An Island-Style Multi-Objective
Evolutionary Framework for
Synthesis of Memristor-Aided Logic

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin

School of Electrical Engineering, KAIST, Korea

Outline

Introduction
Motivation

Proposed method
Experimental results

Summary

Logic Operation

= Conventional method is executed within a
processing unit (CPU, GPU)
= Processed data is transferred to the memory for storage
= Data transfer degrades both performance and energy

= Processing-in-memory (PIM) enables logic
operations to be performed within the memory
= Data transfer is significantly reduced

= Repetitive operations (e.g., machine learning model) on
large dataset can be accelerated

Memristor for PIM Logic Operation

= Non-volatile resistive memory (memristor) is
leveraged for PIM logic operation

= Memristor offers low (or high) resistance state for
logic-1 (or -0)
= Resistance state is determined by applied voltage (V)

« V < V,,.: switching to low resistance state (LRS)
= Von <V <V,s¢: remaining current resistance state (CRS)

= V = V,sr: switching to high resistance state (HRS)

PIM Logic Operation

= After logic synthesis, in-memory mapping Is
performed [TcAs-|]

= Logic function is synthesized into 2-input NOR and INV
netlist

= #Nodes of AND-INV graph (AlG) is reduced

= Each gate of netlist is mapped into memristive crossbar
array

=« Gate input and output are stored in distinct memristors

Logic In-memory
synthesis N, mapping |N;§ XO{;
OUT = NOR(IN,,IN,) INQ:DP out

In-Memory Mapping

= All memristors for gates should be aligned either in
a row or a column

= Each gate is operated in one clock cycle

= Multiple gates can be computed in the same clock
cycle - parallel operation

= All input memristors are aligned, along with their
corresponding output memristors

Vg Vg GND

a5 f\xg"ggg X1 ¥ X2« 914

_{ pd >
_ 3 |4 925

_| ¥
f\ X1 g x1 g

X1_>H1 B Parallel operation of g1 and g2

6

In-Memory Mapping

= Copying a value from one memristor to another can

be executed - copy operation
= Two INV operations are performed in two clock cycles

= #Copy operations depends on mapping methods

] | 1

\
i
Xi& Xt& 92&*}
gsé& g § gi@
"\
g3 copy from (2,0) to (2,2)

In-Memory Mapping

= Objective is to minimize #clock cycles and
#memristors

= Key decision variables include:
= Gate location
= Gate alignment
= #Memristors on the crossbar
= Gates calculated in parallel

Mapping Example

= For a NIG illustrated in Fig.(a), there are 3 example
mappings
= Fig. (b): 5 cycles and 7 memristors
= Fig. (c): 3 cycles and 6 memristors

= Fig. (d): 2 cycles and 6 memristors
= INV is treated as 2-input NOR with one input tied to logic-0

A§ gl& A 0 1
ST | Lo SIS
WP e S

A mol Operations g3 93
INV: gl \ 1.4g1 (0,1} . &
‘g3 2. {~g1 (1,1)} Operations Operations
. /9 3.{g1(2,1)} 1. {g1 (0,2)) 1p o
NOR: g2, g3 I~ 4.{92 (2,0)} 2.{g2 (1.2)} {91, 92}
B +ig2 5. {93 (2.2)} 3.{03 (2.2)) 2.{g3)

(a) (b) (c) (d) 9

Previous Works

Integer linear programming (ILP) [iccab17]

= Optimization problem is formulated using coordinates of
crossbar

Simple heuristic [TvLSI18]

= INV gates and NOR gates are mapped eastward and
southward, respectively

Staircase-structure heuristic [ASPDAC19]

= Gates at each level are alternatively mapped in rows and
columns

Multiple ILP for a partitioned netlist [IcCcAD19]
= ILP formulation is individually solved for each partition

10

Motivation

= |ILP solver is very time-consuming
= Heuristic methods target only a single objective

= Proposed: multi-objective optimization using
genetic algorithm (GA)

» Gate locations are modified by GA to satisfy multi-
objective

11

Overall Flow

= Given: initial mapping from any heuristic methods

= GA relocates the gate locations using mutation and
crossover

= Mapping rule violation is corrected by mapping
completion algorithm

gi& gi& gi&
g6 g2 g3
i SIS 0 91& xzﬁ e 9

0 1 2 3 4 5

Initial GA-based 4 Mapping 18519251 5951 2t

KNS
% %

mapping relocation completion 2 giglasl o]

12

Mutation

s Gates are moved to the same row or column

= Random #gates is selected from a Levy probability
distribution
= If the new location is empty, gate is moved to there

= Otherwise, a swap occurs between two gate outputs

Candidate m g&
Ql& Q’@
Ql’%& Qi&
I Y -

Initial mapping Move g1 Swap g2 and g3

13

Crossover

= Gate locations from two different mappings are
exchanged
= Step 1) In each crossbar, list the gate locations
= Step 2) Exclude common locations (e.g., g3, g3)
= Step 3) Swap remaining gate locations in reverse order

Parent A

%

AN

Parent B

7

g1

Child A

g3

Child B

v

/

)

<4|g2

g1

"

"

g3

\

Common

g2

P

Y

14

Mapping Completion Algorithm

= After performing genetic algorithm, gate locations
are corrected based on mapping rules
= Step 1) Find aligned gates in each row or column

= Row-oriented: {g4, gs, 97} {92, 93, 96} {91}

= Column-oriented: {g} {gs, g6} {91, 92} {93, Gu}
= Step 2) Remove subsets of other groups: {g:},{g-}

= Set=1{9495 973192 93 96} {95 96} {91, 92} {93, 94}

o A

Qi@ g@ gi&
S

Example NIG Relocated mapping from GA 15

Mapping Completion Algorithm

= Step 3) Resolve data dependency

« If two gates are sequentially connected in the same path,

they cannot simultaneously operate

{94, 95,97} = {943 {95} {97}
{92, 93,96} = 192,93} {96}

= Step 4) Remove subsets of other groups: {g4} {gs} {gs}

= Set ={g7} {92, 93} {95, 96} {91, 92} {93, 94}

i

4

s

4

s

g

16

Mapping Completion Algorithm

= Step 5) Assign a mapping direction D to each gate based
on fanin locations

EAST if fanin(g) : EAST
WEST if fanin(g) : WEST
NORTH if fanin(g) : NORTH
SOUTH if fanin(g) : SOUTH V
(fanin(g)|0] Vv fanin(g)[1]) : NORTH
EAST otherwise

D(g) = {

gg& gi& gi&
gi& gi& gi&f
o

17

Mapping Completion Algorithm

= Step 6) Ungroup gates with different directions
= In this example, no change

= Step 7) Remove subsets of other groups
= Set = {97} {92,933 {95, 96} {91, 923 {93, 94}

gg& gfé& gt&
gi& gi& gi&
i

Mapping Completion Algorithm

= Step 8) If a gate belongs to multiple groups, move the

gate to the largest group

« If multiple groups have the same size, move the gate in a
way that preserves other groups

92 €192, 93} 191,92}, 93 €{92,93} {93, 94}
= Set ={g,}{9s, 96} {91, 92} {93, 94}

o

4

"

i

s

¢

19

Mapping Completion Algorithm

= Step 9) Relocate gate outputs which are single member
In each group

= {g-} is aligned with fanins {gsz, g¢}

= Step 10) Copy gate outputs which are not aligned with
fanins

= g, IS copied from (2,3) to (0,5) for fanin of g,
o 1 2 3 4 5 6 7
o TP A
||
/
2 a7 g1 ~0189 X2 X1
O e

——

Relocated mapping result

20

Mapping Completion Algorithm

= Step 11) Empty rows or columns are removed, and in the
corrected mapping result,

« #Memristors is counted - 13
« #Cycles = #groups + 2x#copies 2 4 + 2x1

0 1 2 3 4 5

o TV | oo
Ikl a R

t4: {g3, g4}

2 g@ g@ -g@ x@ X§ tg EQ%QG}
- 19

Final mapping result

21

Experimental Setup

s Testcircuits: 8 benchmarks from IWLS-93
= Format “#PI/#PO(#NIG nodes from ABC)”

5xp1: 7/10(131), misex1: 8/7(81),

b12 : 15/9(94), misex2: 25/18(159),
clip : 9/5(133), rd73: 7/3(157),
cordic : 23/2(93), inc: 7/9(149)

= Logic synthesis is conducted using Berkeley-ABC
tool

= Hyperparameter values for GA:

n_process : 32, cxpb: 0.7,
n_pops : 50, mutpb : 0.3,
n_ind : 50, mig_rate: 0.1,

mig_interval : 10
22

Experimental Setup

= Multi-objective: minimize #memristors and
#cycles

= 5 Independent runs are performed per benchmark

= The proposed method is compared with the
simulated-annealing (SA) approach [TvLsiig]

23

Experimental Results

s Better results are shown than SA method [TvLsI18]
= For each run, multiple mapping results are generated
= #Memristors and #cycles are reduced by more than 10%,

Cycles

220

210

262

i
% 256

respectively

5xpl bl2
' ! ! ;
'y A '
135
Bor o ge
£ 1as
5
120
" .
s, .) 1s *
. t~ bt]
s . o3 o,
. \
20 215 220 25 235 240 40 45 150 155 160 165 170
#Mem #Mer
inc misex1
- !) !
‘ A A
140
138
136
. 134
"
.
& 132
L] 130
-, L]
.. . 128 ,& .
. » '.‘
- uof e, 8
H - ™ -'-~...
T eon 124 e] ®oee
264 267 270 273 276 279 282 IJ;U I';) L-;’\ I—'ib U;H L'I\ﬂ I‘;J l‘l\'l L'I\H
#Men #Mem
A PRef @ PRunl ® Run2

clip
240 . . .
? A
116
114
12
g 228 g
')‘IUU
[
108
218
106
L]
| o210f & “
. 104
.‘An] LT
. . .
235 20 2 250 2 2
anem
misex2
24C
A 262
23 260
21 258
256
231 .
. 254
o
220 & a5
2251 % 250
F
'Y H 24
222
fe D,
. 24
LT3
.‘ . 244
61 267 270 73 216 27
#Mem
® Run3 @ Rund4 @ RunsS

cordic
A
L
L L
‘ *
b3 .
-l 9
. . ‘
wee® o
. - L ™
145 15 155 1 1
#hem
73
T !
A
.
]
L)
‘o.
A,
®
.
M5 258 261 264 260 200 273 216 2
#er

Experimental Results

= Our method demonstrates consistent improvement
across all benchmarks

= The objective curve patterns are similar over runtime
= A significant reduction occurs within 1 hour

_@ cordic
J
" w L“-:f’:f‘.—::!.'_«—- =2 e,
8 @ B W - b
T o -
& 9 T
o o
" - J—
: £ 247
o LT
£ sl
* ¥ B .
==
B
+ 0 iz
Time (hrs)
— rd73
1462 ']
"'—i“;;r-;-w ------
E %_‘," WS Hamnesnnnan 244|
i w
2 =
O (=)
st =
2 c
H L
o £
LY 2 f
z 2| (4
S |
B S T)|
G &
Time (hrs)

Summary

= Multi-objective optimization approach is proposed
= Gate relocation is conducted using genetic algorithm

= Mapping completion algorithm corrects the relocated
gates based mapping rules

= Experimental results exhibit consistent reductions
of more than 10% in #memristors and #cycles for
all benchmarks

26

