
Making Legacy Hardware Robust against
Side Channel Attacks via High-Level

Synthesis

Md Imtiaz Rashid, and Benjamin Carrion Schaefer

Mdimtiaz.rashid@utallas.edu, schaferb@utdallas.edu

30th Asia and South Pacific Design Automation Conference

ASP-DAC 2025

Department of Electrical and Computer Engineering

January 21, 2025, Tokyo

• Introduction
• What, why and how?

• Background information
• High-Level Synthesis

• How does it work?
• RTL to C for HLS compiler and modernization methodology overview

• Side Channel Attacks (SCAs)

• Proposed Flow
• SCA-aware RTL to C compiler
• Security-aware HLS design space exploration

• Experiments
• Experimental Setup
• Experimental Results

• Conclusion

2

Outline

What ?

Legacy RTL code (Verilog or
VHDL) is mostly HW security
unaware→ Need design flows
to “modernize” this legacy RTL

Why ?

To protect older HW assets, e.g.,
from the military that can
updated infrequently

How ?

Through an RTL to C compiler
coupled with security primitives
at the behavioral level

3

Introduction

Security unaware
legacy RTLunsecure

Logic
Synthesis

Place and
Route

Correlation
Analysis

HWTraces

R

Power estimation

Security-aware
RTL2C compiler

Security
primitives

Security
-aware
Csecure

High-Level
Synthesis

Logic
Synthesis

Place and
Route

HW Traces

R

RTLsecure

• High-Level Synthesis
• Design circuits using software languages
• Definition:

“Automatic conversion of a behavioral, untimed
description into efficient hardware that implements that
behavior”

• Benefits
1. Software programmability and hardware

performance
2. Faster verification
3. Allows to easily re-target any behavioral

description to new technologies and
newer design constraints (i.e., area,
power, performance)

High-Level Synthesis

ANSI-C/C++/SystemC

High-Level
Synthesis

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

GDSII

Techlib
Target freq

SWaP-C

High-Level Synthesis in Practice

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS

(ASIC, FPGA)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0];
// pragma3
for (i= 1; i< 16; i++)

sum += buffer[i];
return (sum/16);

HLS Inputs

pragma.h

fHLS

Allocation

Scheduling

Binding

High-Level

Synthesis

HLS

RTL
(.v/.vhdl)

RTL (Verilog, VHDL)

Reports (Area, timing, power)

Area

Latency

ത𝑃

Logic synthesis scripts

Testbench, simulation models

HLS Outputs

array=reg

loop=all

loop=all

array=reg

loop=partial

loop=partial

array=ram

loop=0

loop=0

High-Level Synthesis Made Easy - www.hlsbook.com

RTL to C Compiler

Heterogeneous System on Chip (SoC)

On-chip Bus

HWaccHLS

Interfaces
(SPI, I2C,

UART)

HwaccRTL

CPU Memory

Verilog/VHDL

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

ANSI-C/C++/SystemC

High-Level
Synthesis

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

// pragma array=REG|RAM

// pragma unroll = all|partial|0

A
re

a

Latency

Power

RTL2C Compiler
MIRROR

(loops, arrays)

int buffer[4];

for(x=0; x<4; x++)
out = out + buffer [x] *coef[x];

Motivational Example
MIRROR: MaxImizing the Re-usability of RTL thrOugh RTL to C CompileR

Dot
product

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

1/fmax2

RTL2C
(MIRROR)

High-Level Synthesis
fHLS

techlibHLS

pragmaHLS

RTL2= Register

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

1/fmax1

Area
[µm2]

Latency
[clk cycles]

ത𝑃

array=reg

loop=all

array=ram

loop=0

4,926

1,878

1 7

RTL1

1/fmax2

for(x=0; x<4; y++)
out = out + buffer[x]*coef[x];

1/fmax2

s0

s1

s2

s3

x +

temp out

FSM

RTL3

Md Imtiaz Rashid and B. Carrion Schafer, MIRROR: MaxImizing the Re-usability of RTL thrOugh RTL to C CompileR, Design, Automation, and Test in Europe (DATE), pp. 1-6, 2023

Md Imtiaz Rashid and B. Carrion Schafer, Robust and Efficient RTL to C Compiler Optimized for High-Level Synthesis, IEEE Transactions of Computer Aided Design (TCAD), pp.1-9, 2024

● Input : Legacy RTL Code (RTLlegacy)

● Output: Re-optimized RTL code (RTLopt)

● Flow:

● Phase 1: RTL2C Compiler optimized for maximum re-optimization

● Phase 2: Automatic Re-tuning through High-Level Synthesis

● Functional equivalence between RTLlegacy and RTLopt

Envisioned Design Modernization Methodology

z

Legacy

Verilog/VHDL

(RTLlegacy)

A
re

a

Latency

PowerASIC or

FPGA

Functional equivalence

Automatic Re-tuning

through High-Level

Synthesis

Low-
Power

Hardware
security

primitives

A
re

a

Latency

Power

security

Fault-tolerance

Fault-
tolerance

Re-optimized

hardware asset

(RTLopt)
New design dimensions

ASIC

FPGA

Phase

2

RTLopt

techlibHLS
fHLS

RTL to C compiler

(maximize re-

optimization)

Phase

1

RTLlegacy

CHLS

Front-end

CDFG

generation

Main compiler

stage
CDFG analysis

(arrays, loops,

functions)

Back-end

ANSI-C for

HLS

generation

Step 1 Step 2 Step 3

• SCA: Extract information that is typically
mathematically impossible to extract by
measuring side channel parameters like
power, timing, electro-magnetic
emanations, etc..

• SCA have been mainly studied in the
context of leaking encryption keys

• Example:
• 3-stage decimation filter → attacker wants

to know when filter has finished to start
eavesdropping ‘clean’ signal

• How to measure the vulnerability?
• t-stats
• Side-channel Vulnerability Factor (SVF) =

Correlation between sensitive application’s
execution pattern and side channel
observations

10

Side Channel Attacks (SCA)

indata

Coef1

Out1

FIR1
FIR2

FIR3

Coef2

Coef3

Out2

odata

P
o

w
er

 [
m

W
]

FIR1

Instant power

time [ms]FIR2 FIR3

3-stage decimation filter

• Proposed method:
• Leverage MIRROR (RTL2C)

compiler to re-optimize legacy
side channel attack unaware RTL

• Balance or power profiles by
updating behavioral description
for HLS

Hardware Security : Side Channel Attacks

• Composed of two phases :

Phase I: SCA-aware RTL2C compiler

Phase II: SCA-aware HLS Design Space Exploration (DSE)

12

Proposed Flow

RTLlegacy

SCA-aware
RTL2C Compiler

A
re

a
[µ

m
2
]

Latency [clk cycles]

ത𝑃

Lmax

CHLSsecure

SCA-aware HLS
Design Space

Explorer

Lmin Lc

Pareto-optimal RTL
Non-Pareto-optimal RTL
Most SCA secure RTL meeting Ac and Lc constraints (RTLSecure)

Ac

Constraints (Ac,Lc)

techlibHLS

pragmaHLS

Arrays: RAM, REG, #ports
Loops: unroll, pipeline
Functions: inline, goto

fHLS

HLS DSE inputs

Inputs

Outputs

Phase I Phase II

SCA

• Front-end: Parses RTL and generates CDFG
• Main Compiler pass: Applies HW security primitives

• Reduces power fluctuations ➔ Conditional branches equally long
• Breaks correlations between operations and power consumption ➔ adds additional dummy

paths activated based on inputs similar to HW Trojans

13

Phase I: SCA-aware RTL2C compiler

Verilog

(RTLlegacy)

A
re

a

Latency

Parse RTL

(build CDFG)

CHLSsecureRules-based

transformation

& optimization

C code

generation

Front-end Back-endMain Compiler Pass

CDFGRTL

RTL2C compiler

= Match?
Security

primitives

SCA

robustness

optimizations

Rules

(trees,

Const mult)

CDFGsecure

• HLS DSE is a multi-objective
optimization problem

Step 1: Set pragma
combination

Step 2: High-Level Synthesis

Step 3: Power estimation

Step 4: Security Computation
(SVF from VCD file)

14

Phase II: Security-aware HLS Design Space Explorer

techlibHLS

A
re

a

Latency

v
High-Level Synthesis

CHLS
fHLS

v
Unique HLS pragma

combination

ത𝑃

Constraints
(Ac , Lc)

Security

(SCA)

Pragmalib

RTL gen (power sim)

RTLpower

A,L

P
o

w
er

time

vPower estimation
(RTL simulation)

v

Meets
constraints?

Yes

No

Compute Security (SCA)

Pragmai

Inputs

Output

Step1

Step2

Step3

Step4

Experimental Setup

● HLS Tools : NEC CyberWorkBench v.6.1

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 200 MHz

● Compiler: Written in Python 3.6

● Benchmarks: Six (6) S2CBench Benchmark suite

● Two methods: SecureDSE (only secure-aware HLS DSE)

SecureALL (Secure—aware RTL2C compiler + secure-aware HLS DSE)

Security Vulnerability Factor (SVF) used to measure SCA robustness (SVF=100% original

security-unaware RTL, 50% considered secure threshold)

Evaluation

Tools

16

Experimental Result – SVF Comparision

Observation 1: Exploring only HLS synthesis directives does not lead to a SCA secure design

Observation 2: RTL2C+HLS DSE (secureALL) does lead to secure designs. SVF improved by 65.5

• Average area overhead of 4.31% fore SecureDSE and 8.49% for
SecureALL methods

17

Area Overhead Summary

Benchmark Legacy vs. SecureDSE [%] Legacy vs. SecureALL [%]

sobel 3.21 5.72

fir 1.34 7.25

Interpolation 4.15 7.15

Cholesky 4.41 5.84

Decimation 5.12 11.56

disparity 7.65 13.43

• Proposed an automated RTL “modernization” flow based on
an RTL to C compiler that generates C code optimized for
HLS

• Compiler is extended to make it security-aware (SCA)

• Investigate if SCA-aware HLS design space explorer is good
enough vs. using the security-aware compiler with explorer

• Results show that only security-aware exploration is not good
enough

18

Conclusions

19

Thank YouThank You

