2 pops eET and 
generates nothing

• Now slack range [0, 5) is 
empty, all the threads move 
onto the next queue

[0, 5)

[5, 10)

[10, ∞)



10

Multi-Level Queue Scheduler

• Example walkthrough
• Thread 2 pops eSC and 

generates eCE and eFE

• Thread 1 pops eAE and 
generates eET

• All threads continues popping 
from slack range [5, 10) since 
it is not empty

[0, 5)

[5, 10)

[10, ∞)



11

Issue: Thread Contention

• Distribution of prefix tree nodes affects CPG performance
• When path counts become unbalanced, certain queues experience high thread 

contention

• Need to determine a good range for each queue to balance the path counts

• Real circuits exhibit highly localized slack distribution



12

Balancing Path Counts in Each Queue

• We propose the geometric slack partitioning strategy
• (a) sets equal ranges for each queue

• The level-0 (highest-priority) queue manages significantly more paths than other 
queues

• (b) sets ranges based on a geometric sequence

• More balanced path count in each queue



13

Issue: Inaccurate Path Results

• CPG inaccuracy
• The slack range of the lowest-priority queue is too big, resulting in a mix of 

high- and low-cost nodes

• Path generation becomes inaccurate

+237 is processed before +17, inaccurate!



14

Reassigning Slack Priorities to Paths

• The node redistribution (NR) strategy
• Reassigns priority to the nodes in the lowest-priority queue

• Results in a more accurate processing order and higher accuracy

+17 is processed before +237, correct!



15

Experimental results

• PathGen is implemented in C++17 with optimization flag -O3
• Using Taskflow[5] and Moodycamel[6] as parallel computing libraries

• Machine spec
• CPU: 4.8-GHz Intel core i5-13500

• OS: Ubuntu 22.04

• We compare PathGen with OpenTimer[3]

• OpenTimer outperforms existing methods in both time and space complexities

• With six circuit benchmarks generated from OpenTimer

[5]T. -W. Huang, D. -L. Lin, C. -X. Lin and Y. Lin, "Taskflow: A Lightweight Parallel and Heterogeneous Task Graph 

Computing System," in IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp. 1303-1320, 1 June 

2022, doi: 10.1109/TPDS.2021.3104255.

[6]Moodycamel Concurrent Queue, 2014, https://github.com/cameron314/concurrentqueue



16

Overall Performance Comparison

• Comparison between OpenTimer and PathGen with 16 threads



17

Speedup of PathGen over OpenTimer

• Speedup of PathGen over OpenTimer at different thread count
• The more threads we use, the faster we can clear a queue and generate paths

• Using the maximum thread count does not always yield the optimal 
performance

• Thread contention can slow down queue access



18

Accuracy of PathGen

• Accuracy of PathGen w/ NR and w/o NR at different thread counts 
• The accuracy of PathGen w/o NR ranges from 82-95%

• The accuracy of PathGen w/ NR ranges from 86-100% 

• 4%/5% improvement on min/max accuracy



19

Runtime of Different Slack Partitioning Strategies

• Runtime of OpenTimer, PathGenw/EQ and PathGenw/GEO at different 
thread counts
• In leon2, PathGenw/GEO is 1.5×, 2×, and 2.2× faster than PathGenw/EQ at eight 

threads, 12 threads, and 16 threads

• Demonstrates the effectiveness of geometric slack partitioning

EQ: equal ranges

GEO: geometric ranges



20

Conclusion

• We have introduced PathGen
• Efficiently groups paths into multiple queues of different slack priorities to run 

in parallel

• Balances the number of paths in each queue to minimize contention

• Transfers the paths between queues to adjust slack priorities to process paths 
in a more accurate order




