

Machine Learning-Based Real-Time Detection of Power Analysis Attacks Using Supply Voltage Comparisons

Nan Wang, Ruichao Liu, Yufeng Shan, Yu Zhu ,Song Chen

Presenter: RuiChao Liu

2025.1.21

Background

Research Objectives

02

Detection Method

Experimental Result

Conclusion

Background	Research Objectives	Detection Method	Experimental Result	Conclusion
------------	------------------------	------------------	------------------------	------------

> PAA Model

Targeting the pins inside the package responsible for powering the target encryption core, to obtain a favorable power consumption curve for analysis, it is necessary to insert an attack resistor R_{SCA} at the chip package location.

Circuit Response of PAA

The attack resistor R_{SCA} will cause a voltage drop across the nodes on the power grid, resulting in the maximum V_{drop} at the affected node.

Background	Research Objectives	Detection Method	Experimental Result	Conclusion
------------	------------------------	------------------	------------------------	------------

- 1. Insert constant current source and use low metal layer routing to mitigate PAA.
- 2. Add noise to power curve to lower data-power correlation via random switching capacitor distribution, confusing time-domain waveforms.

No countermeasures against attacks

Background	Research Objectives	Detection Method	Experimental Result	Conclusion
------------	------------------------	------------------	------------------------	------------

1. Capture power curves, detect intrusions with realtime linear classifier analysis.

2. Use ring oscillators to identify abnormal voltage changes in the power grid caused by the R_{SCA} .

- Noise resistance capability is limited.
- significant area and power consumption overhead.

Background	Research Objectives	Detection Method	Experimental Result	Conclusion

Estimate Probability

How can $pr(V_i > V_j)$ be estimated? By conducting multiple comparisons and accumulating the results.

> Window Length

For a given node voltage, the difference in $pr(V_i > V_j)$ between any two time windows of equal length does not exceed the probability threshold $pr(V_{dif_i_j} > 0)$ determined by the user.

Examples of Excessively Small Time Window Length

Background	Research Objectives	Detection Method	Experimental Result	Conclusion
NA 11 1	• • • • • •			

Machine Learning Algorithms

- Simulate intrusions on IBM ibmpg1t benchmark via transient analysis, creating a dataset with 20,000 entries for victim nodes and 23,700 for regular nodes.
- Deciding Linear SVM since its low resource consumption and high performance.

Objectives	Background	Research Objectives	Detection Method	Experimental Result	Conclusion
------------	------------	------------------------	------------------	------------------------	------------

> Hardware Design

- Comparison results between sensor nodes, obtained via analog voltage comparators and accumulators;
- Results are stored in RAM for classification.
- Model parameters are stored in ROM.
- Model output "0" indicates security; output "1" suggests compromise.

Backgrou	Ind	R Ol	esearc ojectiv	h es	Detec	tion M	ethod	Expe F	erimer Result	ntal	Со	nclusion
Experim	nental Results TABLE I: Comparisons of detection accuracy											
Noise Level					Ι	Detection a	ccuracy (%)				
$R_{sca} = 1.0 \ \Omega$		R	$R_{sca} = 0.5 \ \Omega \qquad \qquad R_{sca} = 0.2 \ \Omega$		2	$R_{sca} = 0.1 \ \Omega$		Ω				
	LRC	ROC	Ours	LRC	ROC	Ours	LRC	ROC	Ours	LRC	ROC	Ours
2%	47.41	52.02	96.09	50.17	49.27	92.27	45.52	39.31	81.03	45.17	31.89	68.64
5%	50.69	51.49	95.08	42.76	48.81	90.35	48.97	38.76	79.27	49.14	30.37	66.92
7%	45.34	50.02	94.75	46.03	47.27	89.99	47.76	37.31	78.10	47.07	29.89	66.51
10%	48.97	47.51	94.20	51.55	43.97	89.06	50.17	33.85	77.88	50.34	29.53	65.73
15%	43.79	43.29	93.13	48.62	39.89	88.68	49.31	31.45	76.54	50.52	27.55	64.79
20%	46.90	40.91	93.11	45.52	35.93	87.96	46.03	28.04	76.08	46.21	26.20	65.11

89.72

47.44

44.19

methods	Total area (μm^2)	Total power (mW)
Proposed methods	69412.32	17.2917
LRC	273247.08	52.3496
ROC	2102.70	0.8465

47.54

94.39

47.18

Avg.

• High accuracy, Up to 96% accuracy;

34.79

47.96

Good anti-noise capacity, 93% accuracy when 20%
V_{dd} noise;

78.15

48.08

29.24

66.28

- High sensitivity to small R_{sca} , up to 81% accuracy with 0.2 ohm R_{sca} .
- Low resource consumption, 75% in circuit area and 68% in power consumption can be saved

Background	Research Objectives	Detection Method	Experimental Result	Conclusion	
	Area consump	tion	Power consu	umption	
metric	S	value (μm^2)	metrics	value (mW)	
Number of	ports	10150	Cell Internal Power	0.6312	
Number of	nets	26082	Net Switching Power	0.1095	
Number of	cells	15353	Total Dynamic Power	0.7407	
Number of combin	ational cells	10197	Cell Leakage Power	0.0561	
Number of seque	ential cells	4736			
Number of macros	/black boxes	0	In this experiment,	standard cells	
Number of b	uf/inv	1751	of TSMC 65nm proc	ress were used	
Number of ref	erences	5	for logic synthesis with a readuly		
Combination	al area	27649.079983	for logic synthesis, with a modu		
Buf/Inv a	rea	1918.800076	clock frequency of s	50MHz (i.e.,	
Noncombinatio	onal area	41568.840114	20ns). Considering	the design	
Macro/Black E	Box area	0.000000	margin, the synthes	is clock period	
Net Interconn	ect area	0.000000	was set to 18ns	·	
Total cell a	area	69217.920097			
Total are	ea	69217.920097		17	

_

Background	Research Objectives	Detection Method	Experimental Result	Conclusion
------------	------------------------	------------------	------------------------	------------

Conclusion

- To address the issue of low detection accuracy when power side-channel information is mixed with circuit noise, a method based on a voltage comparator has been proposed to assess the voltage drop caused by PAA;
- For the problem of low detection accuracy under small resistance value intrusion by PAA, this paper has designed a real-time PAA detection model based on a linear SVM according to the proposed voltage comparison strategy;
- A hardware circuit for an on-chip real-time detection system with low area, power consumption overhead, and high detection efficiency has been designed for the proposed PAA detection method.

THE END