
PIMUTATION
Exploring the Potential of Real PIM Architecture

for Quantum Circuit Simulation

Dongin Lee* (National University of Singapore), Enhyeok Jang*, Seungwoo Choi,

Junwoong An, Cheolhwan Kim, and Won Woo Ro (Yonsei University)

*These two authors contributed equally to this work

E-mail: dongin.lee@u.nus.edu, {enhyeok.jang, wro}@yonsei.ac.kr

Session 3D-3 (T3-2) Frameworks and Modeling for Computing-In-Memory, Room Mars/Mercury

Tuesday, January 21st, 2025

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

• Current quantum computers have low accuracy, long job wait times, and high execution fee.
✓ QCS is advantageous to study computational processes of quantum processors alernatively.

• QCSs are also essential for the verification of intermediate states in quantum algorithms,

✓ Real QCs lose their superposed/entangled states after qubit measurements.

Why Quantum Circuit Simulation is important ?

4

Classical Simulation Theoretical Probabilities

Real Quantum System Noisy Results

Quantum circuit simulation can provide

• Accurate probability
distribution

• Intermediate states
verification

• Error / noise modeling

☺

Real quantum computers suffer from

• High error rates
• Low fidelity
• Low accessibility

Basic of Quantum Circuit Simulation
• State vector-based QCS is the most common method.

• State vectors for 𝑛-qubit system requires memory capacity of 𝟐𝒏 elements of complex amplitudes.
✓ EX) 1Q gate for 10-qubit system correspond to 512 times of 2x2 Matrix - 2x1 Vector Multiplications.

5

q0

q1

q2

H

H

H
H=

𝟏

𝟐

𝟏

𝟐
𝟏

𝟐
−

𝟏

𝟐

2x2 Matrix 2x1 Vector

| ۧ𝑞2𝑞1𝑞0
| ۧ𝑞2𝑞1𝑞0

𝐴𝑚𝑝0
𝐴𝑚𝑝1

Basic of Quantum Circuit Simulation

6

q0

q1

q2

H

H

H
H=

𝟏

𝟐

𝟏

𝟐
𝟏

𝟐
−

𝟏

𝟐

2x2 Matrix 2x1 Vector

| ۧ𝑞2𝑞10

| ۧ𝑞2𝑞11

𝐴𝑚𝑝0
𝐴𝑚𝑝1

000

001

010

011

100

101

110

111

• State vector-based QCS is the most common method.

• State vectors for 𝑛-qubit system requires memory capacity of 𝟐𝒏 elements of complex amplitudes.
✓ EX) 1Q gate for 10-qubit system correspond to 512 times of 2x2 Matrix - 2x1 Vector Multiplications.

Basic of Quantum Circuit Simulation

7

H=

𝟏

𝟐

𝟏

𝟐
𝟏

𝟐
−

𝟏

𝟐

2x2 Matrix

𝐴𝑚𝑝0
𝐴𝑚𝑝1

2x1 Vector

| ۧ𝑞20𝑞0
| ۧ𝑞21𝑞0

q0

q1

q2

H

H

H

000

001

010

011

100

101

110

111

• State vector-based QCS is the most common method.

• State vectors for 𝑛-qubit system requires memory capacity of 𝟐𝒏 elements of complex amplitudes.
✓ EX) 1Q gate for 10-qubit system correspond to 512 times of 2x2 Matrix - 2x1 Vector Multiplications.

Basic of Quantum Circuit Simulation

8

H=

𝟏

𝟐

𝟏

𝟐
𝟏

𝟐
−

𝟏

𝟐

2x2 Matrix

𝐴𝑚𝑝0
𝐴𝑚𝑝1

2x1 Vector

| ۧ0𝑞1𝑞0
| ۧ1𝑞1𝑞0

q0

q1

q2

H

H

H

000

001

010

011

100

101

110

111

• State vector-based QCS is the most common method.

• State vectors for 𝑛-qubit system requires memory capacity of 𝟐𝒏 elements of complex amplitudes.
✓ EX) 1Q gate for 10-qubit system correspond to 512 times of 2x2 Matrix - 2x1 Vector Multiplications.

Trends in Quantum Circuit Simulation in Industry Fields

9

NVIDIA – cuQuantum SDK

Demonstration: 32 x Nvidia 8-GPU A100
Achievement: 40-Qubit Simulation

Google – Qsim on GPU

Demonstration: 8 x Nvidia 8-GPU A100
Achievement: 36-Qubit Simulation

IBM – Qiskit Aer on GPU

Demonstration: 6 x Nvidia 4-GPU V100
Achievement: 32-Qubit Simulation

https://www.youtube.com/watch?v=T-a__rCfKTE
https://quantumai.google/qsim/choose_hw
https://www.youtube.com/watch?v=Qdb3xrzT1gc

• IBM, Google, and NVIDIA have competitively reported large-scale quantum circuit simulations
leveraging multiple GPU systems (V100 or A100).

https://www.youtube.com/watch?v=T-a__rCfKTE
https://quantumai.google/qsim/choose_hw
https://www.youtube.com/watch?v=Qdb3xrzT1gc

Trends in Quantum Circuit Simulation in Industry Fields

10

NVIDIA – cuQuantum SDK

Demonstration: 32 x Nvidia 8-GPU A100
Achievement: 40-Qubit Simulation

Google – Qsim on GPU

Demonstration: 8 x Nvidia 8-GPU A100
Achievement: 36-Qubit Simulation

IBM – Qiskit Aer on GPU

Demonstration: 6 x Nvidia 4-GPU V100
Achievement: 32-Qubit Simulation

https://www.youtube.com/watch?v=T-a__rCfKTE
https://quantumai.google/qsim/choose_hw
https://www.youtube.com/watch?v=Qdb3xrzT1gc

• IBM, Google, and NVIDIA have competitively reported large-scale quantum circuit simulations
leveraging multiple GPU systems (V100 or A100).

GPU is great hardware for simulating quantum circuits.

However, the workload property of quantum circuit
simulations are not so compute-intensive.

=> Simulating quantum programs can also be efficient
in low-power systems such as process-in-memory.

https://www.youtube.com/watch?v=T-a__rCfKTE
https://quantumai.google/qsim/choose_hw
https://www.youtube.com/watch?v=Qdb3xrzT1gc

Workload Characteristics of QCSs
• QCS consists of iterations of small-sized matrix-vector multiplications.

• Each gate requires distinct access patterns to all 𝟐𝒏 amplitudes at least once.
✓Low locality data access, which Incurs a lot of cache misses.

✓Frequent data movements between CPU and main memory.

• Various quantum applications exhibit memory (bandwidth)-bound properties.

11< Roofline Analysis on Intel Xeon Silver 4215 Processor >

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Workload Characteristics of QCSs
• QCS consists of iterations of small-sized matrix-vector multiplications.

• Each gate requires distinct access patterns to all 𝟐𝒏 amplitudes at least once.
✓Low locality data access, which Incurs a lot of cache misses.

✓Frequent data movements between CPU and main memory.

• Various quantum applications exhibit memory (bandwidth)-bound properties.

12< Roofline Analysis on Intel Xeon Silver 4215 Processor >

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Thus, processing-in-memory (PIM)
is expected to be an architecture

suitable for quantum circuit simulations.

Workload Characteristics of QCSs
• QCS consists of iterations of small-sized matrix-vector multiplications.

• Each gate requires distinct access patterns to all 𝟐𝒏 amplitudes at least once.
✓Low locality data access, which Incurs a lot of cache misses.

✓Frequent data movements between CPU and main memory.

• Various quantum applications exhibit memory (bandwidth)-bound properties.

13< Roofline Analysis on Intel Xeon Silver 4215 Processor >

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Thus, processing-in-memory (PIM)
is expected to be an architecture

suitable for quantum circuit simulations.

To demonstrate our hypothesis that PIM can be
efficient for QCS, we adopt UPMEM, the first

publicly-available real-world PIM architecture.

Design Challenges to Run QCS with UPMEM
• QCSs require FP Ops for calculating complex-valued amplitudes.

✓However, DPU (UPMEM’s processing unit) only supports integer Ops.

✓FP Ops are implemented using software libraries, but,
which degrades the performance significantly.

• Depending on the gate’s positions, the memory access patterns can vary greatly.
✓However, there is no direct communication channel between DPUs.

14

Chip 0 Chip 7

UPM EM DIM M

···

R
eg

is
te

r
Fi

le

DPU
Pipeline

IRAM

W RAM

DM A M RAM

x 8

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

PIMUTATION: PIM for qUanTum circuit SimulATION

16

First, the host CPU sends quantum gate
information and initialized state vectors to
the DPU.

To minimize FP Ops and multiplication
operations, PIMutation utilizes
Gate Merging and Row Swapping.

To reduce communication between DPUs,
it is divided into sub-circuits and transmitted
to each DPU if the original QC is separable.

Finally, sub-circuit results are reconfigured
in the host CPU and then restored to the full
state vector, suppressing communication
between DPUs.

PIMUTATION Optimization Techniques
• Gate merging: Exploiting UPMEM native Integer Ops

✓ This replaces irrational number divisions in gates with bit-wise shifts that UPMEM can process.

• State Resizing: Maintaining data type of amplitudes as Integer

✓ By normalizing the min. amplitude to 1, the amplitudes can be integers during the entire process.

• Row swapping: Avoiding matrix multiplication for CX, SWAP gates

✓ For matrices with only 0 or 1 elements, amplitudes are processed by move Ops, instead of MUL.

• Vector Partitioning: Partitioning separable quantum programs, if possible

✓ Sub-circuits are isolated each other and processed at each DPU w/o communication between DPUs.

17

Gate Merging Row Swapping Vector PartitioningState Resizing

Gate Merging
• Quantum gates often require irrational division.

✓ For example, RX(
π
2

) =
𝟏

𝟐

1 −𝑖
−𝑖 1

, RY(
π
2

) =
𝟏

𝟐

1 −1
−1 1

, and H=
𝟏

𝟐

1 1
1 −1

• GM provides an avoidance of FP Ops.

• Merged gates can be processed just using integer Ops or bit-wise Ops.

18

H =
1

2

1 1
1 −1

< Bernstein-Vazirani Circuit for the secret string of 111 >

19

H =
1

2

1 1
1 −1 H ⊗ H =

1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

Adjusting the unitary coefficient by GM
Irrational Division => Bit-Wise Shift Ops

Gate Merging

< Bernstein-Vazirani Circuit for the secret string of 111 >

State Resizing is implemented.

• Quantum gates often require irrational division.

✓ For example, RX(
π
2

) =
𝟏

𝟐

1 −𝑖
−𝑖 1

, RY(
π
2

) =
𝟏

𝟐

1 −1
−1 1

, and H=
𝟏

𝟐

1 1
1 −1

• GM provides an avoidance of FP Ops.

• Merged gates can be processed just using integer Ops or bit-wise Ops.

Row Swapping

• Some gates (CX or SWAP) are just switching amplitudes.

• These are implemented by directly swapping the corresponding row pairs.
✓ FP Mult Ops (hard to UPMEM) => Move arrays directly

20

Vector Partitioning

• Separable quantum circuit can be independently processed into sub-circuits.

• They are handled at each DPU and reconstructed to original vector on CPU.

21

q0 | ۧ0

q1 | ۧ0

H

H

X

H

X

H

H

H H
c1

c0

q2 | ۧ0

q3 | ۧ0

H

H

X

H

X

H

H

H H

c2
c3

DPU0

UPMEM
DIMM0

DPU1

DPU7

DPU0

UPMEM
DIMM1

DPU1

DPU7

DPU0

UPMEM
DIMM2

DPU1

DPU7

DPU0

UPMEM
DIMM3

DPU1

DPU7

DPU0

UPMEM
DIMM18

DPU1

DPU7

DPU0

UPMEM
DIMM19

DPU1

DPU7

< 4-Qubit Hidden Sub-group Problem Circuit >

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

Backend: Real UPMEM PIM Server (provided by UPMEM Co.)

• A single server provides 20 UPMEM DIMMs

• Each UPMEM DIMM includes 8 memory chips per rank

• Each memory chip is coupled with 8 processing element

• Processing element is called DRAM Processing Unit (DPU)

23

Chip 0 Chip 1 Chip 2 Chip 3 Chip 4 Chip 5 Chip 6 Chip 7

UPMEM: PIM-Enabled Memory DIMM

X 20

Capacity per 1 DIMM = 2(ranks) x 8(chips) x 8(banks) x 64MB = 8GB
Memory Capacity for the System = 8GB x 20 = 160GB

DRAM

DPU

DRAM

DPU

DRAM

DPU

DRAM

DPU

DRAM

DPU

DRAM

DPU

DRAM

DPU

DRAM

DPU

Experimental Set-Up

24

Based on Float64, UPMEM PIM memory
can store up to 33-qubit systems' full
state-vector, which requires 128 GB.

Evaluated Scenarios

25

• Single-DPU experiments
• Evaluating the performance for:

✓Gate Merging (GM) + State Resizing Included

✓Row Swapping (RS)

• Multi-DPU experiments
• Evaluating the performance for:

✓Gate Merging (GM) + State Resizing Included

✓Row Swapping (RS)

✓Vector Partitioning (VP)

• Evaluating Speed-up and Energy consumption by PIMutation
over the C language-based cutting-edge QuEST simulator on CPU

• Evaluations on large-scale (16- and 32-qubit) benchmarks

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

Single-DPU Performance

• In 2-qubit benchmarks (XX_2), Gate Merging (GM) and Row Swapping (RS)
achieves a speedup of 0.26x and 0.13x over Baseline (No Optimization).

• In 4-qubit benchmarks (XX_4), Gate Merging (GM) and Row Swapping (RS)
achieves a speedup of 2.99x and 1.65x over Baseline (No Optimization).

27

Multi-DPU Performance

• 16-qubit Workloads
✓3.42x and 2.56x speedup over the QuEST in 4 and 8 DPUs, respectively.

✓25% energy saving over the QuEST in average of 4 and 8 DPUs.

• 32-qubit Workloads
✓16.64x and 16.37x speedup over the QuEST in 8 and 16 DPUs, respectively.

✓75% energy saving over the QuEST in average of 8 and 16 DPUs. 28

0

1

2

3

4

5

BB_16 HS_16 QRNG_16 GmeanSp
e

ed
u

p
 O

ve
r

Q
u

ES
T

4 DPUs 8 DPUs

(a)

0

0.5

1

1.5

2

BB_16 HS_16 QRNG_16

R
el

at
iv

e
En

er
gy

 C
o

n
su

m
p

ti
o

n

4 DPUs 8 DPUs

QuEST

(b)

0.15 0.25

0

5

10

15

20

25

BB_32 HS_32 QRNG_32 Gmean

Sp
ee

d
u

p
 O

ve
r

Q
u

es
t

8 DPUs 16 DPUs

0

0.1

0.2

0.3

0.4

0.5

BB_32 HS_32 QRNG_32

R
e

la
ti

ve

En
e

rg
y

C
o

n
su

m
p

ti
o

n

8 DPUs 16 DPUs

(a)

(b)

15.59 15.46

24.82

23.69

9.52 9.96

0.272 0.273

0.054 0.053

0.41 0.42

Multi-DPU Performance

29

0

1

2

3

4

5

BB_16 HS_16 QRNG_16 GmeanSp
e

ed
u

p
 O

ve
r

Q
u

ES
T

4 DPUs 8 DPUs

(a)

0

0.5

1

1.5

2

BB_16 HS_16 QRNG_16

R
el

at
iv

e
En

er
gy

 C
o

n
su

m
p

ti
o

n

4 DPUs 8 DPUs

QuEST

(b)

0.15 0.25

0

5

10

15

20

25

BB_32 HS_32 QRNG_32 Gmean

Sp
ee

d
u

p
 O

ve
r

Q
u

es
t

8 DPUs 16 DPUs

0

0.1

0.2

0.3

0.4

0.5

BB_32 HS_32 QRNG_32

R
e

la
ti

ve

En
e

rg
y

C
o

n
su

m
p

ti
o

n

8 DPUs 16 DPUs

(a)

(b)

15.59 15.46

24.82

23.69

9.52 9.96

0.272 0.273

0.054 0.053

0.41 0.42

• More DPUs do not always provide better
performance.

• More DPUs can leverage parallelism, but
its increased reconfiguration overhead
can degrade overall performance.

✓ For example, 4 DPUs perform better
than 8 DPUs.

=> Estimating the optimal number of DPUs
for QCS would be an interesting future work.

• 16-qubit Workloads
✓3.42x and 2.56x speedup over the QuEST in 4 and 8 DPUs, respectively.

✓25% energy saving over the QuEST in average of 4 and 8 DPUs.

• 32-qubit Workloads
✓16.64x and 16.37x speedup over the QuEST in 8 and 16 DPUs, respectively.

✓75% energy saving over the QuEST in average of 8 and 16 DPUs.

Contents
• Background and Motivation

• PIMUTATION Design

• Experimental Methodology

• Result and Analysis

• Conclusion

Conclusion
• We note that QCSs are bandwidth-bound workloads.

✓ If we adopt PIM, therefore, fast and low-energy quantum circuit simulations would be achieved.

• We leverage UPMEM, the first commercialized PIM, to verify our observation.
✓UPMEM can only support Integer Ops natively and communication between DPUs is not available.
✓ These design challenges should be considered when implementing quantum circuit simulations.

• PIMUTATION can minimize FP Ops and communications between DPUs.
We propose 4 optimization techniques.

• Gate Merging

• State Resizing

• Row Swapping

• Vector Partitioning

• PIMUTATION achieves faster and lower energy consumption,
compared to the state-of-the-art high-speed QuEST simulator.

31

PIMUTATION Contributors

32

Dongin Lee Enhyeok Jang Seungwoo Choi Junwoong An Dr. Won Woo RoCheolhwan Kim

33

Thank You Your Time!

Q & A

