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• Security-aware HLS design space exploration
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What ?

Legacy RTL code (Verilog or 
VHDL) is mostly HW security 
unaware→ Need design flows 
to “modernize” this legacy RTL

Why ?

To protect older HW assets, e.g., 
from the military that can 
updated infrequently

How ?

Through an RTL to C compiler 
coupled with security primitives 
at the behavioral level
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• High-Level Synthesis
• Design circuits using software languages
• Definition:

“Automatic conversion of a behavioral, untimed 
description into efficient hardware that implements that 
behavior” 

• Benefits
1. Software programmability and hardware 

performance
2. Faster verification
3. Allows to easily re-target any behavioral 

description to new technologies and 
newer design constraints (i.e., area, 
power, performance)
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High-Level Synthesis in Practice

#define pragma1 array=reg
#define pragma2 loop=all
#define pragma3 loop=all

techlibHLS

(ASIC, FPGA)

Cin (ANSI-C/C++/SystemC)

#include ”pragma.h”
int buffer[16]; //pragma1
// pragma2
for(i=7;i>0;i--)

buffer[i]=buffer[i-1];
buffer[0] = in0;
sum= buffer[0]; 
// pragma3
for (i= 1; i< 16; i++) 

sum += buffer[i]; 
return (sum/16);
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High-Level Synthesis Made Easy - www.hlsbook.com



RTL to C Compiler

Heterogeneous System on Chip (SoC)
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int buffer[4]; 

for(x=0; x<4; x++)
out = out + buffer [x] *coef[x];



Motivational Example
MIRROR: MaxImizing the Re-usability of RTL thrOugh RTL to C CompileR
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● Input : Legacy RTL Code (RTLlegacy)

● Output: Re-optimized RTL code (RTLopt)

● Flow:

● Phase 1: RTL2C Compiler optimized for maximum re-optimization

● Phase 2: Automatic Re-tuning through High-Level Synthesis

● Functional equivalence between RTLlegacy and RTLopt

Envisioned Design Modernization Methodology
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• SCA: Extract information that is typically 
mathematically impossible to extract by 
measuring side channel parameters like 
power, timing, electro-magnetic 
emanations, etc..

• SCA   have been mainly studied in the 
context of leaking encryption keys

• Example:
• 3-stage decimation filter → attacker wants 

to know when filter has finished to start 
eavesdropping ‘clean’ signal

• How to measure the vulnerability? 
• t-stats
• Side-channel Vulnerability Factor (SVF) = 

Correlation between sensitive application’s 
execution pattern and side channel 
observations
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• Proposed method:
• Leverage MIRROR (RTL2C) 

compiler to re-optimize legacy 
side channel attack unaware RTL

• Balance or power profiles by 
updating behavioral description 
for HLS

Hardware Security : Side Channel Attacks



• Composed of two phases :

Phase I: SCA-aware RTL2C compiler

Phase II: SCA-aware HLS Design Space Exploration (DSE)
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Proposed Flow
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• Front-end: Parses RTL and generates CDFG
• Main Compiler pass: Applies HW security primitives 

• Reduces power fluctuations ➔ Conditional branches equally long
• Breaks correlations between operations and power consumption ➔ adds additional dummy 

paths activated based on inputs similar to HW Trojans
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• HLS DSE is a multi-objective 
optimization problem

Step 1: Set pragma 
combination

Step 2: High-Level Synthesis

Step 3: Power estimation 

Step 4: Security Computation 
(SVF from VCD file)
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Phase II: Security-aware HLS Design Space Explorer
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Experimental Setup

● HLS Tools : NEC CyberWorkBench  v.6.1

● Logic Synthesis tool: Synopsys Design Compiler v.0-2018.06-SP1

● Target technology: Nangate Opencell 45nm

● Target synthesis frequency: 200 MHz

● Compiler: Written in Python 3.6

● Benchmarks: Six (6) S2CBench Benchmark suite

● Two methods: SecureDSE (only secure-aware HLS DSE) 

SecureALL (Secure—aware RTL2C compiler + secure-aware HLS DSE)

Security Vulnerability Factor (SVF) used to measure SCA robustness (SVF=100% original 

security-unaware RTL, 50% considered secure threshold)

Evaluation

Tools
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Experimental Result – SVF Comparision

Observation 1: Exploring only HLS synthesis directives does not lead to a SCA secure design

Observation 2: RTL2C+HLS DSE (secureALL) does lead to secure designs. SVF improved by 65.5



• Average area overhead of 4.31% fore SecureDSE and 8.49% for 
SecureALL methods
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Area Overhead Summary

Benchmark Legacy vs. SecureDSE [%] Legacy vs. SecureALL [%]

sobel 3.21 5.72

fir 1.34 7.25

Interpolation 4.15 7.15

Cholesky 4.41 5.84

Decimation 5.12 11.56

disparity 7.65 13.43



• Proposed an automated RTL  “modernization” flow based on 
an RTL to C compiler that generates C code optimized for 
HLS

• Compiler is extended to make it security-aware (SCA)

• Investigate if SCA-aware HLS design space explorer is good 
enough vs. using the security-aware compiler with explorer

• Results show that only security-aware exploration is not good 
enough
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Conclusions
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