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ML for IR-drop prediction: Introduction

» Static IR drop analysis of power delivery network (PDN) Is a
crucial task in IC design

— Voltage drop is induced between the power pads and cells in the
design

— High IR drops can severely impact the normal functionality of chips

 Traditional techniques require solving a system of equations
representing KVL and KCL and can take up to few hours using
commercial tools



ML for IR-drop prediction: prior work

« Earlier work for PDN analysis trade off accuracy for speed by
utilizing techniques like spatial locality [DAC’11], preconditioned
conjugate gradient [ICCAD’11].

* Recently, machine learning (ML)-based techniques provide
significantly faster and more accurate solutions
— Limited to incremental analysis [VTS’18, VLSID’22]
— Applicable to specific designs [ASPDAC’20]
— Not accurate enough [ASPDAC’21]




ML for IR-drop prediction: challenges

1. Complexity of PDNs
— 3D network with up to 10 layers
— Hard to make accurate predictions

2. Lack data from real chips for Al-based prediction

— Large amounts of training data are often required to produce accurate
predictions




Methodology: overview
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Methodology : Image-based inputs & output
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Methodology : Image-based inputs & output
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* The Power delivery networks can be modeled as a 3D grid of
voltage sources, current sources, and resistances

— Wires are a network of resistances, the power pad (C4 bumps) are
voltages sources connected to the PDN wires, and the current sources
are the cells/instances




Methodology : Image-based inputs & output
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- PDN features can be represented by images
— Current map shows locations of current sources
— PDN density map reflects the topology of a PDN
— Effective distance to power pads shows the location of power pads
— Resistance maps represent resistances of all metal layers/vias

* IR drops across a chip can be represented by an IR drop map




Methodology : Image-based inputs & output

* Resizing
— Since the chip dimensions may be different, we apply resizing to adjust

all image-based inputs to the same dimension (512 x 512) to allow
processing by the same NN model

* Normalization

— For better adaptability, each input image is scaled to [0, 1] by dividing
by its maximum matrix entry




Methodology : AttUNet architecture
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Methodology : AttUNet architecture
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* Proposed AttUNet which is an advanced U-Net-based CNN

— U-Net CNN: encoder-decoder structure, which is commonly used for
Image-to-image prediction tasks [MICCAI’ 13]
— Highlighted parts are new



Methodology : AttUNet architecture

1) PreConv Block:

— A convolutional Iayer PreConv Encoder Bottleneck Decoder
inserted to preprocess ' | ‘ |
the inputs which has a 2
x 2 filter and an activatior
function ReLU for each
Image-based input

— Works as a quick filter to
highlight the salient
features of each image-
based input

— Allows subsequent convolution operations to work with more relevant and
distinguishing features, and better handle the multi-image to single-image
nature of the prediction problem
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Methodology: AttUNet architecture

2) AttentIOn gateS PreConv Encoder Bottleneck Decoder

— Added to the skipping
connections between
each pair of encoder
and decoders

— Selectively emphasizes
relevant features in the
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Methodology: data augment & model training
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Methodology: data augment
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Methodology: model training
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Model training:

— Transfer learning strategy
 First pretrain using large volume of artificially-generated data to prevent overfitting
* Then finetune using limited data from real designs
— The provided dataset in the ICCAD 2023 contest contains 120 test cases

In total for training, of which 100 are artificially-generated and the
remaining 20 are real

— Each test case Is represented as 12 image-based inputs and is also
accompanied by an image-based golden output IR drop map




Methodology: model training
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Simulation results: Hyperparameters

PreConv filter size 2x2

# filters 12

C1 filter size 3x3

U1 # filters 32

C2 filter size 3x3

Model

hyperparameters Uz # filters o4
C3 filter size 3x3

U3 # filters 128

C4 filter size 3x3

U4 # filters 256

Bottleneck filter size 3x3

# filters 512

Pre-train Fine-tune
Training Epochs 450 600
Optimizer ADAM ADAM
parameters _
Learning rate 0.005 0.00001-0.001

Dropout 0.3-0.5 0.15

Codes are available on https://github.com/Izzh97/Static-IR-Drop-Prediction




Simulation results: prediction quality

* The prediction guality was evaluated using the same metrics from
the ICCAD 2023 contest
— Mean Absolute Error (MAE) : reflects an overall prediction accuracy
« Absolute error between predicted IR drop and the ground-truth

N \vi—v.
« MAE = Zi=0liVi

— F1 Score: reflects prediction accuracy in high drop pixels

- The highest 10% IR drops are labeled as positive and the rest as
negative
e F1 = 2Xprecision-recall

precision+recall

» Besides metrics used in the contest, we also define a third metric to
reflect the MAE in the very high IR drop regions

— MAEy,. MAE In top 5% IR drop regions




Simulation results: prediction quality

« Compared AttUNet TREDGe ConvNeXtV2 AttUNet
ag ainst: (Contest Winner)
— ICCAD’23 contest winner MAE F1 MAEy |MAE F1  MAEy|MAE F1  MAEq
from NTU T7 | 0.124 0.648 0.182 | 0.066 0.783 N/A |0.057 0.656 0.120
— IREDGe: U-Net based T8 | 0.110 0.698 0.159 | 0.082 0.816 N/A |0.067 0.791 0.113
model T9 | 0.205 0.120 0307 |0.041 0.589 N/A |0.074 0562 0.111

[Chhabria et al, ASPDAC'21]*  T10 | 0.141 0483 0.255 |{0.066 0.532 N/A |0.089 0.610 0.122
T T13 [0.119 0.417 0.193 | 0.207 0.000 N/A |[0.164 0.590 0.220

* AttUNet Slgmflcantly T14 | 0.192 0.034 0.244 | 0.422 0.000 N/A [0.089 0.734 0.230
outperforms both models 1150157 0000 0286 | 0097 0088 NA |0.077 0234 0.150
_Improves aCCuracy and In Ti6 | 1.066 0.000 1.431 | 0.160 0.529 N/A [0.096 0.614 0.150
predicting IR drop T19 [ 0.131 0.037 0.250 | 0.091 0.501 N/A |[0.085 0.283 0.044
hotspots T20 | 0.089 0.000 0.187 | 0.118 0.711 N/A [0.035 0.723 0.050

Ave.| 0.233 0.244 0.349 | 0.135 0.455 N/A |0.084 0.580 0.131

20 * V. A. Chhabria, V. Ahuja, A. Prabhu, P. Nikhil, P. Jain, S. S. Sapatnekar. “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder
Networks”. ASP-DAC., pp. 690-696. 2021.




Conclusions

We presented AttUnet, an advanced variant of the U-Net
architecture enhanced with attention mechanisms to predict
static IR drop in power delivery networks

Our findings demonstrated that AttUNet significantly surpasses
the existing U-Net model and the2023 ICCAD contest winner in
prediction quality.

Our evaluation was using the setup and data provided by the
ICCAD 2023 contest, and our code was released on GitHub



Thank you for
vour attention!
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