
Pohang University of Science and Technology 

Department of Electrical Engineering

CAD and SoC Design Lab

30th Asia and South Pacific Design Automation Conference

ParaFormer: A Hybrid Graph Neural Network and 
Transformer Approach for Pre-Routing Parasitic 
RC Prediction

Jongho Yoon, Jakang Lee, Donggyu Kim, Junseok Hur, 

and Seokhyeong Kang

2025. 01. 21



I. Introduction

II. Proposed Method

III. Experimental Setup & Result

IV. Conclusion

Outline

2



Need for Pre-Routing Timing Prediction

3

• Why Timing Prediction is Essential:

• Accurate timing available only after routing

• Routing is computationally expensive

• Fast and accurate timing prediction reduces repetitive routing

• Role of Machine Learning:

I. Introduction



Previous Works and Limitations

4

• Traditional ML Approaches [1, 2]:

• Use only node-level features

• Fail to capture circuit topology and geometry

• GNN-Based Models [3, 4]:

• Consider topological features using graph-based learning

• Struggle with geometric data integration

• Timing Prediction Models [1, 3, 4]:

• Errors in slew propagate across paths → Inaccuracies

I. Introduction

[1] E. C. Barboza, et al., “Machine Learning-Based Pre- Routing Timing Prediction with Reduced Pessimism”, DAC 2019.
[2] V. A. Chhabria, et al., “A Machine Learning Approach to Improving Timing Consistency between Global Route and Detailed Route", TODAES, 2023.
[3] Z. Guo, et al., “A Timing Engine Inspired Graph Neural Network Model for Pre-Routing Slack Prediction", DAC 2022.

[4] G. He, et al., “An Optimization-aware Pre-Routing Timing Prediction Framework Based on Heterogeneous Graph Learning", ASP-DAC 2024 



Heterogeneous Graph for Circuit Representation

5

• Circuit consist of diverse elements with unique roles

• Advantages of Heterogeneous Graph:

• Distinct Node Types: Capturing unique characteristics for each elements 

(e.g., Pin, Net)

• Support Hyper-Edges: Essential for representing netlists and aggregating 

information across gates

• Edge Diversity: Modeling various relationships (e.g., Pin-to-Pin, Net-to-Pin)

II. Proposed Method

Netlist Graph Homogeneous

Graph
Heterogeneous

Graph



Heterogeneous Circuit Graph

6

• Heterogeneous Graph Components:

• Nodes:

• Pin: Coordinates, Capacitance

• Net: Bounding box, Area, Degree, RC values

• Edges:

• Net-to-Pin: Net driving multiple pins

• Pin-to-Pin: Input-output connection within cell

• Pin-to-Net: Pin connecting back to nets

II. Proposed Method

Netlist Graph

Heterogeneous Graph



ParaFormer Architecture Overview

7

• Combine HGNN and Graph Transformer to predict parasitic RC 

by leveraging both topological and geometric information

II. Proposed Method

Overview of ParaFormer Architecture



ParaFormer Architecture Overview

8

• HGNN in ParaFormer:

• Extract topological features from heterogeneous circuit graphs using 

edge-specific message passing

II. Proposed Method

Overview of ParaFormer Architecture



ParaFormer Architecture Overview

9

• Transformer in ParaFormer:

• Capture geometric relationships between nets using pairwise 

attention mechanism

II. Proposed Method

Overview of ParaFormer Architecture



Heterogeneous Graph Neural Network

10

• How Heterogeneous GNN (HGNN) Works:

• Separate kernels for each edge type

• Learn specific relationships by tailored message passing 

• Aggregate node embeddings based on edge-specific relationships

II. Proposed Method



Graph Transformer for Geometric Learning

11

• Why Graph Transformer?

• HGNN captures topology but not geometry

• Geometric relationships affect parasitic RC significantly

• Transformer models pairwise relationships between nets

• How It Works:

II. Proposed Method



Graph Attention Mechanism

12

𝑍𝑢
(𝑙+1)

=෍

𝑣=1

𝑁
𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑣

𝑙

σ𝑤=1
𝑁 𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑤

𝑙
∙ 𝑉𝑣

𝑙

II. Proposed Method

• Quadratic complexity 𝒪(𝑛2) limits scalability for large design

Attention Mechanism in Transformer



Graph Attention Mechanism

13

𝑍𝑢
(𝑙+1)

=෍

𝑣=1

𝑁
𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑣

𝑙

σ𝑤=1
𝑁 𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑤

𝑙
∙ 𝑉𝑣

𝑙

II. Proposed Method

• Quadratic complexity 𝒪(𝑛2) limits scalability for large design

Attention Mechanism in Transformer



Scalable All-Pair Attention Message Passing

14

• Kernel-Based Approximation:

• Replace softmax-based attention with a kernel function 𝜙

𝑍𝑢
(𝑙+1)

=෍

𝑣=1

𝑁
𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑣

𝑙

σ𝑤=1
𝑁 𝑒𝑥𝑝 𝑄𝑢

𝑙
∙ 𝐾𝑤

𝑙
∙ 𝑉𝑣

𝑙

≈෍

𝑣=1

𝑁
𝜙 𝑄𝑢

𝑙
∙ 𝜙 𝐾𝑣

𝑙

σ𝑤=1
𝑁 𝜙 𝑄𝑢

𝑙
∙ 𝜙 𝐾𝑤

𝑙
∙ 𝑉𝑣

𝑙

II. Proposed Method



Scalable All-Pair Attention Message Passing

15

• Kernel-based attention avoids redundant pairwise computations

• Reduce complexity from 𝒪(𝑛2) → 𝒪(𝑛) 

𝑍𝑢
(𝑙+1)

≈෍

𝑣=1

𝑁
𝜙 𝑄𝑢

𝑙
∙ 𝜙 𝐾𝑣

𝑙

σ𝑤=1
𝑁 𝜙 𝑄𝑢

𝑙
∙ 𝜙 𝐾𝑤

𝑙
∙ 𝑉𝑣

𝑙

=
𝜙 𝑄𝑢

𝑙
∙ σ𝑣=1

𝑁 𝜙 𝐾𝑣
𝑙

∙ 𝑉𝑣
𝑙

𝜙 𝑄𝑢
𝑙

∙ σ𝑤=1
𝑁 𝜙 𝐾𝑤

𝑙

II. Proposed Method



Scalable All-Pair Attention Message Passing

16

• No need for 𝑁 × 𝑁 attention matrix

II. Proposed Method

Scalable Attention Mechanism

𝑍𝑢
(𝑙+1)

≈
𝜙 𝑄𝑢

𝑙
∙ σ𝑣=1

𝑁 𝜙 𝐾𝑣
𝑙

∙ 𝑉𝑣
𝑙

𝜙 𝑄𝑢
𝑙

∙ σ𝑤=1
𝑁 𝜙 𝐾𝑤

𝑙



Scalable All-Pair Attention Message Passing

17

• No need for 𝑁 × 𝑁 attention matrix

II. Proposed Method

Scalable Attention Mechanism

𝑍𝑢
(𝑙+1)

≈
𝜙 𝑄𝑢

𝑙
∙ σ𝑣=1

𝑁 𝜙 𝐾𝑣
𝑙

∙ 𝑉𝑣
𝑙

𝜙 𝑄𝑢
𝑙

∙ σ𝑤=1
𝑁 𝜙 𝐾𝑤

𝑙



Task Balancing with Gradient Normalization

18

• Why Task Balancing?

• Predict Resistance (R) and Capacitance (C) simultaneously

• Different loss scales can lead to imbalanced learning

• GradNorm Technique

• Dynamically balances training rates

• Adjust gradient for each task

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)
∙

𝐺𝑖
1
𝑇
σ𝑗=1
𝑇 𝐺𝑗

𝛾

II. Proposed Method

Operation of GradNorm



RC Tree Modeling for SPEF Generation

19

• RC Tree Construction Steps

• Each net has one driver pin and multiple sink pins

• Virtual point is placed at the center of the net bounding box

• RC values assigned using Manhattan distance

II. Proposed Method

RC Tree Construction and Modeling

𝑅𝑖,𝑗 =
𝑥𝑖 − 𝑥𝑗 + 𝑦𝑖 − 𝑦𝑗

σ𝑘,𝑙∈𝑃 𝑥𝑘 − 𝑥𝑙 + 𝑦𝑘 − 𝑦𝑙
∙ 𝑅𝑝𝑟𝑒𝑑

𝐶𝑖,𝑗 =
𝑥𝑖 − 𝑥𝑗 + 𝑦𝑖 − 𝑦𝑗

σ𝑘,𝑙∈𝑃 𝑥𝑘 − 𝑥𝑙 + 𝑦𝑘 − 𝑦𝑙
∙ 𝐶𝑝𝑟𝑒𝑑



Experimental Setup

20

• Benchmark Dataset:

• Open-source designs from OpenCores [5]

• 9 training designs, 4 test designs

• 20 variations per design

• Designed by Cadence Innovus

• Using ASAP7 PDK [6]

• Model Configuration:

• Framework: PyTorch + DGL

• GNN Layer: GraphSAGE [7]

• 2-layer architecture with 16 hidden units

[5] OpenCores: “Open Source IP-Cores,” http://www.opencores.org.
[6] L. T. Clark, et al., “ASAP: A 7-nm finFET predictive process deisgn kit,” Microelectronics Journal, 2016.
[7] W. L. Hamilton, et al., “Inductive Representation Learning on Large Graphs,” NIPS 2017. 

III. Experiments

Design # Cells # Nets # Pins

D1 spi_top 1829 1771 4628

D2 usbf_top 7764 7896 17759

D3 aes_cipher_top 9366 9237 26526

D4 fpu 17206 19362 36833

D5 wb_commax_top 18040 16624 46984

D6 eth_top 33191 33270 98527

D7 ldpc_decoder_802_3an 43289 41240 96465

D8 des3 59428 59364 128221

D9 mpeg2_top 376811 384545 1101167

D10 pci_bridge32 10661 10503 27143

D11 keccak 25771 25257 55027

D12 vga_enh_top 55145 55060 132504

D13 tate_pairing 167474 166309 489825



Parasitic RC Prediction

21

• ParaFormer Results (𝑹𝟐 score):

• R: Ours (0.9901) > GNN (0.9728) > HGNN (0.9717) >> ML (0.8624)

• C: Ours (0.9630) > HGNN (0.9354) > GNN (0.9080) >> ML (0.8863)

• Why ParaFormer Performed Better:

• ML: Lacked structural information →Limited generalization

• GNN/HGNN: Missed geometric data → Reduced accuracy

III. Experiments

Design
Wire Parasitic R Wire Parasitic C

ML GNN HGNN Ours ML GNN HGNN Ours
D10 0.9794 0.9869 0.9797 0.9904 0.9420 0.9282 0.9722 0.9871
D11 0.9431 0.9597 0.9521 0.9812 0.9278 0.8227 0.8384 0.9318
D12 0.9214 0.9677 0.9669 0.9954 0.9618 0.9455 0.9707 0.9677
D13 0.6056 0.9769 0.9880 0.9934 0.7137 0.9355 0.9601 0.9656

Train avg. 0.9872 0.9737 0.9721 0.9854 0.9861 0.9269 0.9532 0.9701
Test avg. 0.8624 0.9728 0.9717 0.9901 0.8863 0.9080 0.9354 0.9630



Timing & Power Analysis using Commercial Tool

22

• Analyze timing and power using Synopsys PrimeTime

• Extract SPEF file using predicted results for each method

• ParaFormer Results:

• Delay: 𝑅2 = 0.9073 (wire) / 𝑅2 = 0.9346 (cell)

• Power: 𝑀𝐴𝑃𝐸 = 3.31 %

III. Experiments

Design
Wire Delay Cell Delay Power

ML GNN HGNN Ours ML GNN HGNN Ours ML GNN HGNN Ours
D10 0.8790 0.7239 0.9084 0.8657 0.9693 0.9492 0.9740 0.9801 0.290 0.690 0.800 0.430
D11 0.8741 0.9189 0.9243 0.9660 0.8609 0.9104 0.9179 0.9637 11.300 8.640 9.680 5.620
D12 0.9273 0.8427 0.9124 0.9305 0.9553 0.8649 0.9290 0.9401 5.130 4.330 0.880 3.210
D13 0.7246 0.8184 0.8503 0.8670 0.7242 0.8130 0.8374 0.8543 1.590 4.120 2.540 4.070

Train avg. 0.9262 0.7988 0.8866 0.9229 0.9843 0.9396 0.9546 0.9739 2.236 6.380 5.108 6.268
Test avg. 0.8513 0.8260 0.8989 0.9073 0.8774 0.8844 0.9146 0.9346 4.578 4.445 3.475 3.310



Impact of GradNorm on Downstream Tasks

23

• Timing & Power Analysis depend on both R and C

• Results with GradNorm (𝑹𝟐 score):

• R: 0.9901 → 0.9785 (w/ GradNorm)

• C: 0.9630 → 0.9917 (w/ GradNorm)

III. Experiments

Design
Wire Delay Cell Delay Power

w/o G w/ G w/o G w/ G w/o G w/ G
D10 0.8657 0.9587 0.9801 0.9874 0.340 0.430
D11 0.9660 0.9915 0.9637 0.9899 5.620 2.500
D12 0.9305 0.9714 0.9401 0.9928 3.210 0.970
D13 0.8670 0.9780 0.8543 0.9803 4.070 1.910

Train avg. 0.9229 0.9493 0.9739 0.9876 6.268 2.561
Test avg. 0.9073 0.9749 0.9346 0.9876 3.310 1.453



Conclusion

24

• ParaFormer combines HGNN and Transformer to capture 
both topological and geometric features

• GradNorm ensures balanced R and C learning, improving 
results of downstream tasks

• ParaFormer allows for faster and efficient design optimization, 
reducing the need for iterative adjustments

IV. Conclusion



Thank you

25

jh.yoon@postech.ac.kr


	기본 구역
	Slide 1: 2025. 01. 21
	Slide 2: Outline
	Slide 3: Need for Pre-Routing Timing Prediction
	Slide 4: Previous Works and Limitations
	Slide 5: Heterogeneous Graph for Circuit Representation
	Slide 6: Heterogeneous Circuit Graph
	Slide 7: ParaFormer Architecture Overview
	Slide 8: ParaFormer Architecture Overview
	Slide 9: ParaFormer Architecture Overview
	Slide 10: Heterogeneous Graph Neural Network
	Slide 11: Graph Transformer for Geometric Learning
	Slide 12: Graph Attention Mechanism
	Slide 13: Graph Attention Mechanism
	Slide 14: Scalable All-Pair Attention Message Passing
	Slide 15: Scalable All-Pair Attention Message Passing
	Slide 16: Scalable All-Pair Attention Message Passing
	Slide 17: Scalable All-Pair Attention Message Passing
	Slide 18: Task Balancing with Gradient Normalization
	Slide 19: RC Tree Modeling for SPEF Generation
	Slide 20: Experimental Setup
	Slide 21: Parasitic RC Prediction
	Slide 22: Timing & Power Analysis using Commercial Tool
	Slide 23: Impact of GradNorm on Downstream Tasks
	Slide 24: Conclusion
	Slide 25: Thank you


