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Graph Neural Network for Graph Data
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Graph neural networks (GNNs) are designed for graph data problem.

Social Network Chemical Molecule

Graph data is everywhere.
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[1] Zheng X, Zhang M, Chen C, et al. Gnnevaluator: Evaluating gnn performance on unseen graphs without labels[J]. Advances in Neural Information Processing Systems, 2024, 36.

Problem of Traditional GNN
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Vulnerability of traditional GNN on unseen graphs. 

GNN Training and Inference Poor Generalization on Unseen Graphs[1]
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Era of Large Language Models (LLMs)
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LLMs have attracted much attention.

Rapid Development of LLMs

[1] Qin L, Chen Q, Zhou Y, et al. Multilingual large language model: A survey of resources, taxonomy and frontiers[J]. arXiv preprint arXiv:2404.04925, 2024.

[2] https://www.21jingji.com/article/20240516/herald/c7c069827f1f79b182604827b494511b.html

[3] Zhao W X, Zhou K, Li J, et al. A survey of large language models[J]. arXiv preprint arXiv:2303.18223, 2023.
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One LLM per day on average[1,2] 8.58 papers per day on average[3]
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LLM Improves GNN
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Utilize the strong generalization of LLM to improve GNN 

[1] Qin L, Chen Q, Zhou Y, et al. Multilingual large language model: A survey of resources, taxonomy and frontiers[J]. arXiv preprint arXiv:2404.04925, 2024.

Strong Generalization on Downstream Tasks
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Related Works
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Combination Methods of LLM and GNN[1]

[1] Li Y, Li Z, Wang P, et al. A survey of graph meets large language model: Progress and future directions[J]. arXiv preprint arXiv:2311.12399, 2023.

[2] Liu H, Feng J, Kong L, et al. One for all: Towards training one graph model for all classification tasks[J]. arXiv preprint arXiv:2310.00149, 2023.

[3] Tang J, Yang Y, Wei W, et al. Graphgpt: Graph instruction tuning for large language models[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and 

Development in Information Retrieval. 2024: 491-500.

[4] Zhao J, Qu M, Li C, et al. Learning on large-scale text-attributed graphs via variational inference[J]. arXiv preprint arXiv:2210.14709, 2022.
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Related Works
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Combinations of LLM and GNN[1]

LLM as Enhancer[2] LLM as Predictor [3] GNN-LLM Alignment [4]

[1] Li Y, Li Z, Wang P, et al. A survey of graph meets large language model: Progress and future directions[J]. arXiv preprint arXiv:2311.12399, 2023.

[2] Liu H, Feng J, Kong L, et al. One for all: Towards training one graph model for all classification tasks[J]. arXiv preprint arXiv:2310.00149, 2023.

[3] Tang J, Yang Y, Wei W, et al. Graphgpt: Graph instruction tuning for large language models[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and 

Development in Information Retrieval. 2024: 491-500.

[4] Zhao J, Qu M, Li C, et al. Learning on large-scale text-attributed graphs via variational inference[J]. arXiv preprint arXiv:2210.14709, 2022.
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LLM-Enhanced GNN Dataflow
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LLM-Enhanced GNN Dataflow
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Challenge
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Techniques Overview
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FLOPs and Latency Breakdown
Using BERT, Cora, R-GCN

The linear in LLMs is the bottleneck

from both theoretical computation and practical latency.

Technique 1: PQ-based MatMul

Motivation
The intensive GEMMs in LLM need to be alleviated while 

ensuring the accuracy for end-to-end acceleration.
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Technique 1: PQ-based MatMul

Insight
The computational precision of LLM has little impact on 

GNN training and inference. 

Coarser approximation algorithms can be employed to 

alleviate the intensive GEMMs.
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Technique 1: PQ-based MatMul

Product Quantization is used to approximate the linear 

operation in LLMs (PQ-based MatMul).
Approach

Dataflow
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Technique 1: PQ-based MatMul

Product Quantization is used to approximate the linear 

operation in LLMs (PQ-based MatMul).
Approach

Reduce >70% overall computation workload
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Two Types of Memory Access

The opposite property of memory access prevent the 

potential benefits brought by the PQ-based MatMul.

Technique 2: Unified Architecture

Motivation
The two types of memory access in the LLM-enhanced 

GNN lower hardware utilization.

T1: PQ-based MatMul
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Technique 2: Unified Architecture

A hardware architecture with unified indexing unit is 

designed to support both types of computation.
Approach

Reduce ~30% Memory Access
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Lack of low-level primitives  

The primitives need to be designed to 

enable LLM-enhanced GNNs with PQ-based MatMul.

Technique 3: Extensible GFM-ISA Design

Motivation
Existing software frameworks lacking low-level primitives 

for LLM-enhanced GNNs with PQ-based MatMul. 
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Technique 3: Extensible GFM-ISA Design

Extensible GFM-ISA design is used to offer low-level 

software primitives based on the unified architecture.
Approach

Dataflow

LLM

Data
📄

Text AttributesGraph Structure

GNN

Enhanced Embedding

Graph Task :
Eg., Node 

Classification

Stage 1: Program Stage 2: Compile Stage 3: Execute

Trained Model

HLL Operator 
Support

Optimize

Inst. Map

GFM-ISA

GFMEngine

Index 
Unit

011  001  000  110 …..

000  101  110  110 …..

SA AT
GFMEngine::Attention
GFMEngine::FFN
GFMEngine::Aggregation
GFMEngine::Combination

code.cpp

4 4 4 4 4 4 4 36

opcode Reg0 Reg1 Reg2 Reg3 Reg4 Reg5
LINEAR O_addr O_size I0_addr I0_size I1_addr I1_size

4 4 4 4 48

opcode Reg0 Reg1 Reg2
Norm/

Row.Max/

IndexAdd

O_addr O_size I_addr

4 4 4 4 32 16

opcode Reg0 Reg1 Reg2 Immed
LOAD/
STORE

Dest_ad
dr

Size Src_base Src_offset

Operation Opcode
Input0

Address
Input1

Address
Output
Address

Index_Add 000 √ √ √
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Experiment Setup

➢Tools for Evaluation: Ramulator 2.0 and TSMC 28nm process library

➢Benchmark Models: 
• LLMs: BERT, Sentence Transformer, E5-large-v2, Llama2-7B/13B

• GNN: R-GCN

➢Baselines: NVIDIA  A100 GPU, SGCN, MEGA, FACT

➢Datasets

GNN

LLM
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Accuracy Evaluation

The accuracy loss of the LLM-enhanced GNNs with PQ-based MatMul

can be negligible in most cases.
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Hardware Evaluation
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Compared with A100 GPU and other DSA, we achieve up to 3.93×, and 

38.66× speedup and up to 102.52×, 37.82× energy efficiency.
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