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1 Useful Skew Design: Why and 

   Why not?

Good :

If you do it right,

◼ spend less time struggling 

about timing, or

◼ get better chip performance 

or timing yield.

Bad :

◼ Need more engineer 

training.

◼ Balanced clock-trees are 

harder to build.

◼ Don't know how to handle 

process variation, multi-

corner multi-mode, ..., etc.

◼ Adjust clock skew to enhance IC performance or robustness.
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1 Useful Skew Design: Why and 

   Why not?
◼ 65nm and below, non-Gaussian distribution path delay.

◼ Skewed and long-tailed 

◼ Traditional Statistical Clock Skew Scheduling (CSS) relies 

on Gaussian distribution.

◼ Real-world path delays: asymmetric, making Gaussian-

based methods insufficient.

Gaussian distribution. Real path delay distribution.
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2 Proposed Solution:
◼ Generalized Extreme Value (GEV) Distribution:

◼ Flexible, asymmetric distribution from extreme value theory.

◼ Capture skewness and asymmetry in path delay distributions 
effectively.

◼ Advantages Over Gaussian:
◼ High accuracy in approximating delay distributions.

◼ Better modeling for timing yield-driven optimization.

GEV distribution. Better timing yield.



2 Contributions of Our Work:
◼ Introduce GEV distribution

◼ Replace Gaussian distribution with GEV for clock skew scheduling.

◼ Propose a framework for timing yield-driven CSS

◼ Evaluate Parameter Estimation Methods
◼ Compare MLE, MoM, and L-Moments for fitting accuracy.

◼ Achieves superior timing yield
◼  Improve timing yield by 8% on benchmark circuits.
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3 Preliminaries

Statistical Static Timing Analysis (SSTA)

◼ SSTA: an extension of traditional STA, accounts for process 

variations. 

◼ Modern STA tools based on Gaussian distribution 

◼ Provide 3-sigma statistics for slacks/path delays (POCV).

◼ However, the full probability density function (PDF) 

information are not available.

SSTA example.

Std. cell propagation delay PDF

Arrival time PDF



◼ 𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 = 𝑡𝑖 − 𝑡𝑗, where

◼ 𝑡𝑖: clock signal delay at the initial register

◼ 𝑡𝑗: clock signal delay at the final register

◼ Setup time constraint:

𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 ≤  𝑇𝑐𝑝 −  𝐷𝑖𝑗 − 𝑇𝑠𝑒𝑡𝑢𝑝

While this constraint destroyed, cycle time violation occurs.

◼ Hold time constraint

𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 ≥  𝑇ℎ𝑜𝑙𝑑 −  𝑑𝑖𝑗

While this constraint destroyed, race condition occurs.

◼ Primary goal of Yield-driven Clock Skew Scheduling: 

minimize the timing yield loss. 

◼ Timing Yield = (functional correct times) / sample number * 100%
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3 Preliminaries



◼ A family of continuous probability distributions developed in 

extreme value theory.

◼ Model the maximum or minimum of a set of random 

variables.

◼ Defined by three parameters:

◼ Location parameter (𝜇)

◼ Scale parameter (𝜎 > 0)

◼ Shape parameter (𝜉)

◼ Three types:

◼ Gumbel (ξ=0)

◼ Fréchet (ξ>0)

◼ Weibull (ξ<0)
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4 Generalized Extreme Value

◼ Gaussian has only two 

parameters: 

◼ Location parameter (𝜇)

◼ Scale parameter (𝜎)

GEV PDF
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4 Generalized Extreme Value

◼ PDF, CDF Comparison

GEV Gaussian
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4 Generalized Extreme Value

Parameter Estimation:
◼ Three estimation techniques:

◼ Scipy:

◼ MLE: Maximum likelihood estimation

◼ Accurate for distributions with well-defined likelihoods; 

suitable for small datasets.

◼ Mom: Method of moments

◼ Simple and computationally efficient; faster in large-scale 

scenarios.

◼ scikit-extreme

◼ L-Moments: Linear combinations of order statistics

◼ Robust for extreme values; better for capturing tail behavior 

in skewed distributions.
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5 Yield-driven Optimization

Timing Constraint Graph

◼ Create a graph G by:

◼ h-edge: − 𝑇ℎ𝑜𝑙𝑑 −  𝑑𝑖𝑗  from FFj to FFi 

◼ s-edge: 𝑇𝑐𝑝 −  𝐷𝑖𝑗 − 𝑇𝑠𝑒𝑡𝑢𝑝 from FFi to 

FFj.

◼ Sum of clock skews of any cycle 𝐶 in G 

is greater than 0.



𝑒𝑖𝑗∈𝐶

𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 ≥ 0

◼ If a negative cycle exits, timing violation (timing 

failure) occurs.
Timing const. graph.
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5 Yield-driven Optimization
◼ Max-Min Formulation:

◼ min{max{P𝑟{𝑡𝑖 − 𝑡𝑗 ≤ ෪𝑊𝑖𝑗}}}

◼ Equivalent to max{min{P𝑟{𝑡𝑖 − 𝑡𝑗 ≤ ෪𝑊𝑖𝑗}}}

◼ No need for correlation information between ෪𝑊𝑖𝑗  

◼ Equivalent to:

◼ 𝛽: timing satisfaction probability 

◼
෪𝐻𝑖𝑗and ෪𝐷𝑖𝑗  represent the minimum and maximum path 

delays.

maximum 𝛽
subject to P𝑟{𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − ෪𝐷𝑖𝑗} ≥ 𝛽

P𝑟{𝑡𝑗 − 𝑡𝑖 ≤ ෪𝐻𝑖𝑗} ≥ 𝛽
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5 Yield-driven Optimization
◼ Use quantile function (Inverse of the CDF function)

maximum 𝛽
subject to 𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − Φ𝐷𝑖𝑗

−1 (𝛽)

𝑡𝑗 − 𝑡𝑖 ≤ Φ𝐻𝑖𝑗

−1 (1 − 𝛽)

Quantile functionCDF function
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5 Yield-driven Optimization

◼ Equivalent to the minimum cost-to-time ratio cycle (linear).

◼ However, actual path delay distributions are non-Gaussian 

.

Gaussian

Quantile 

Function
Φ−1 𝛽 = 𝜇 + 𝜎 2𝑒𝑟𝑓−1(2𝛽 − 1))

Reduce to

maximum 𝛽

subject to 𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − (𝜇𝐷𝑖𝑗
+ 𝜎𝐷𝑖𝑗

2𝑒𝑟𝑓−1(2𝛽 − 1))

𝑡𝑗 − 𝑡𝑖 ≤  𝜇𝐻𝑖𝑗
+ 𝜎𝐻𝑖𝑗

2𝑒𝑟𝑓−1(2(1 − 𝛽) − 1)

Linearization

maximum 𝛽′ = 𝑒𝑟𝑓−1(2𝛽 − 1))

subject to 𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − 𝜇𝐷𝑖𝑗
− 𝜎𝐷𝑖𝑗

𝛽′

𝑡𝑗 − 𝑡𝑖 ≤  𝜇𝐻𝑖𝑗
− 𝜎𝐻𝑖𝑗

𝛽′
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5 Yield-driven Optimization

◼ Also equivalent to the minimum cost-to-time ratio cycle 
(linear).

Gumbel (𝝃 = 𝟎) in GEV

Quantile 

Function
Φ−1 𝛽 = 𝜇 − 𝜎 ∙ ln(−ln𝛽)

Reduce to

maximum 𝛽

subject to 𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − (𝜇𝐷𝑖𝑗
− 𝜎𝐷𝑖𝑗

ln(−ln𝛽))

𝑡𝑗 − 𝑡𝑖 ≤ 𝜇𝐻𝑖𝑗
− 𝜎𝐻𝑖𝑗

ln(−ln𝛽))

Linearization

maximum 𝛽′ = −ln(−ln𝛽).

subject to 𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − 𝜇𝐷𝑖𝑗
− 𝜎𝐷𝑖𝑗

𝛽′

𝑡𝑗 − 𝑡𝑖 ≤ 𝜇𝐻𝑖𝑗
+ 𝜎𝐻𝑖𝑗

𝛽′
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5 Yield-driven Optimization

GEV (𝝃 ≠ 𝟎)

Quantile 

Function
Φ−1 𝛽 = 𝜇 +

𝜎

𝜉
( −ln𝛽 −𝜉 − 1)

Reduce to

maximum 𝛽

subject to
𝑡𝑖 − 𝑡𝑗 ≤ 𝑇𝐶𝑃 − (𝜇𝐷𝑖𝑗

+
𝜎𝐷𝑖𝑗

𝜉𝐷𝑖𝑗

( −ln𝛽
−𝜉𝐷𝑖𝑗 − 1)

𝑡𝑗 − 𝑡𝑖 ≤ 𝜇𝐻𝑖𝑗
+

𝜎𝐻𝑖𝑗

𝜉𝐻𝑖𝑗

( −ln𝛽
−𝜉𝐻𝑖𝑗 − 1)

Linearization Non-linear

◼ Non-linear, can be solved using numerical or binary search 
method.
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5 Yield-driven Optimization

Gaussian

maximum 𝛽′

subject to



𝑒𝑖𝑗∈𝐶

𝑡𝑖 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝑇𝐶𝑃 − 𝜇𝐷𝑖𝑗
− 𝜎𝐷𝑖𝑗

𝛽′



𝑒𝑖𝑗∈𝐶

𝑡𝑗 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝜇𝐻𝑖𝑗
− 𝜎𝐻𝑖𝑗

𝛽′

Gumbel 

(𝝃 = 𝟎)

maximum 𝛽′

subject to



𝑒𝑖𝑗∈𝐶

𝑡𝑖 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝑇𝐶𝑃 − 𝜇𝐷𝑖𝑗
− 𝜎𝐷𝑖𝑗

𝛽′



𝑒𝑖𝑗∈𝐶

𝑡𝑗 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝜇𝐻𝑖𝑗
+ 𝜎𝐻𝑖𝑗

𝛽′

GEV 

(𝝃 ≠ 𝟎)

maximum 𝛽

subject to



𝑒𝑖𝑗∈𝐶

𝑡𝑖 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝑇𝐶𝑃 − (𝜇𝐷𝑖𝑗
+

𝜎𝐷𝑖𝑗

𝜉𝐷𝑖𝑗

( −ln𝛽
−𝜉𝐷𝑖𝑗 − 1)



𝑒𝑖𝑗∈𝐶

𝑡𝑗 − 𝑡𝑖 = 0 ≤ 

𝑒𝑖𝑗∈𝐶

𝜇𝐻𝑖𝑗
+

𝜎𝐻𝑖𝑗

𝜉𝐻𝑖𝑗

( −ln𝛽
−𝜉𝐻𝑖𝑗 − 1)

◼ Consider σ𝑒𝑖𝑗∈𝐶 𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 = 0
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6 Yield-Driven CSS Algorithm

𝛽 = (𝛽𝑚𝑎𝑥 + 𝛽𝑚𝑖𝑛)/2

No neg. cycle under 𝛽 

𝛽𝑚𝑖𝑛 = 𝛽

𝛽 = (𝛽𝑚𝑎𝑥 + 𝛽𝑚𝑖𝑛)/2

A neg. cycle C under 𝛽 exists 

𝛽 = 𝛽′

Find 𝛽 that σ𝑒𝑖𝑗∈𝐶 𝑇𝑠𝑘𝑒𝑤 𝑖, 𝑗 (𝛽′) = 0

𝛽∗ = 𝛽′

Yes

Yes

No

No

Input SSTA Results

Fit delay distributions using GEV.

Iteratively perform MTCC 
search with Bellman-Ford.

Assign time and update 
weights.

Calculate Yield
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7 Experimental setup

◼ Benchmark: OpenTimer

◼ Process library: 45nm

◼ Experimental platform: Customized OpenSTA

◼ Each cell is given a delay that follows a Gaussian 

distribution

◼ Fitting SSTA path delay results with different 

probability distributions

◼ Kolmogorov-Smirnov test is used to measure the results

◼ Yield-driven CSS is performed with different 

probability distributions.
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8 Experimental Result

Fit comparison with the Gaussian Distribution
◼ GEV (𝜉 ≠ 0) (red) best approximate

◼ Horizontal axis represents delay (ps)

◼ Vertical axis shows the probability distribution
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8 Experimental Result
KS Statistic Comparison with the Gau. Distribution

◼ Lower KS statistic indicates a better result.

◼ GEV (𝜉 ≠ 0) is the best , 40% lower than Gaussian.

◼ Gaussian is the worst .
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8 Experimental Result

KS Statistic Comparison for Different Fit Methods
◼ No significant difference between three methods.
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8 Experimental Result

Yield-driven CSS Experiment

◼ Timing yield: calculated by 10,000 Monte Carlo 
simulations.

◼ Improve 8% on average.
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8 Experimental Result

Yield-driven CSS Experiment

◼ Experiment on s1494.
◼ Horizontal axis represents clock period (ps)

◼ Vertical axis shows the timing yield.

◼ Gaussian based method shows discontinuities.



◼ Use the GEV distribution to more accurately fit the results of 

SSTA.

◼ Timing yield-driven CSS based on GEV is proposed.

◼ Experimental results show that the GEV distribution can 

more accurately approximate the CDF of path delays.

◼ CSS based on GEV produces superior timing yield 

compared to that based on Gaussian.
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9 Conclusion
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Thanks!

Q & A
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