30th Asia and South Pacific Design Automation Conference

ParaFormer: A Hybrid Graph Neural Network and Transformer Approach for Pre-Routing Parasitic RC Prediction

Jongho Yoon, Jakang Lee, Donggyu Kim, Junseok Hur, and Seokhyeong Kang Pohang University of Science and Technology Department of Electrical Engineering CAD and SoC Design Lab

2025.01.21

Outline

- I. Introduction
- II. Proposed Method
- **III. Experimental Setup & Result**

IV. Conclusion

Need for Pre-Routing Timing Prediction

- Why Timing Prediction is Essential:
 - Accurate timing available only after routing
 - Routing is computationally expensive
 - Fast and accurate timing prediction reduces repetitive routing
- Role of Machine Learning:

Previous Works and Limitations

- Traditional ML Approaches [1, 2]:
 - Use only node-level features
 - Fail to capture circuit topology and geometry
- GNN-Based Models [3, 4]:
 - Consider topological features using graph-based learning
 - Struggle with geometric data integration
- Timing Prediction Models [1, 3, 4]:
 - Errors in slew propagate across paths \rightarrow Inaccuracies

^[1] E. C. Barboza, et al., "Machine Learning-Based Pre- Routing Timing Prediction with Reduced Pessimism", DAC 2019.

^[2] V. A. Chhabria, et al., "A Machine Learning Approach to Improving Timing Consistency between Global Route and Detailed Route", TODAES, 2023.

^[3] Z. Guo, et al., "A Timing Engine Inspired Graph Neural Network Model for Pre-Routing Slack Prediction", DAC 2022.

^[4] G. He, et al., "An Optimization-aware Pre-Routing Timing Prediction Framework Based on Heterogeneous Graph Learning", ASP-DAC 2024

II. Proposed Method Heterogeneous Graph for Circuit Representation

- Circuit consist of diverse elements with unique roles
- Advantages of Heterogeneous Graph:
 - Distinct Node Types: Capturing unique characteristics for each elements (e.g., Pin, Net)
 - **Support Hyper-Edges:** Essential for representing netlists and aggregating information across gates
 - Edge Diversity: Modeling various relationships (e.g., Pin-to-Pin, Net-to-Pin)

Heterogeneous Circuit Graph

- Heterogeneous Graph Components:
 - Nodes:
 - Pin: Coordinates, Capacitance
 - Net: Bounding box, Area, Degree, RC values
 - Edges:
 - **Net-to-Pin:** Net driving multiple pins
 - **Pin-to-Pin:** Input-output connection within cell
 - **Pin-to-Net:** Pin connecting back to nets

Heterogeneous Graph

ParaFormer Architecture Overview

• Combine **HGNN** and **Graph Transformer** to predict parasitic RC by leveraging both **topological** and **geometric** information

Overview of ParaFormer Architecture

ParaFormer Architecture Overview

- **HGNN** in ParaFormer:
 - Extract topological features from heterogeneous circuit graphs using edge-specific message passing

Overview of ParaFormer Architecture

ParaFormer Architecture Overview

- Transformer in ParaFormer:
 - Capture geometric relationships between nets using pairwise attention mechanism

Overview of ParaFormer Architecture

Heterogeneous Graph Neural Network

- How Heterogeneous GNN (HGNN) Works:
 - Separate kernels for each edge type
 - Learn specific relationships by tailored message passing
 - Aggregate node embeddings based on edge-specific relationships

Graph Transformer for Geometric Learning

- Why Graph Transformer?
 - HGNN captures topology but not geometry
 - Geometric relationships affect parasitic RC significantly
 - Transformer models pairwise relationships between nets
- How It Works:

II. Proposed Method

Graph Attention Mechanism

• Quadratic complexity $O(n^2)$ limits scalability for large design

II. Proposed Method

Graph Attention Mechanism

• Quadratic complexity $O(n^2)$ limits scalability for large design

- Kernel-Based Approximation:
 - Replace softmax-based attention with a kernel function ϕ

$$Z_{u}^{(l+1)} = \sum_{\nu=1}^{N} \frac{exp\left(Q_{u}^{(l)} \cdot K_{\nu}^{(l)}\right)}{\sum_{w=1}^{N} exp\left(Q_{u}^{(l)} \cdot K_{w}^{(l)}\right)} \cdot V_{\nu}^{(l)}$$

$$\approx \sum_{\nu=1}^{N} \frac{\phi\left(Q_{u}^{(l)}\right) \cdot \phi\left(K_{\nu}^{(l)}\right)}{\sum_{w=1}^{N} \phi\left(Q_{u}^{(l)}\right) \cdot \phi\left(K_{w}^{(l)}\right)} \cdot V_{\nu}^{(l)}$$

- Kernel-based attention avoids redundant pairwise computations
- Reduce complexity from $\mathcal{O}(n^2) \rightarrow \mathcal{O}(n)$

$$Z_{u}^{(l+1)} \approx \sum_{\nu=1}^{N} \frac{\phi\left(Q_{u}^{(l)}\right) \cdot \phi\left(K_{\nu}^{(l)}\right)}{\sum_{w=1}^{N} \phi\left(Q_{u}^{(l)}\right) \cdot \phi\left(K_{w}^{(l)}\right)} \cdot V_{\nu}^{(l)}$$
$$- \frac{\phi\left(Q_{u}^{(l)}\right) \cdot \sum_{\nu=1}^{N} \phi\left(K_{\nu}^{(l)}\right) \cdot V_{\nu}^{(l)}}{\sum_{w=1}^{N} \phi\left(K_{\nu}^{(l)}\right) \cdot V_{\nu}^{(l)}}$$

 $\overline{\phi\left(Q_{u}^{(l)}\right)} \cdot \sum_{w=1}^{N} \phi\left(K_{w}^{(l)}\right)$

• No need for $N \times N$ attention matrix

Scalable Attention Mechanism

• No need for $N \times N$ attention matrix

Task Balancing with Gradient Normalization

- Why Task Balancing?
 - Predict Resistance (R) and Capacitance (C) simultaneously
 - Different loss scales can lead to **imbalanced learning**
- GradNorm Technique
 - Dynamically balances training rates
 - Adjust gradient for each task

$$w_i^{(t+1)} = w_i^{(t)} \cdot \left(\frac{\|G_i\|}{\frac{1}{T}\sum_{j=1}^T \|G_j\|}\right)^{\gamma}$$

Operation of GradNorm

- - -

RC Tree Modeling for SPEF Generation

RC Tree Construction Steps

- Each net has one driver pin and multiple sink pins
- Virtual point is placed at the center of the net bounding box
- RC values assigned using Manhattan distance

$$R_{i,j} = \frac{|x_i - x_j| + |y_i - y_j|}{\sum_{k,l \in P} |x_k - x_l| + |y_k - y_l|} \cdot R_{pred}$$

$$P_1 = \frac{|x_i - x_j| + |y_i - y_j|}{\sum_{k,l \in P} |x_k - x_l| + |y_k - y_l|} \cdot C_{pred}$$

$$P_1 = \frac{|x_i - x_j| + |y_k - y_l|}{\sum_{k,l \in P} |x_k - x_l| + |y_k - y_l|} \cdot C_{pred}$$

RC Tree Construction and Modeling

Experimental Setup

- Benchmark Dataset:
 - Open-source designs from OpenCores [5]
 - 9 training designs, 4 test designs
 - 20 variations per design
 - Designed by Cadence Innovus
 - Using ASAP7 PDK [6]
- Model Configuration:
 - Framework: PyTorch + DGL
 - GNN Layer: GraphSAGE [7]
 - 2-layer architecture with 16 hidden units

				-
	Design	# Cells	# Nets	# Pins
D1	spi_top	1829	1771	4628
D2	usbf_top	7764	7896	17759
D3	aes_cipher_top	9366	9237	26526
D4	fpu	17206	19362	36833
D5	wb_commax_top	18040	16624	46984
D6	eth_top	33191	33270	98527
D7	ldpc_decoder_802_3an	43289	41240	96465
D8	des3	59428	59364	128221
D9	mpeg2_top	376811	384545	1101167
D10	pci_bridge32	10661	10503	27143
D11	keccak	25771	25257	55027
D12	vga_enh_top	55145	55060	132504
D13	tate_pairing	167474	166309	489825

^[7] W. L. Hamilton, et al., "Inductive Representation Learning on Large Graphs," NIPS 2017.

Parasitic RC Prediction

- ParaFormer Results (*R*² score):
 - R: Ours (0.9901) > GNN (0.9728) > HGNN (0.9717) >> ML (0.8624)
 - C: Ours (0.9630) > HGNN (0.9354) > GNN (0.9080) >> ML (0.8863)
- Why ParaFormer Performed Better:
 - ML: Lacked structural information →Limited generalization
 - GNN/HGNN: Missed geometric data → Reduced accuracy

Design		Wire Pa	rasitic R		Wire Parasitic C				
Design	ML	GNN	HGNN	Ours	ML	GNN	HGNN	Ours	
D10	0.9794	0.9869	0.9797	0.9904	0.9420	0.9282	0.9722	0.9871	
D11	0.9431	0.9597	0.9521	0.9812	0.9278	0.8227	0.8384	0.9318	
D12	0.9214	0.9677	0.9669	0.9954	0.9618	0.9455	0.9707	0.9677	
D13	0.6056	0.9769	0.9880	0.9934	0.7137	0.9355	0.9601	0.9656	
Train avg.	0.9872	0.9737	0.9721	0.9854	0.9861	0.9269	0.9532	0.9701	
Test avg.	0.8624	0.9728	0.9717	0.9901	0.8863	0.9080	0.9354	0.9630	

III. Experiments Timing & Power Analysis using Commercial Tool

- Analyze timing and power using Synopsys PrimeTime
- Extract SPEF file using predicted results for each method
- ParaFormer Results:
 - Delay: $R^2 = 0.9073$ (wire) / $R^2 = 0.9346$ (cell)
 - Power: *MAPE* = 3.31 %

Design	Wire Delay			Cell Delay			Power					
	ML	GNN	HGNN	Ours	ML	GNN	HGNN	Ours	ML	GNN	HGNN	Ours
D10	0.8790	0.7239	0.9084	0.8657	0.9693	0.9492	0.9740	0.9801	0.290	0.690	0.800	0.430
D11	0.8741	0.9189	0.9243	0.9660	0.8609	0.9104	0.9179	0.9637	11.300	8.640	9.680	5.620
D12	0.9273	0.8427	0.9124	0.9305	0.9553	0.8649	0.9290	0.9401	5.130	4.330	0.880	3.210
D13	0.7246	0.8184	0.8503	0.8670	0.7242	0.8130	0.8374	0.8543	1.590	4.120	2.540	4.070
Train avg.	0.9262	0.7988	0.8866	0.9229	0.9843	0.9396	0.9546	0.9739	2.236	6.380	5.108	6.268
Test avg.	0.8513	0.8260	0.8989	0.9073	0.8774	0.8844	0.9146	0.9346	4.578	4.445	3.475	3.310

Impact of GradNorm on Downstream Tasks

- Timing & Power Analysis depend on both R and C
- Results with GradNorm (R^2 score):
 - R: 0.9901 → 0.9785 (w/ GradNorm)
 - C: 0.9630 → 0.9917 (w/ GradNorm)

Design	Wire	Delay	Cell [Delay	Power		
Design	w/o G	w/G	w/o G	w/G	w/o G	w/G	
D10	0.8657	0.9587	0.9801	0.9874	0.340	0.430	
D11	0.9660	0.9915	0.9637	0.9899	5.620	2.500	
D12	0.9305	0.9714	0.9401	0.9928	3.210	0.970	
D13	0.8670	0.9780	0.8543	0.9803	4.070	1.910	
Train avg.	0.9229	0.9493	0.9739	0.9876	6.268	2.561	
Test avg.	0.9073	0.9749	0.9346	0.9876	3.310	1.453	

Conclusion

- ParaFormer combines HGNN and Transformer to capture both topological and geometric features
- GradNorm ensures balanced R and C learning, improving results of downstream tasks
- **ParaFormer** allows for faster and efficient design optimization, reducing the need for iterative adjustments

Thank you

jh.yoon@postech.ac.kr