ﬁm THE UNIVERSITY OF TEXAS AT DALLAS

Department of Electrical and Computer Engineering

Making Legacy Hardware Robust against
Side Channel Attacks via High-Level
Synthesis

Md Imtiaz Rashid, and Benjamin Carrion Schaefer
Mdimtiaz.rashid@utallas.edu, schaferb@utdallas.edu

ASIA SOUTH PACIFIC

nHEHESIEN

AUTOMATION 30th Asia and South Pacific Design Automation Conference

LINFERENCE January 21, 2025, Tokyo ASP-DAC 2025

Outline

* Introduction
* What, why and how?

« Background information
* High-Level Synthesis

* How does it work?
 RTL to C for HLS compiler and modernization methodology overview

« Side Channel Attacks (SCAS)

* Proposed Flow
« SCA-aware RTL to C compiler
« Security-aware HLS design space exploration

* EXperiments
« Experimental Setup
* Experimental Results

 Conclusion

Introduction

What ?
Legacy RTL code (Verilog or

. g Security unaware ,| Security-aware =Security_’ High-Level
VHDL) is mostly HW security 1e8aCY RTL, e wrc conpier [T_aware | _syess
1 ¢ csecure *RTL eeeeee
unaware - Need design flows
to “modernize” this legacy RTL 1 7
Why ? ;;?J:: Route

v

To protect older HW assets, e.g.,
from the military that can
updated infrequently

& | (@
TN i
o Correlation 8 :
H ? .)
oW

Through an RTL to C compiler

coupled with security primitives
at the behavioral level

Traces Traces

High-Level Synthesis

* High-Level Synthesis ANSI-C/C++/SystemC
* Design circuits using software languages — !

i
L High-Level Techlib
* Definition: SWaP-C Synthesis Target freg
“Automatic conversion of a behavioral, untimed

description into efficient hardware that implements that
behavior” g

e Benefits
1. Software programmability and hardware HEEE
performance Sylr_:c)ﬁiecsis
2. Faster verification I
3. Allows to easily re-target any behavioral Place and Route
description to new technologies and !
newer design constraints (i.e., area, GDSll

power, performance)

C,, (ANSI-C/C++/SystemC)

#include "pragma.h”

int buffer[16]; //pragmal

// pragma2

for(i=7;i>0;i--)
buffer[i]=buffer[i-1];

buffer[0] =in0;

sum= buffer[0];

// pragma3

for (i= 1; i< 16; i++)
sum += buffer[i];

return (sum/16);

.

pragma.h

#define pragmal array=reg
#define pragma2 loop=all

#define pragma3 loop=all

techliby s
(ASIC, FPGA)

fH LS

\ 4

~
High-Level

Synthesis

Allocation

v

HLS Inputs

Scheduling

v

Binding

J

RTL
(.v/.vhdl)

HLS

High-Level Synthesis in Practice

| array=reg
(Area o o \/i I00p=aII
./'/ | loop=all
_____ /\\.. . \
AN K [) (
‘m e ® array=reg
P “w_ e | iloop=partial
(m) loop=partial
Latency
array=ram
loop=0
loop=0

HLS Outputs

High-Level Synthesis Made Easy - www.hIsbook.com

& HLS Made Easy

High-Level Synthesis
M ad e Easy Synthesizing Behavioral Descriptions

directly into Hardware Circuits

Synthesizing Behavioral Descriptions directly into Hardware Circuits

Download pdf Purchase Hard Co

High-Level Synthesis
Made Easy

RTL to C Compiler

RTL2C Compiler
MIRROR
(loops, arrays)

p—

int buffer[4]; // pragma array=REG |RAM
ANSI-C/C++/SystemC __ // pragma unroll = all | partial |0

for(x=0; x<4; x++) Verilog/VHDL
l out = out + buffer [x] *coef[x]; l
High-Level Heterogeneous System on Chip (SoC) _
Synthesis g
e A \ . .
Y Interfaces Power 1
P © CPU Memory (SPI, 12C, e r Latency
g £ - UART) 7
Power | f t 1 LOﬁic
| . Synthesis
favency 1 _ T atency | jt On-chip Bus ‘t] T
A v Y
Logic Place and Route
Synthesis HWacc,, s Hwaccgy,
\4
Place and Route
\ J

Motivational Example

MIRROR: MaxImizing the Re-usability of RTL thrOugh RTL to C CompileR

buffer0 coef0 bufferl coefl buffer2 coef2 buffer3 coef3 buffer0 coef0 bufferl coefl buffer2 coef2 buffer3 coef3

FSM
% o\
ofolcRois A

1/ fmaxl G 0 I 1/ fmaxz E B
G II/ fmaxz —p

>

Out out
RTL, mmm = Register RTL, RTL, temp out
RROK array=reg
® o
e /'/./ loop=all
4,926 - W=}
Dot for(x=0; x<4; y++) e~ m® R
N p—
product out = out + buffer[x]*coef[x]; | Area v* ® array=ram
1 [um?] w e L loop=0
! 5 N
fus —» 1,878+ W
. High-Level Synthesis |¢«——pragma, | . Latency
techlib, s — 1 7 [clk cycles)

Md Imtiaz Rashid and B. Carrion Schafer, MIRROR: MaxImizing the Re-usability of RTL thrOugh RTL to C CompileR, Design, Automation, and Test in Europe (DATE), pp. 1-6, 2023
Md Imtiaz Rashid and B. Carrion Schafer, Robust and Efficient RTL to C Compiler Optimized for High-Level Synthesis, IEEE Transactions of Computer Aided Design (TCAD), pp.1-9, 2024

Envisioned Design Modernization Methodology

ASIC or
FPGA

s Functional equivalence l ,
L) techliby s fris
N ey T v v /m S * o \
g °
. . . < e
) " RTL to C compiler Automatic Re-tuning - Koo :
© =y ..])
g > 1ase (maximize re- Phase | i, ough High-Level iy I R A
ower L. . 2 . security
optimization) Chs Synthesis Latency
Latencyj | | yy A Fault-tolerance /
Legacy Front-end Main compiler Back-end KFPGA /
Verilog/VHDL CDFG | stage - ANSI-C for Hardware |
(RTLIegacy) generation_r’ CDFG analysis —'—> HLS Low- Security Fault- Re-optimized
(arrays, loops, ' generation Power e tolerance hardware asset
functions) : P (RTL,..,)
Step 1 Step 2 Step 3 New design dimensions "

e Input: Legacy RTL Code (RTLggac,)

e Output: Re-optimized RTL code (RTL,)

e Flow:

e Phase 1: RTL2C Compiler optimized for maximum re-optimization

e Phase 2: Automatic Re-tuning through High-Level Synthesis

e Functional equivalence between RTL 4., and RTL,

Side Channel Attacks (SCA)

* SCA: Extract information that is typically

mathematically impossible to extract by 3-stage decimation filter
measuring side channel parameters like out, out,
power, timing, electro-magnetic ndata -8 ek R
emanations, etc.. Coefy 1og 2
. . . Coef,
* SCA have been mainly studied in the Coot,

context of leaking encryption keys

e Example: VW

» 3-stage decimation filter = attacker wants
to know when filter has finished to start

»
»

Instant power

Power [mW]

eavesdropping ‘clean’ signal

* How to measure the vulnerability? Ry | R [Py timems)
* t-stats
* Side-channel Vulnerability Factor (SVF) =
Correlation between sensitive application’s

execution pattern and side channel
observations

10

Hardware Security : Side Channel Attacks

* Proposed method: RSA main 100P [for ;= i = T downto 0 |
=7 * Z mo ; — squaring
° Leverage MIRROR (RTLZC) I%El&);rlnod N; — multiplication
compiler to re-optimize legacy \ end for
side channel attack unaware RTL R 1 .
* Balance or power profiles by NMMM
updating behavioral description I adl
: 1 0 1 Secret key;
for HLS i -
Countermeasure
for (i=k-1;i>=0;i--){
Z=Z*ZmodN;
if (e[i] = 1)
Z=Z*XmodN;
else
Z=7Z%"1modN; // dummy
}

Proposed Flow

RTLIegacy
A.QJ _________
HLS DSE inputs Phase | Phase Il Ve @ ®°
_ T~ (A}
pragmays sC SCA-aware HLS E p .‘;‘"'fo ¢ °
Arrays: RAM, REG, #ports(| Ly A-awart? Design Space > = \.5 o ©
Loops: unroll, pipeline RTL2C Compiler Explorer o SCA >~ L4 Outputs
Functions: inline, goto l—‘ - - < : u. -m
| | |
Inputs CHLSsecure T T Lrlnin '-Ic Ln'm
techlibys fis I Latency [clk cycles]
® Pareto-optimal RTL

r ® Non-Pareto-optimal RTL

Constraints (A, L.)
A Most SCA secure RTL meeting A_and L_constraints (RTLse.,)

* Composed of two phases :
Phase I: SCA-aware RTL2C compiler
Phase Il: SCA-aware HLS Design Space Exploration (DSE)

12

Phase I: SCA-aware RTL2C compiler

* Front-end: Parses RTL and generates CDFG

* Main Compiler pass: Applies HW security primitives
* Reduces power fluctuations = Conditional branches equally long

* Breaks correlations between operations and power consumption =» adds additional dummy
paths activated based on inputs similar to HW Trojans

Verilog _ Front-end Main Compiler Pass ~ Backend
(RTL,....) C

legacy _ HLSsecure
3 Parse RTL robii:g\ess tr::;(irt::’f' (cj)n C code 1 >
< (build CDFG) T o ' generation

optimizations & optimization
A
Latency CDFGgn, CalRe

secure

(trees,

= »>Match?
Const mult)

il

primitives
RTL2C compiler

13

Phase Il: Security-aware HLS Design Space Explorer

[HLS DSE |S a multl_objectlve techliby s f,ys CTLS Co(r';s;t’r?—icr)\ts Inputs
optimization problem ST 5

Unique HLS pragma <
combination

Step2 : ¢ Pragma;

-m Step 1: Set pragma §—ioal High-LevelSynthesis 1A
combination

Meets
constraints?

RTL gen (power sim) M«

Step3 v RTLpower

g Power estimation
(RTL simulation) Output

m Step 2: High-Level Synthesis

v ° o
m Step 3: Power estimation EM oy

. . Stepd -—>§ ecurity | o ©® —
— Step 4: Security Computation * B oo ;,

Compute Security (SCA)

(SVF from VCD file) etency

14

Experimental Setup

e HLS Tools : NEC CyberWorkBench v.6.1

e Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1
e Target technology: Nangate Opencell 45nm
e Target synthesis frequency: 200 MHz
e Compiler: Written in Python 3.6
****** o Benchmarks: Six (6) S2CBench Benchmarksute I

e Two methods: SecureDSE (only secure-aware HLS DSE)

SecureALL (Secure—aware RTL2C compiler + secure-aware HLS DSE)

Security Vulnerability Factor (SVF) used to measure SCA robustness (SVF=100% original
security-unaware RTL, 50% considered secure threshold)

Experimental Result — SVF Comparision

Security (SVF) of IPs against SCAs when latency constraint Le=LRTLlegacy Security (SVF) of IPs against SCAs when no area and latency constraints set
| | | | [[[]]]]]]]
. . I B secureDSE
SVF for legacy security-unaware RTL I Wl secureDSE SVF for legacy security-unaware RTL
m=lr-----=-- - - - - - - - -« -« -« —« -« — — ——— —- —] I I securef L1 100% I I secured L

pshiol EElimiting securg@Besion (BRE)
507 - - - - ——— - —— — - - 50%

0% 0%
ER e
& aﬁgﬁ ¥ &ﬁ 3

Observation 1: Exploring only HLS synthesis directives does not lead to a SCA secure design
Observation 2: RTL2C+HLS DSE (secureALL) does lead to secure designs. SVF improved by 65.5

16

Area Overhead Summary

Legacy vs. SecureDSE [%] | Legacy vs. SecureALL [%]

sobel 3.21 5.72

fir 1.34 7.25
Interpolation 4.15 7.15
Cholesky 4.41 5.84
Decimation 5.12 11.56
disparity 7.65 13.43

* Average area overhead of 4.31% fore SecureDSE and 8.49% for
SecureALL methods

17

Conclusions

* Proposed an automated RTL “modernization” flow based on
an RTL to C compiler that generates C code optimized for
HLS

« Compiler is extended to make It security-aware (SCA)

* Investigate If SCA-aware HLS design space explorer is good
enough vs. using the security-aware compiler with explorer

* Results show that only security-aware exploration is not good
enough

18

Thank You

