
A Self-Supervised, Pre-Trained, 
and Cross-Stage-Aligned Circuit Encoder 

Provides a Foundation for Various Design Tasks

1

Wenji Fang1, Shang Liu1, Hongce Zhang1,2, Zhiyao Xie1

wfang838@connect.ust.hk

1Hong Kong University of Science and Technology
2Hong Kong University of Science and Technology (Guangzhou)



2

Outline

• Background

• CircuitEncoder Framework

• Experimental Results

• Conclusion & Future Work



Background



4

Background: AI for EDA

• Remarkable achievements 
• Design quality evaluation

• Power, timing, area, routability, etc.

• Functionality reasoning
• Arithmetic word-level abstraction, SAT, etc.

• Optimization
• Design space exploration, etc.

• Generation
• RTL code, verification, etc.

• …



5

Background: AI for EDA

• Most existing predictive solutions are task-specific
• Supervised methods: tedious and time-consuming

• Hard to generalize to other tasks



6

Background: Foundation Models

• AI foundation models
• Pretrain-finetune paradigm

• Pre-training on large amounts of unlabeled data (self-supervised)

• Fine-tuning based on task-specific labels (supervised)

• Applications
• Natural language processing: GPT, BERT, Llama, etc.

• Computer vision: DALLE, stable-diffusion



CircuitEncoder Framework



8

Motivation: Towards Circuit Foundation Models

• Large circuit model



9

Motivation: Towards Circuit Foundation Model

• Our targeted circuit foundation model
• Capture unique circuit intrinsic property

• Cross-stage: RTL (functional) → netlist (Physical)

• Equivalent transformation: semantic & structure

• …

• Support various types of tasks
• Functionality: reasoning, verification, etc.

• Design quality: performance, power, area, etc.

• …



10

Key Idea: First RTL-Netlist Cross-Stage Alignment

• General circuit foundation model solution
• Self-supervised pre-trained: circuit graph function contrastive

• Cross-stage aligned: RTL (func.)—netlist (phys.) alignment

• Support various design tasks: 
• Lightweight downstream task model

• PPA + functionality



11

Comparison with Existing Solution

• Circuit representation learning
• Goal: to learn a general circuit embedding for various tasks

• Explorations

• Supervised: HOGA, Gamora, etc.

• Pre-trained: DeepGate Family, FGNN, SNS v2, etc.



12

Comparison with Existing Solution

• Circuit representation learning
• Limitations: still do not provide perfectly general circuit 

representation
• Mainly support one type of task (phys. PPA or func.)

• Only target single stage (RTL or netlist)



13

Circuit Design Stages: RTL & Netlist

• RTL
• Earlier design stage

• Higher abstraction level

• More semantic content

• Task
• Predicting later netlist PPA

• Netlist

• Later design stage

• Lower abstraction level

• More implementation details

• Task
• Reasoning earlier RTL function

• Predicting later layout PPA



14

Preprocessing: Circuit Data Alignment
• Circuit-to-graph transformation

• RTL-Netlist data alignment via backtrace register cone
• Advantages

• RTL-netlist cones are strictly aligned & functionally equivalent

• Capture the entire state transition of each register

• Intermediate granularity → better scalability



15

Encoding: Graph Learning Model for Circuits

• RTL graph
• Graph transformer

• Global positional encoding

• Netlist graph
• Graph neural network

• Neighbor aggregation

• Node-level embeddings → Cone graph-level embeddings



16

CircuitEncoder Phase 1: Pre-Training

• Self-supervised pre-training: intrinsic circuit property
❶ Intra-stage contrastive learning

• Minimizing embed. distance between positive pairs (equiv. transform.)

• Maximizing embed. distance among negative pairs (func. diff.)



17

CircuitEncoder Phase 1: Pre-Training

• Self-supervised pre-training: intrinsic circuit property
❷ Inter-stage contrastive learning

• Cross-stage alignment between RTL and netlist embed.



18

CircuitEncoder Phase 2: Fine-Tuning for Tasks

• Supervised fine-tuning
• Lightweight task models: MLP, tree-based, etc.



19

CircuitEncoder Phase 2: Fine-Tuning for Tasks

• Downstream tasks
• Register cone-level:

• Timing slack prediction at RTL stage

• Register function (control/data) identification at netlist stage

• Design-level:
• Overall PPA prediction at RTL stage

• WNS

• TNS

• Area



Experimental Results



21

Circuit Design Statistics

• 41 open-source designs

• 7,166 RTL and netlist cone pairs

• Data augmentation → 42,996 graphs in total



22

Experimental Setup

• Design flow
• RTL designs are synthesized using DC / NanGate 45nm

• Design PPA metrics are obtained from PT

• Circuit augmentation
• Yosys / ABC for functionally equivalent transformation

• Graph model
• RTL: Graphormer

• Netlist: GraphSage



23

Experimental Setup

• Model training



24

Task Evaluation and Baseline Methods

• Design quality evaluation – regression metrics
• Register slack prediction at cone level

• RTL-Timer [DAC’24]

• RTL-stage overall quality evaluation at circuit level
• MasterRTL [ICCAD’23]

• SNS v2 [MICRO’23]

• Functional reasoning – classification metrics
• Netlist-stage state register classification at cone level

• ReIGNN [ICCAD’21]



25

Results: Comparison with SOTA Solutions

• Outperforming each task-specific SOTA solution
• Cone-level tasks

• Few-shot learning

• 50% data for CircuitEncoder > 100% data for supervised baselines



26

Results: Comparison with SOTA Solutions

• Outperforming each task-specific SOTA solution
• Circuit-level tasks



27

Results: Comparison with SOTA Solutions

• Fine-tuning data size scaling
• 12% → 25% → 50%

• Pre-trained CircuitEncoder remains stable



28

Ablation Study

• Impact of cross-stage alignment

• Impact of graph transformer



Conclusion & Future Work



30

Conclusion

• CircuitFusion
• Self-supervised & pre-trained

• Graph function contrastive learning

• Cross-stage alignment
• RTL function – netlist physics

• Support various tasks
• Design quality: slack, WNS, TNS, area prediction

• Functional reasoning: state register identification



31

Future Work

• Advancing circuit foundation model
• Circuit-specific self-supervised learning

• Multimodal circuit learning customized for each design stage

• RTL: AST/control-data flow graph, Verilog code, specification text

• Netlist: connectivity graph, annotated node text

• Layout: image, netlist graph

• Existing encoders and decoders work separately
• Encoder – predictive task

• Decoder – generative task

• Unified encoder-decoder? 



Thank You!
Questions?


