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ML for IR-drop prediction: Introduction

• Static IR drop analysis of power delivery network (PDN) is a 
crucial task in IC design
─ Voltage drop is induced between the power pads and cells in the 

design

─ High IR drops can severely impact the normal functionality of chips

• Traditional techniques require solving a system of equations 
representing KVL and KCL and can take up to few hours using 
commercial tools 
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ML for IR-drop prediction: prior work

• Earlier work for PDN analysis trade off accuracy for speed by 
utilizing techniques like spatial locality [DAC’11], preconditioned 
conjugate gradient [ICCAD’11]. 

• Recently, machine learning (ML)-based techniques provide 
significantly faster and more accurate solutions
─ Limited to incremental analysis [VTS’18, VLSID’22]

─ Applicable to specific designs [ASPDAC’20]

─ Not accurate enough [ASPDAC’21]
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ML for IR-drop prediction: challenges

1. Complexity of PDNs
─ 3D network with up to 10 layers

─ Hard to make accurate predictions

2. Lack data from real chips for AI-based prediction
─ Large amounts of training data are often required to produce accurate 

predictions
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Methodology: overview

IR drop 

prediction with 

AttUNet
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• Translate the 
original problem to 
image-to-image 
prediction

• Train our model 
using the two-step 
pretrain-finetune 
strategy

• Make prediction 
and evaluate



Methodology : image-based inputs & output
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Methodology : image-based inputs & output

• The Power delivery networks can be modeled as a 3D grid of 
voltage sources, current sources, and resistances
─ Wires are a network of resistances, the power pad (C4 bumps) are 

voltages sources connected to the PDN wires, and the current sources 
are the cells/instances

Source: CAD Contest at ICCAD. 2023. 
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Methodology : image-based inputs & output

• PDN features can be represented by images
─ Current map shows locations of current sources
─ PDN density map reflects the topology of a PDN
─ Effective distance to power pads shows the location of power pads
─ Resistance maps represent resistances of all metal layers/vias

• IR drops across a chip can be represented by an IR drop map

predicted IR drop mapimage-based 

inputs voltage 

drop (mV)
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Methodology : image-based inputs & output

• Resizing
─ Since the chip dimensions may be different, we apply resizing to adjust 

all image-based inputs to the same dimension (512 × 512) to allow 
processing by the same NN model

• Normalization 
─ For better adaptability, each input image is scaled to [0, 1] by dividing 

by its maximum matrix entry
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Methodology : AttUNet architecture

IR drop 

prediction with 

AttUNet
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Methodology : AttUNet architecture

• Proposed AttUNet which is an advanced U-Net-based CNN
─ U-Net CNN: encoder-decoder structure, which is commonly used for 

image-to-image prediction tasks [MICCAI’ 15]

─ Highlighted parts are new
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Methodology : AttUNet architecture

1) PreConv Block: 
─ A convolutional layer 

inserted to preprocess 
the inputs which has a 2 
× 2 filter and an activation 
function ReLU for each
image-based input

─ Works as a quick filter to 
highlight the salient 
features of each image-
based input

− Allows subsequent convolution operations to work with more relevant and 
distinguishing features, and better handle the multi-image to single-image 
nature of the prediction problem
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Methodology: AttUNet architecture

2) Attention gates: 
─ Added to the skipping 

connections between 
each pair of encoder 
and decoders

─ Selectively emphasizes 
relevant features in the 
sparse IR drop maps

─ Reduces noise and 
improves model 
accuracy
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Methodology: data augment & model training
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Methodology: data augment

Data augmentation:

• We augment the training data by applying 
multiple transformations to each image-
based input

─ For each input given operations are applied:  
vertical and horizontal flipping and three 
(counter-clockwise) rotations

• This process results in a sixfold increase 
in the number of testcases
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Methodology: model training

Model training:
─ Transfer learning strategy 

• First pretrain using large volume of artificially-generated data to prevent overfitting

• Then finetune using limited data from real designs

─ The provided dataset in the ICCAD 2023 contest contains 120 test cases 
in total for training, of which 100 are artificially-generated and the 
remaining 20 are real

─ Each test case is represented as 12 image-based inputs and is also 
accompanied by an image-based golden output IR drop map
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Methodology: model training

Model training:
─ Pretrain 

• High learning rate and dropout 
rate to facilitate robust learning

─ Finetuning
• Cosine annealing learning rate: 

Balances exploration in the 
parameter space with precise 
tuning

─ Custom loss function

• Ensures conservative estimates of IR drop 
by penalizing underestimated values, 
aiming for safer design outcomes

≤

>
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Simulation results: Hyperparameters

Codes are available on https://github.com/lzzh97/Static-IR-Drop-Prediction
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Simulation results: prediction quality

• The prediction quality was evaluated using the same metrics from 
the ICCAD 2023 contest
─ Mean Absolute Error (MAE) : reflects an overall prediction accuracy

• Absolute error between predicted IR drop and the ground-truth

• 𝑀𝐴𝐸 =
σ𝑖=0
𝑁 ෢𝑉𝑖−𝑉𝑖

𝑁
─ F1 Score: reflects prediction accuracy in high drop pixels

• The highest 10% IR drops are labeled as positive and the rest as 
negative

• 𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

• Besides metrics used in the contest, we also define a third metric to 
reflect the MAE in the very high IR drop regions
─𝑀𝐴𝐸𝐻: MAE in top 5% IR drop regions
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Simulation results: prediction quality

• Compared AttUNet
against:
─ ICCAD’23 contest winner 

from NTU

─ IREDGe: U-Net based 
model 
[Chhabria et al, ASPDAC'21]*

• AttUNet significantly 
outperforms both models
─ Improves accuracy and in 

predicting IR drop 
hotspots

* V. A. Chhabria, V. Ahuja, A. Prabhu, P. Nikhil, P. Jain, S. S. Sapatnekar. “Thermal and IR Drop Analysis Using Convolutional Encoder-Decoder 

Networks”. ASP-DAC., pp. 690-696. 2021.
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Conclusions

• We presented AttUnet, an advanced variant of the U-Net 
architecture enhanced with attention mechanisms to predict 
static IR drop in power delivery networks

• Our findings demonstrated that AttUNet significantly surpasses 
the existing U-Net model and the2023 ICCAD contest winner in 
prediction quality. 

• Our evaluation was using the setup and data provided by the 
ICCAD 2023 contest, and our code was released on GitHub
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Thank you for 
your attention!
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