ASIA SOUTH PACIFIC

O EEHEAS Tt

=== THE HONG KONG AT
le} UNIVERSITY OF SCIENCE rO1UH1ICN
AND TECHNOLOGY CONFERENCE

A Self-Supervised, Pre-Trained,
and Cross-Stage-Aligned Circuit Encoder
Provides a Foundation for Various Design Tasks

Wenji Fang?!, Shang Liu?, Hongce Zhang!?, Zhiyao Xie!
wfang838@connect.ust.hk

Hong Kong University of Science and Technology
Hong Kong University of Science and Technology (Guangzhou)



Outline

Background
* CircuitEncoder Framework
* Experimental Results

e Conclusion & Future Work

FIC
l] 4
AUTOATION
CONFERENCE



Background



Background: Al for EDA

* Remarkable achievements

* Design quality evaluation
* Power, timing, area, routability, etc.

Functionality reasoning
e Arithmetic word-level abstraction, SAT, etc.

Optimization
* Design space exploration, etc.
* Generation

* RTL code, verification, etc.
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Background: Al for EDA

* Most existing predictive solutions are task-specific
e Supervised methods: tedious and time-consuming
* Hard to generalize to other tasks

Single-Stage Label Feature ML Model ML Model f 5Ingle ,
Circuit Data Collectlon Extraction Design Training EDA Task
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Background: Foundation Models

* Al foundation models
paradigm
* Pre-training on large amounts of unlabeled data ( )
* Fine-tuning based on task-specific labels ( )

* Applications
* Natural language processing: GPT, BERT, Llama, etc.
 Computer vision: DALLE, stable-diffusion

ChatGPT LLaMA DALLE 3 ‘J Stable Diffusion

by ) Meta

UI-IL unnnun
(OWFERRICE




CircuitEncoder Framework



Motivation: Towards Circuit Foundation Models

* Large circuit model
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Motivation: Towards Circuit Foundation Model

* Our targeted circuit foundation model
* Capture unique circuit intrinsic property

* Cross-stage: RTL (functional) = netlist (Physical)

* Equivalent transformation: semantic & structure

e Support various types of tasks
* Functionality: reasoning, verification, etc.
* Design quality: performance, power, area, etc.
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Key Idea: First RTL-Netlist Cross-Stage Alignment

e General circuit foundation model solution
 Self-supervised pre-trained: circuit graph function contrastive
* Cross-stage aligned: RTL (func.)—netlist (phys.) alignment
e Support various design tasks:

* Lightweight downstream task model
* PPA + functionality

Phase 1: Pre-Train Phase 2: Appllcatlon (QJ

~\ Circuit Fine-Tune T N N
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Comparison with Existing Solution

* Circuit representation learning
* Goal: to learn a general circuit embedding for various tasks

* Explorations
* Supervised: HOGA, Gamora, etc.
* Pre-trained: DeepGate Family, FGNN, SNS v2, etc.

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage Support Oven-Source
Method Multi- Design Function Self- Train Cross- Target Seq I()Tpircuit P Model
Type Quality Supervised Task Stage  Stage ’
Design2Vec [25] v’ Cover Point RTL v’
SNS v2 [36] v’ v’ Contrastive RTL v’
FGNN [28] v’ v’ Contrastive Netlist
DeepGate [17] v’ Probability Netlist
DeepGate2 [23] v’ Truth Table Netlist v
DeepSeq [16] VOx Probability Netlist v’
% ASIA SOUTH PAchlc
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* DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.



Comparison with Existing Solution

* Circuit representation learning

 Limitations: still do not provide perfectly general circuit
representation
* Mainly support one type of task (phys. PPA or func.)
* Only target single stage (RTL or netlist)

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage Support Open-Source
Method Multi- Design Function Self- Train Cross- Target Seq. Circuit Model
Type Quality Supervised Task Stage  Stage ’
Design2Vec [25] v’ Cover Point RTL v’
SNS v2 [36] v’ v’ Contrastive RTL v~
FGNN [28] v’ v’ Contrastive Netlist
DeepGate [17] v’ Probability Netlist
DeepGate2 [23] v’ Truth Table Netlist v’
DeepSeq [16] Vakd Probability Netlist v’
CircuitEncoder v v v V Multl-StEfge v RTF v v ASIA SOUTH PACIFI(':‘
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Circuit Design Stages: RTL & Netlist

* RTL

* Earlier design stage

13

* Higher abstraction level
 More semantic content

* Task
* Predicting later netlist PPA

HDL Code "\
reg [1:0] RO,R1;
reg [2:0] R2;
wire [2:0] W1l ,W2;
assign Wl = RO + R1;

always @ (posedge clk)

R2 <= W2;

* Netlist
* Later design stage

* Lower abstraction level

* More implementation details

e Task

e Reasoning earlier RTL function

e Predicting later layout PPA

DFF1

NAND |
A

7J

DFF4

Netlist \\\

DFF2 |DFF3

AN,
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Preprocessing: Circuit Data Alighment
* Circuit-to-graph transformation

. [ | Register / DFF __> RTL Operator [ Netlist Logic GateJ
———————————
Fo T T T T T T T T I m T T T £ '\\
- r—— a '/ T T Ty o e hY
HDL Code Netlist i | RO LRI 'Rop1] Rojo)| “RY[ RIpO]| |
! AN — . .
|zeg 11:01 RO,R1; [DFF1| DFF2 |DFF3]|! M’ \ N, TRo | TRL
! o] n2, | XOR \ Aol | e i RL
| |Feg [2:0]1 R2; ' (_ADD ) FA | | /
I|lwire [2:0] W1,W2; m AND / AOl || _//_,r 1 ! /
. . : (NOT O ,
| |assign W1 = RO + R1; INV || 7_{ AND / R3
e FA | Tux ! (_MUX > [ mux R4
| |always @ (posedge clk) '/ L ! e ' \
1| RrR2 <= wW2;
DFF4| [DFF5| [DFFs ||| [R2[21 _R2[1] R270]|
———————————————————————————————————————————————— : ) RTL _ Netlist
(a) Circuit Data (b) Circuit Design Graph (c) Ahgned RTL-Nethst Cone Graphs (d) Circuit Reg Graph

* RTL-Netlist data alignment via backtrace register cone
* Advantages

e RTL-netlist cones are strictly aligned & functionally equivalent
Capture the entire state transition of each register

" * Intermediate granularity = better scalability I]HAG
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Encoding: Graph Learning Model for Circuits
* RTL graph * Netlist graph

* Graph transformer * Graph neural network
* Global positional encoding * Neighbor aggregation
* Node-level embeddings = Cone graph-level embeddings

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

/m RTL-Stage Netlist-Stage
" @ Cone Level @ Cone Level . O Design cone graph
[TT1] Node embedding vectors
soling | || f—m——
Encoding L e Encoding o e T [F] Node feature
_ a0 Cone embedding vector
(GRTLh ™ g ol i 9
s (GNN)
@ el i L] Cross-Stage Pre-train_: Multi-s@age
)/),,// Alignment contrastive learning
Aug- | — Lep =L+ Loy + Ly
RTL™
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CircuitEncoder Phase 1: Pre-Training

 Self-supervised pre-training: intrinsic circuit property
€@ /ntra-stage contrastive learning

* Minimizing embed. distance between positive pairs (equiv. transform.)
* Maximizing embed. distance among negative pairs (func. diff.)

Ly = max(”ER - ER+||2

- ”ER - ER_ ||2 + mrr,o),

Lnn = max(|[Ex — Ex+ ||, — lEN — Ex-ll2 + Man, 0),

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

RTL-Stage

F——

—

~—
~—_

( MJ —  Encoding
e X0R ) RTL
g (Graph
A Transformer
s [ i

@ Cone Level

Alignment

Cross-Stage

Netlist-Stage

@ Cone Level

Encoding
Netlist
(GNN)

O Design cone graph
[TT] Node embedding vectors
[F] Node feature

[ Cone embedding vector

Pre-train: Multi-stage
contrastive learning

Lep = Ly + L + Lig
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CircuitEncoder Phase 1: Pre-Training

 Self-supervised pre-training: intrinsic circuit property

@) Inter-stage contrastive learning

* Cross-stage alignment between RTL and netlist embed.

Lrp = max(”ER - EN+||2 — [[Er — En- [z + mpn, 0)

+ max(”EN - ]ER+||2 — ||[EN — Er- |2 + mrn, 0).

Ler = aprLyr + apnLnn + 0pnLen,

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

(ﬁi} RTL-Stage Netlist-Stage

© Cone Level © Cone Level

Aug .
I W‘VTT’]\ 7| Encoding L Encoding
G RTL AL Netlist
= e o (GNN)
g2 Transf
O e orme/r!_ Cross-Stage
_— Alignment

O Design cone graph

[T1] Node embedding vectors
[F] Node feature

[c] Cone embedding vector

Pre-train: Multi-stage
contrastive learning

Lep = Lyr + Lpn + Ly
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CircuitEncoder Phase 2: Fine-Tuning for Tasks

* Supervised fine-tuning
* Lightweight task models: MLP, tree-based, etc.

Phase 2: Fine-Tune for Applications

Downstream
Tasks
S‘R) Embeddlngs Few-shot Design
MuL Circuit Quality
,.,,ux ) Encoder %
Functional
New Clrcmt Cone Reasoning

(RTL or Netlist)
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CircuitEncoder Phase 2: Fine-Tuning for Tasks

e Downstream tasks

* Register cone-level:
* Timing slack prediction at RTL stage
* Register function (control/data) identification at netlist stage

* Design-level:
» Overall PPA prediction at RTL stage

* WNS
Phase 2: Fine-Tune for Applications
* T N S w Downstream
Tasks
* Area < _) o il Few-shot Design
‘2 o o | wah
[c] ASIA SOUTH PAGIFIC
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Experimental Results



Circuit Design Statistics

open-source designs

RTL and netlist cone pairs

* Data augmentation 2

graphs in total

Table 2: Benchmark design information.

Source # Design Size {Min, Avg, Max} | Original
Benchmarks || Design | #K Gates # Cones HDL Type
ITC [6] 7 {7, 15, 22} {12, 21, 31} VHDL
OpenCores [1] 5 {2, 40, 59} {12, 96, 173} Verilog
Vex [26] 17 | {8,208,591} | {39, 168, 694} | SpinalHDL
Chipyard [2] 12 | {11, 49,194} | {28, 461, 2730}

21
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Experimental Setup

* Design flow
e RTL designs are synthesized using DC / NanGate 45nm
e Design PPA metrics are obtained from PT

* Circuit augmentation
* Yosys / ABC for functionally equivalent transformation

* Graph model
* RTL: Graphormer
* Netlist: GraphSage

22
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Experimental Setup

* Model training

Table 4: ML model and training hyperparameters.

Training Phase || Pre-Training Fine-Tuning
ML Model Grag{hT"Lr)mer G(r;fe’ﬁf’safe MLP | GCN | XGBoost
# Layers 7 3 2 2
Hidden Dim 256 256 128 128
Activation GELU ReLLU RelLU | ReLU 100
Batch Size 128 32 estimator,
Optimizer AdamW Adam 20
LR 0.001 0.001 max depth
Dataset Size 33162 3278
# Epochs 75 1000
Training Time 20h 0.05h
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Task Evaluation and Baseline Methods

* Design quality evaluation — regression metrics

* Register slack prediction at cone level
e RTL-Timer [DAC’24]

* RTL-stage overall quality evaluation at circuit level

e MasterRTL [ICCAD’23]
e SNSv2 [MICRO’23]

* Functional reasoning — classification metrics

* Netlist-stage state register classification at cone level
* RelGNN [ICCAD’21]
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Results: Comparison with SOTA Solutions

e Outperforming each task-specific SOTA solution

* Cone-level tasks

* Few-shot learning
* 50% data for CircuitEncoder > 100% data for supervised baselines

Table 3: Accuracy comparison for the cone-level tasks for RTL and netlist designs.

RTL-Stage (Register Slack Prediction)

Netlist-Stage (State Register Identification)

Method RTL-Timer CircuitEncoder ReIGNN* CircuitEncoder
(supervised learning) (pre-train + few-shot) (supervised learning) (pre-train + few-shot)

% of train 13% 50% 100% 13% 50% 13% 50% 100% 13% 50%
D;eisgtns R MAPE R MAPE R MAPE R MAPE R MAPE || Sens. Acc. | Sens. Acc. | Sens. Acc. | Sens. Acc. | Sens. Acc.
ITC1 0.48 22% 0.77 20% 0.82 18% 0.91 21% 0.96 9% 0% 72% 50% 72% 50% 72% | 100% 98% | 100% 98%
ITC2 0.43 26% 0.83 12% 0.88 10% 0.92 19% 0.96 9% 0% 92% | 100% 92% | 100% 92% | 100% 100% | 100% 100%
Chipyard1 0.57 30% 0.89 12% 0.92 18% 0.81 15% 0.83 18% 0% 50% 0% 50% 30% 65% | 78% 77% 79% 79%
Chipyard2 0.56 31% 0.85 19% 0.88 12% 0.84 12% 0.85 13% 0% 50% 0% 50% 30% 65% 84% 78% 89% 85%
Vex1 0.28 27% 0.65 15% 0.87 24% 0.69 25% 0.88 26% 0% 50% 0% 50% 50% 74% 76% 79% 82% 72%
Vex2 0.73 29% 0.93 17% 0.86 16% 0.85 13% 0.87 13% 15% 57% 21% 57% 32% 60% | 73% 76% 79% 78%
Vex3 0.27 36% 0.56 40% 0.84 16% 0.81 14% 0.89 12% 16%  48% 0% 48% 50% 72% | 81% 82% 85% 84%
25 Vex4 0.12 40% 0.76 18% 0.87 12% 0.83 16% 0.86 14% 30%  63% 33%  63% 33% 63% | 88% 79% 90% 81%
Avg. 0.43 30% 0.78 19% 0.87 16% 0.83 17% 0.89 14% 8% 60% | 26% 60% | 47% 70% | 85% 84% 88% 85%
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Results: Comparison with SOTA Solutions

e Outperforming each task-specific SOTA solution
* Circuit-level tasks

30% 28%

22%25% 25%. 54, 25%
= 17%16% =4 15%
<
= 10%
0% N/A N/A
WNS TNS Area

MasterRTL [10] SNS v2 [35] RTL-Timer [9] CircuitEncoder con o

il
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Results: Comparison with SOTA Solutions

* Fine-tuning data size scaling
* 12% =2 25% =2 50%
* Pre-trained CircuitEncoder remains stable

40%

20%

MAPE

0%
0%
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Ablation Study
* Impact of cross-stage alignment

* Impact of graph transformer

CircuitEncoder %/ Remove Cross-Stage Alignment

Remove Graph Transformer

=l

- 089 o 30% 1o
S Z = 20% 17% =
.2 = L (] o % =
=05 % = Z oy =
£ g = S '10% é =
(o] = =
QO = =
(a) RTL-Stage (Timing Slack Prediction)
>

90% 38% § 90%
Z 2 85%
= 2 85%
£ 85% 84% . - 80%  80%
S % = g ' 80% Y =
g 7 £ = 7 =

80% z = © 75% z =

28 (b) Netlist-Stage (Functional Identification)
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Conclusion & Future Work



Conclusion

* CircuitFusion

 Self-supervised & pre-trained
* Graph function contrastive learning

* Cross-stage alignment
e RTL function — netlist physics

* Support various tasks
* Design quality: slack, WNS, TNS, area prediction
* Functional reasoning: state register identification

30
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Future Work

* Advancing circuit foundation model
* Circuit-specific self-supervised learning

* Multimodal circuit learning customized for each design stage
* RTL: AST/control-data flow graph, Verilog code, specification text
* Netlist: connectivity graph, annotated node text
* Layout: image, netlist graph
 Existing encoders and decoders work separately
* Encoder — predictive task
* Decoder — generative task

 Unified encoder-decoder? s caun e
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