
1

An Island-Style Multi-Objective 

Evolutionary Framework for 

Synthesis of Memristor-Aided Logic

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin

School of Electrical Engineering, KAIST, Korea



Outline

◼ Introduction

◼ Motivation

◼ Proposed method

◼ Experimental results

◼ Summary

2



3

Logic Operation

◼ Conventional method is executed within a 

processing unit (CPU, GPU)

◼ Processed data is transferred to the memory for storage

◼ Data transfer degrades both performance and energy

◼ Processing-in-memory (PIM) enables logic 

operations to be performed within the memory

◼ Data transfer is significantly reduced

◼ Repetitive operations (e.g., machine learning model) on 

large dataset can be accelerated



4

Memristor for PIM Logic Operation

◼ Non-volatile resistive memory (memristor) is 

leveraged for PIM logic operation

◼ Memristor offers low (or high) resistance state for 

logic-1 (or -0)

◼ Resistance state is determined by applied voltage (V)

◼ 𝑉 ≤ 𝑉𝑜𝑛: switching to low resistance state (LRS)

◼ 𝑉𝑜𝑛 < 𝑉 < 𝑉𝑜𝑓𝑓: remaining current resistance state (CRS)

◼ 𝑉 ≥ 𝑉𝑜𝑓𝑓: switching to high resistance state (HRS)



5

PIM Logic Operation

Logic 

synthesis

In-memory 

mapping

◼ After logic synthesis, in-memory mapping is 

performed [TCAS-I]

◼ Logic function is synthesized into 2-input NOR and INV 

netlist

◼ #Nodes of AND-INV graph (AIG) is reduced

◼ Each gate of netlist is mapped into memristive crossbar 

array 

◼ Gate input and output are stored in distinct memristors



◼ All memristors for gates should be aligned either in 

a row or a column

◼ Each gate is operated in one clock cycle

◼ Multiple gates can be computed in the same clock 

cycle → parallel operation

◼ All input memristors are aligned, along with their 

corresponding output memristors

6

In-Memory Mapping

Parallel operation of 𝑔1 and 𝑔2



◼ Copying a value from one memristor to another can 

be executed → copy operation

◼ Two INV operations are performed in two clock cycles

◼ #Copy operations depends on mapping methods

7

In-Memory Mapping

𝑔3 copy from (2,0) to (2,2)



8

In-Memory Mapping

◼ Objective is to minimize #clock cycles and 

#memristors

◼ Key decision variables include:

◼ Gate location

◼ Gate alignment

◼ #Memristors on the crossbar

◼ Gates calculated in parallel



9

Mapping Example

INV: g1

NOR: g2, g3

◼ For a NIG illustrated in Fig.(a), there are 3 example 

mappings

◼ Fig. (b): 5 cycles and 7 memristors

◼ Fig. (c): 3 cycles and 6 memristors

◼ Fig. (d): 2 cycles and 6 memristors

◼ INV is treated as 2-input NOR with one input tied to logic-0



10

Previous Works

◼ Integer linear programming (ILP) [ICCAD17]

◼ Optimization problem is formulated using coordinates of 

crossbar

◼ Simple heuristic [TVLSI18]

◼ INV gates and NOR gates are mapped eastward and 

southward, respectively

◼ Staircase-structure heuristic [ASPDAC19]

◼ Gates at each level are alternatively mapped in rows and 

columns

◼ Multiple ILP for a partitioned netlist [ICCAD19]

◼ ILP formulation is individually solved for each partition



11

Motivation

◼ ILP solver is very time-consuming

◼ Heuristic methods target only a single objective

◼ Proposed: multi-objective optimization using 

genetic algorithm (GA)

◼ Gate locations are modified by GA to satisfy multi-

objective



12

Overall Flow

◼ Given: initial mapping from any heuristic methods

◼ GA relocates the gate locations using mutation and 

crossover

◼ Mapping rule violation is corrected by mapping 

completion algorithm

GA-based 

relocation

Mapping 

completion

Initial 

mapping



13

Mutation

◼ Gates are moved to the same row or column

◼ Random #gates is selected from a Levy probability 

distribution

◼ If the new location is empty, gate is moved to there

◼ Otherwise, a swap occurs between two gate outputs

Initial mapping Move 𝑔1 Swap 𝑔2 and 𝑔3



14

Crossover

◼ Gate locations from two different mappings are 

exchanged

◼ Step 1) In each crossbar, list the gate locations

◼ Step 2) Exclude common locations (e.g., 𝑔2
𝐴, 𝑔3

𝐵)

◼ Step 3) Swap remaining gate locations in reverse order

Common



15

Mapping Completion Algorithm

◼ After performing genetic algorithm, gate locations 

are corrected based on mapping rules

◼ Step 1) Find aligned gates in each row or column

◼ Row-oriented: {𝑔4, 𝑔5, 𝑔7} {𝑔2, 𝑔3, 𝑔6} {𝑔1}

◼ Column-oriented: {𝑔7} {𝑔5, 𝑔6} {𝑔1, 𝑔2} {𝑔3, 𝑔4}

◼ Step 2) Remove subsets of other groups: {𝑔1}, {𝑔7}

◼ Set = {𝑔4, 𝑔5, 𝑔7} {𝑔2, 𝑔3, 𝑔6} {𝑔5, 𝑔6} {𝑔1, 𝑔2} {𝑔3, 𝑔4}

Example NIG Relocated mapping from GA



16

Mapping Completion Algorithm

◼ Step 3) Resolve data dependency

◼ If two gates are sequentially connected in the same path, 

they cannot simultaneously operate

◼ 𝑔4, 𝑔5, 𝑔7 → 𝑔4} {𝑔5 {𝑔7}

◼ 𝑔2, 𝑔3, 𝑔6 → 𝑔2, 𝑔3 {𝑔6}

◼ Step 4) Remove subsets of other groups: {𝑔4} {𝑔5} {𝑔6}

◼ Set = 𝑔7 𝑔2, 𝑔3 {𝑔5, 𝑔6} {𝑔1, 𝑔2} {𝑔3, 𝑔4}



17

Mapping Completion Algorithm

◼ Step 5) Assign a mapping direction D to each gate based 

on fanin locations



18

Mapping Completion Algorithm

◼ Step 6) Ungroup gates with different directions

◼ In this example, no change

◼ Step 7) Remove subsets of other groups

◼ Set = 𝑔7 𝑔2, 𝑔3 {𝑔5, 𝑔6} {𝑔1, 𝑔2} {𝑔3, 𝑔4}



19

Mapping Completion Algorithm

◼ Step 8) If a gate belongs to multiple groups, move the 

gate to the largest group

◼ If multiple groups have the same size, move the gate in a 

way that preserves other groups

◼ 𝑔2 𝜖 𝒈𝟐, 𝒈𝟑 𝑔1, 𝑔2 , 𝑔3 𝜖 𝒈𝟐, 𝒈𝟑 {𝑔3, 𝑔4}

◼ Set = 𝑔7 {𝑔5, 𝑔6} {𝑔1, 𝑔2} {𝑔3, 𝑔4}



20

Mapping Completion Algorithm

◼ Step 9) Relocate gate outputs which are single member 

in each group

◼ 𝑔7 is aligned with fanins {𝑔5, 𝑔6}

◼ Step 10) Copy gate outputs which are not aligned with 

fanins

◼ 𝑔1 is copied from (2,3) to (0,5) for fanin of 𝑔4

Relocated mapping result



21

Mapping Completion Algorithm

◼ Step 11) Empty rows or columns are removed, and in the 

corrected mapping result, 

◼ #Memristors is counted → 13

◼ #Cycles = #groups + 2x#copies → 4 + 2x1

Final mapping result



22

Experimental Setup

◼ Test circuits: 8 benchmarks from IWLS-93

◼ Format “#PI/#PO(#NIG nodes from ABC)”

◼ Logic synthesis is conducted using Berkeley-ABC 

tool

◼ Hyperparameter values for GA:



23

Experimental Setup

◼ Multi-objective: minimize #memristors and 

#cycles

◼ 5 independent runs are performed per benchmark

◼ The proposed method is compared with the 

simulated-annealing (SA) approach [TVLSI18]



Experimental Results

◼ Better results are shown than SA method [TVLSI18]

◼ For each run, multiple mapping results are generated

◼ #Memristors and #cycles are reduced by more than 10%, 

respectively

TVLSI18

24



25

Experimental Results

◼ Our method demonstrates consistent improvement 

across all benchmarks

◼ The objective curve patterns are similar over runtime

◼ A significant reduction occurs within 1 hour



26

Summary

◼ Multi-objective optimization approach is proposed

◼ Gate relocation is conducted using genetic algorithm

◼ Mapping completion algorithm corrects the relocated 

gates based mapping rules

◼ Experimental results exhibit consistent reductions 

of more than 10% in #memristors and #cycles for 

all benchmarks


