

A Self-Supervised, Pre-Trained, and Cross-Stage-Aligned Circuit Encoder Provides a Foundation for Various Design Tasks

Wenji Fang¹, Shang Liu¹, Hongce Zhang^{1,2}, Zhiyao Xie¹ wfang838@connect.ust.hk

¹Hong Kong University of Science and Technology ²Hong Kong University of Science and Technology (Guangzhou)

Outline

- Background
- CircuitEncoder Framework
- Experimental Results
- Conclusion & Future Work

Background

Background: AI for EDA

- Remarkable achievements
 - Design quality evaluation
 - Power, timing, area, routability, etc.
 - Functionality reasoning
 - Arithmetic word-level abstraction, SAT, etc.
 - Optimization
 - Design space exploration, etc.
 - Generation

4

• RTL code, verification, etc.

Background: AI for EDA

- Most existing predictive solutions are task-specific
 - Supervised methods: tedious and time-consuming
 - Hard to generalize to other tasks

Background: Foundation Models

- AI foundation models
 - Pretrain-finetune paradigm
 - Pre-training on large amounts of unlabeled data (self-supervised)
 - Fine-tuning based on task-specific labels (supervised)
 - Applications
 - Natural language processing: GPT, BERT, Llama, etc.
 - Computer vision: DALLE, stable-diffusion

CircuitEncoder Framework

Motivation: Towards Circuit Foundation Models

• Large circuit model

SCIENCE CHINA Information Sciences

• POSITION PAPER •

October 2024, Vol. 67, Iss. 10, 200402:1–200402:42 https://doi.org/10.1007/s11432-024-4155-7

Special Topic: AI Chips and Systems for Large Language Models

Large circuit models: opportunities and challenges[†]

Lei CHEN⁵, Yiqi CHEN⁷, Zhufei CHU⁶, Wenji FANG³, Tsung-Yi HO¹, Ru HUANG^{7,11}, Yu HUANG⁴, Sadaf KHAN¹, Min LI⁵, Xingquan LI⁹, Yu LI¹, Yun LIANG⁷, Jinwei LIU¹, Yi LIU¹, Yibo LIN⁷, Guojie LUO^{8*}, Hongyang PAN², Zhengyuan SHI¹, Guangyu SUN⁷, Dimitrios TSARAS⁵, Runsheng WANG⁷, Ziyi WANG¹, Xinming WEI⁸, Zhiyao XIE³, Qiang XU^{1*}, Chenhao XUE⁷, Junchi YAN¹⁰, Jun YANG¹¹, Bei YU¹, Mingxuan YUAN^{5*}, Evangeline F.Y. YOUNG¹, Xuan ZENG², Haoyi ZHANG⁷, Zuodong ZHANG⁷, Yuxiang ZHAO⁷, Hui-Ling ZHEN⁵, Ziyang ZHENG¹, Binwu ZHU¹, Keren ZHU¹ & Sunan ZOU⁸

Motivation: Towards Circuit Foundation Model

- Our targeted circuit foundation model
 - Capture unique circuit intrinsic property
 - **Cross-stage:** RTL (functional) \rightarrow netlist (Physical)
 - Equivalent transformation: semantic & structure
 - ...
 - Support various types of tasks
 - Functionality: reasoning, verification, etc.
 - *Design quality:* performance, power, area, etc.
 - ...

Key Idea: First RTL-Netlist Cross-Stage Alignment

- General circuit foundation model solution
 - Self-supervised pre-trained: circuit graph function contrastive
 - Cross-stage aligned: RTL (*func.*)—netlist (*phys.*) alignment
 - Support various design tasks:
 - Lightweight downstream task model
 - PPA + functionality

Comparison with Existing Solution

Circuit representation learning

- Goal: to learn a general circuit embedding for various tasks
- Explorations

11

- Supervised: HOGA, Gamora, etc.
- **Pre-trained**: DeepGate Family, FGNN, SNS v2, etc.

	Dow	vnstream	Tasks	Pre-Tr	aining	Desig	1 Stage	Sunnort	Onon-Source
Method	Multi-	Design	Function	Self-	Train	Cross-	Target	Sog Circuit	Model
	Туре	Quality	runction	Supervised	Task	Stage	Stage	seq. Cheun	Model
Design2Vec [25]			\checkmark		Cover Point		RTL	\checkmark	
SNS v2 [36]		\checkmark			Contrastive		RTL		
FGNN [28]			\checkmark		Contrastive		Netlist		
DeepGate [17]			\checkmark		Probability		Netlist		
DeepGate2 [23]			\checkmark		Truth Table		Netlist		\checkmark
DeepSeq [16]		\checkmark			Probability		Netlist		
CircuitEncoder (Ours)	\checkmark	\checkmark	~	~	Multi-Stage Contrastive	\checkmark	RTL Netlist	~	~

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

* DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.

Comparison with Existing Solution

• Circuit representation learning

- Limitations: still do not provide perfectly general circuit representation
 - Mainly support one type of task (phys. PPA or func.)
 - Only target **single stage** (RTL or netlist)

	Dow	vnstream	Tasks	Pre-Tr	Design	1 Stage	Sunnort	Onen-Source		
Method	Multi-	Design	Function	Self-	Train	Cross-	Target	Support	Model	
	Туре	Quality	Function	Supervised	Task	Stage	Stage	seq. Cheun	model	
Design2Vec [25]			\checkmark		Cover Point		RTL	\checkmark		
SNS v2 [36]		\checkmark			Contrastive		RTL	\checkmark		
FGNN [28]			\checkmark		Contrastive		Netlist			
DeepGate [17]			\checkmark		Probability		Netlist			
DeepGate2 [23]			\checkmark		Truth Table		Netlist		\checkmark	
DeepSeq [16]		\checkmark			Probability		Netlist	 ✓ 		
CircuitEncoder					Multi-Stage		RTL			
(Ours)	•	•	•	•	Contrastive	•	Netlist	•	•	

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

* DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.

12

Circuit Design Stages: RTL & Netlist

- RTL
 - Earlier design stage
 - Higher abstraction level
 - More semantic content
 - Task
 - Predicting later netlist PPA

- Netlist
 - Later design stage
 - Lower abstraction level
 - More implementation details
 - Task
 - Reasoning earlier RTL function
 - Predicting later layout PPA

Preprocessing: Circuit Data Alignment

• Circuit-to-graph transformation

- RTL-Netlist data alignment via backtrace register cone
 - Advantages
 - RTL-netlist cones are strictly aligned & functionally equivalent
 - Capture the entire state transition of each register
 - Intermediate granularity → better scalability

Encoding: Graph Learning Model for Circuits

- RTL graph
 - Graph transformer
 - Global positional encoding
- Netlist graph
 - Graph neural network
 - Neighbor aggregation
 - Node-level embeddings → Cone graph-level embeddings

CircuitEncoder Phase 1: Pre-Training

• Self-supervised pre-training: intrinsic circuit property

1 Intra-stage contrastive learning

• Minimizing embed. distance between positive pairs (equiv. transform.)

ASIA SOUTH PACIFIC

• Maximizing embed. distance among negative pairs (func. diff.)

$$L_{rr} = max(||E_{\rm R} - E_{\rm R^+}||_2 - ||E_{\rm R} - E_{\rm R^-}||_2 + m_{rr}, 0),$$

$$L_{nn} = max(||E_{\rm N} - E_{\rm N^+}||_2 - ||E_{\rm N} - E_{\rm N^-}||_2 + m_{nn}, 0),$$

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

CircuitEncoder Phase 1: Pre-Training

• Self-supervised pre-training: intrinsic circuit property

2 Inter-stage contrastive learning

17

• Cross-stage alignment between RTL and netlist embed.

$$L_{rn} = max(||E_{\rm R} - E_{\rm N^+}||_2 - ||E_{\rm R} - E_{\rm N^-}||_2 + m_{rn}, 0) + max(||E_{\rm N} - E_{\rm R^+}||_2 - ||E_{\rm N} - E_{\rm R^-}||_2 + m_{rn}, 0).$$

$$L_{CL} = \alpha_{rr}L_{rr} + \alpha_{nn}L_{nn} + \alpha_{rn}L_{rn},$$

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

ASIA SOUTH PACIFIC

CircuitEncoder Phase 2: Fine-Tuning for Tasks

- Supervised fine-tuning
 - Lightweight task models: MLP, tree-based, etc.

Phase 2: Fine-Tune for Applications

CircuitEncoder Phase 2: Fine-Tuning for Tasks

- Downstream tasks
 - Register cone-level:
 - Timing slack prediction at RTL stage
 - Register function (control/data) identification at *netlist* stage
 - Design-level:
 - Overall PPA prediction at *RTL* stage
 - WNS
 - TNS
 - Area

Phase 2: Fine-Tune for Applications

Experimental Results

Circuit Design Statistics

- 41 open-source designs
- 7,166 RTL and netlist cone pairs
- Data augmentation \rightarrow 42,996 graphs in total

Source	#	Design Size	Original			
Benchmarks	Design	#K Gates	# Cones	HDL Type		
ITC [6]	7	{7, 15, 22}	{12, 21, 31}	VHDL		
OpenCores [1]	5	$\{2, 40, 59\}$	$\{12, 96, 173\}$	Verilog		
Vex [26]	17	{8, 208, 591}	{39, 168, 694}	SpinalHDL		
Chipyard [2]	12	$\{11, 49, 194\}$	$\{28, 461, 2730\}$	Chisel		

Table 2: Benchmark design information.

Experimental Setup

- Design flow
 - RTL designs are synthesized using DC / NanGate 45nm
 - Design PPA metrics are obtained from PT
- Circuit augmentation
 - Yosys / ABC for functionally equivalent transformation
- Graph model
 - RTL: Graphormer
 - Netlist: GraphSage

Experimental Setup

Model training

Training Phase	Pre-Tra	aining		Fine-Tu	ining		
ML Model	Graphormer (RTL)	GraphSage (Netlist)	MLP	GCN	XGBoost		
# Layers	7	3	2	2			
Hidden Dim	256	256	128	128			
Activation	GELU	ReLU	ReLU	ReLU	100		
Batch Size	12	8	3	2	estimator,		
Optimizer	Adar	nW	Ad	am	20		
LR	0.00	01	0.0	001	max depth		
Dataset Size	331	62	32	78			
# Epochs	75	5	1000				
Training Time	20	h	0.05h				

Table 4: ML model and training hyperparameters.

Task Evaluation and Baseline Methods

- Design quality evaluation regression metrics
 - Register slack prediction at cone level
 - RTL-Timer [DAC'24]
 - RTL-stage overall quality evaluation at circuit level
 - MasterRTL [ICCAD'23]
 - SNS v2 [MICRO'23]
- Functional reasoning classification metrics
 - Netlist-stage state register classification at cone level
 - ReIGNN [ICCAD'21]

Results: Comparison with SOTA Solutions

Outperforming each task-specific SOTA solution

- Cone-level tasks
- Few-shot learning
 - **50%** data for CircuitEncoder > **100%** data for supervised baselines

		RTL-Stage (Register Slack Prediction)										Netlist-Stage (State Register Identification)								
Method	RTL-Timer (supervised learning)						CircuitEncoder (pre-train + few-shot)			ReIGNN* (supervised learning)					CircuitEncoder (pre-train + few-shot)					
% of train	13% 50%		50%	1	00%	13%		50%		13% 50%		100%		13%		50%				
Test	D MADE D MADE		R	MAPE	D MADE		P	MAPE	Sens	Acc	Sens	Acc	Sens	Acc	Sens	Acc	Sens	Acc		
Designs	K	NI II L	K	IVII II L	I.		К	IVIT II L	K	NULL L	50113.	nec.	Sells.	nec.	Sells.	nec.	Sens.	nee.	50115.	nec.
ITC1	0.48	22%	0.77	20%	0.82	18%	0.91	21%	0.96	9%	0%	72%	50%	72%	50%	72%	100%	98%	100%	98%
ITC2	0.43	26%	0.83	12%	0.88	10%	0.92	19%	0.96	9%	0%	92%	100%	92%	100%	92%	100%	100%	100%	100%
Chipyard1	0.57	30%	0.89	12%	0.92	18%	0.81	15%	0.83	18%	0%	50%	0%	50%	30%	65%	78%	77%	79%	79%
Chipyard2	0.56	31%	0.85	19%	0.88	12%	0.84	12%	0.85	13%	0%	50%	0%	50%	30%	65%	84%	78%	89%	85%
Vex1	0.28	27%	0.65	15%	0.87	24%	0.69	25%	0.88	26%	0%	50%	0%	50%	50%	74%	76%	79%	82%	72%
Vex2	0.73	29%	0.93	17%	0.86	16%	0.85	13%	0.87	13%	15%	57%	21%	57%	32%	60%	73%	76%	79%	78%
Vex3	0.27	36%	0.56	40%	0.84	16%	0.81	14%	0.89	12%	16%	48%	0%	48%	50%	72%	81%	82%	85%	84%
Vex4	0.12	40%	0.76	18%	0.87	12%	0.83	16%	0.86	14%	30%	63%	33%	63%	33%	63%	88%	79%	90%	81%
Avg.	0.43	30%	0.78	19%	0.87	16%	0.83	17%	0.89	14%	8%	60%	26%	60%	47%	70%	85%	84%	88%	85%

 Table 3: Accuracy comparison for the cone-level tasks for RTL and netlist designs.

Results: Comparison with SOTA Solutions

- Outperforming each task-specific SOTA solution
 - Circuit-level tasks

Results: Comparison with SOTA Solutions

- Fine-tuning data size scaling
 - $12\% \rightarrow 25\% \rightarrow 50\%$
 - Pre-trained CircuitEncoder remains stable

Ablation Study

- Impact of cross-stage alignment
- Impact of graph transformer

(b) Netlist-Stage (Functional Identification)

Conclusion & Future Work

Conclusion

CircuitFusion

- Self-supervised & pre-trained
 - Graph function contrastive learning
- Cross-stage alignment
 - RTL *function* netlist *physics*
- Support various tasks
 - Design quality: slack, WNS, TNS, area prediction
 - Functional reasoning: state register identification

Future Work

- Advancing circuit foundation model
 - Circuit-specific self-supervised learning
 - Multimodal circuit learning customized for each design stage
 - RTL: AST/control-data flow graph, Verilog code, specification text
 - Netlist: connectivity graph, annotated node text
 - Layout: image, netlist graph
 - Existing encoders and decoders work separately
 - Encoder predictive task
 - Decoder generative task
 - Unified encoder-decoder?

Thank You! Questions?