

MPICC: Multiple-Precision Inter-Combined MAC Unit with Stochastic Rounding for Ultra-Low-Precision Training

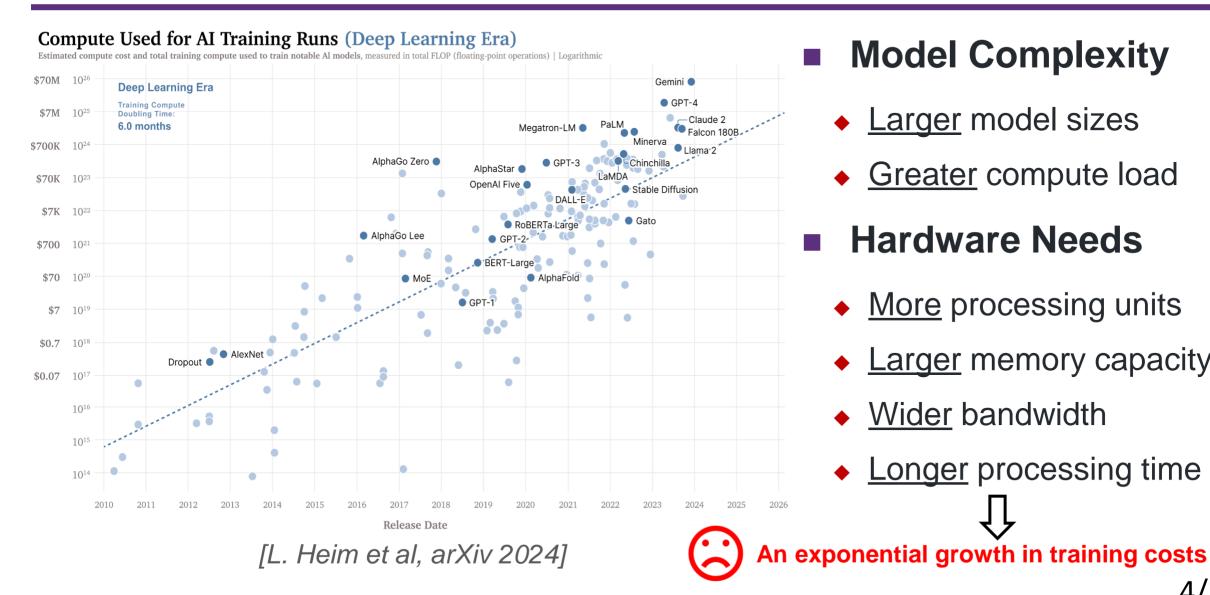
Leran Huang¹ (Speaker)

Yongpan Liu², Xinyuan Lin², Chenhan Wei², Wenyu Sun², Zengwei Wang² Boran Cao¹, Chi Zhang², Xiaoxia Fu², Wentao Zhao², and **Sheng Zhang^{1*}**

¹ Tsinghua Shenzhen International Graduate School, Shenzhen, China² Department of Electronic Engineering, Tsinghua University, Beijing, China

Self Introduction

- B.Eng. degree from Harbin Engineering University, Harbin, China, in 2022.
- M.Eng. candidate at Tsinghua University, Beijing, China.
- My research interests include the design of energy-efficient AI accelerators and multi-precision processing elements.


Leran Huang

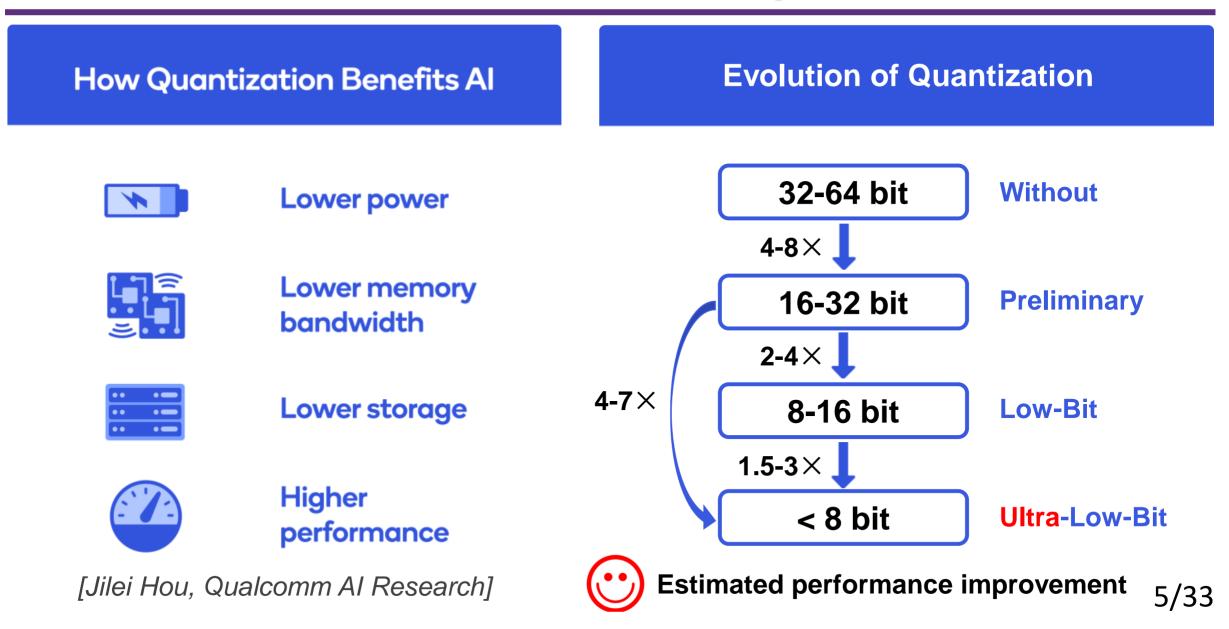
Outline

Background & Challenges

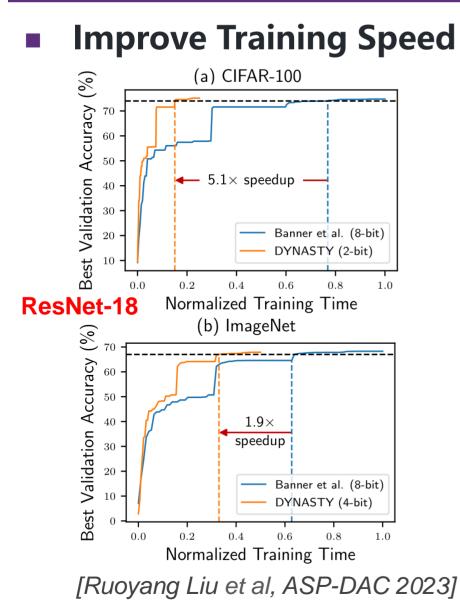
- Flexible Support for Ultra-Low-Precisions
- Reduce Bit Width for Accumulation
- Support High-Precision at Low Cost
- Overall Introduction of MPICC
- Key Features of MPICC
- Experiment & Results
- Conclusion

Cost Trend of Deep Learning Training

Model Complexity


- Larger model sizes
- Greater compute load

Hardware Needs


- More processing units
- Larger memory capacity
- Wider bandwidth
- Longer processing time

4/33

Quantization: Reduce Costs & Improve Performance

Research on Ultra-Low-Precison Training

Model	FP32	MXFP4 Wt & MXFP6 A		
GPT-20M	3.98	4.04		
GPT-300M	3.11	3.14		
GPT-1.5B	2.74	2.76		
10 8 6 Story 4 4	······ FP32 — MXFP4	Wt- MXFP6 Act GPT-20M GPT-150M GPT-345M GPT-1.5B		
2	.2 0.4	0.6 0.8 1.0		

6/33

Chal.1: Flexible Support for Ultra-Low-Precisions

Features of Ultra-Low-Bit Quantization

ResNet-18

activation tensor

10

High precision

ntra-tensor

0.5

0.4

0.3

0.2

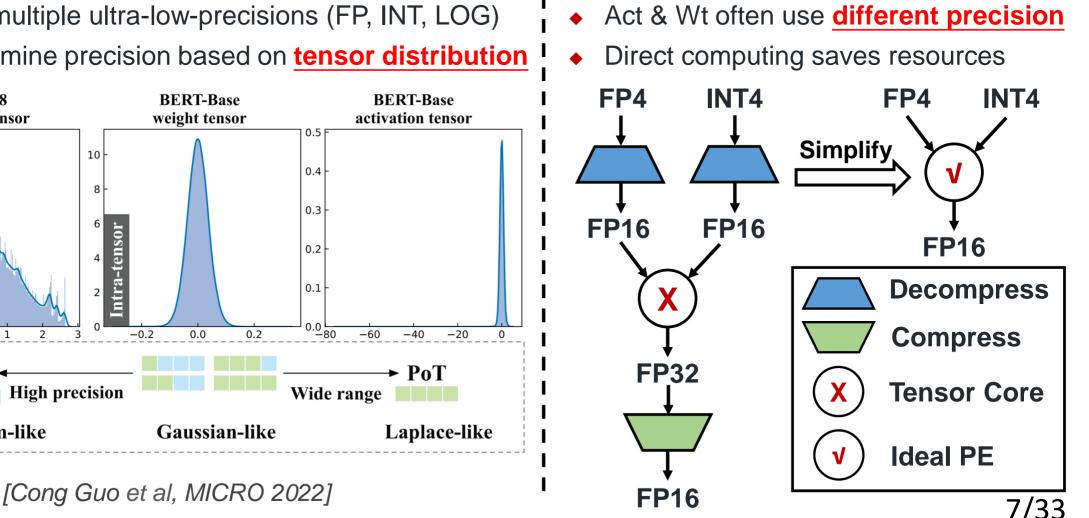
0.1

0.0

nter-tensor

-2

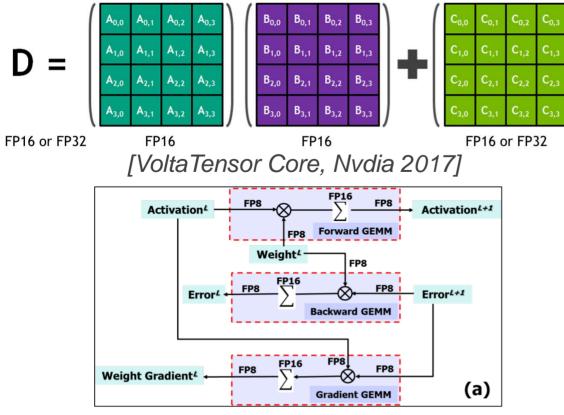
 $^{-1}$


Λ

Int

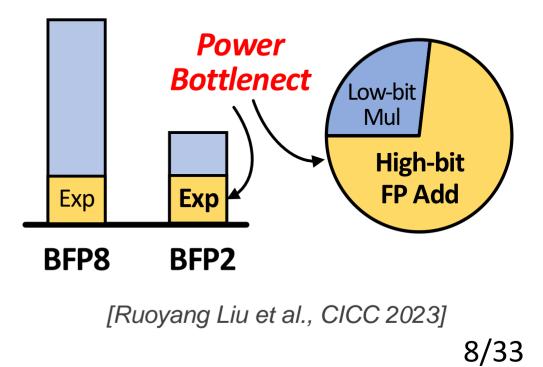
Uniform-like

- Use multiple ultra-low-precisions (FP, INT, LOG)
- Determine precision based on **tensor distribution**


Demands for Direct Computing

Chal.2: Reduce Bit Width for Accumulation

Why Bit Width Difficult to Reduce


- Ensure a wide range to prevent overflow
- Prevent training stagnation caused by <u>swamping</u>

[Naigang Wang et al., NeurIPS 2018]

- Necessity of Reducing Bit Width
 - FP adders become power **bottleneck**
 - Reduce the cost of result compression

FP Processing Power Breakdown

Chal.3: Support High-Precision at Low Cost

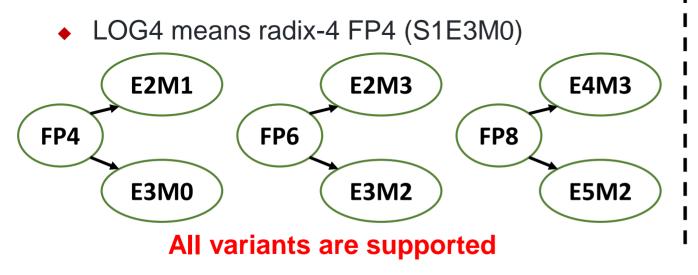
Use High-Precision for Critical Layers

- Improve accuracy and support more networks
- Maintain performance ([3] throughput reduces 24%)

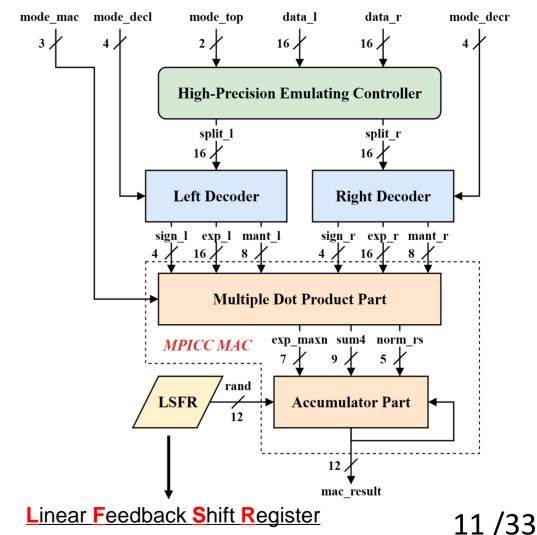
Cost Versus Bit Width

- Cost increases rapidly with bit width
- Support high-precision is <u>expensive</u>

Work	Model	Method	Degradation	Operation	Energy (pJ)	Rela Energ	ative y Cos	st
[1]	AlexNet	Upgrade the final layer precision from FP8 to FP16	0.07%	8b INT Add	0.03		•	
				16b INT Add	0.05			
[2]	[2] Mobile Upgrade Conv1x1 layers		0.60%	32b INT Add	0.1	-		
NetV2		precision from FP4 to FP8		16b FP Add	0.4			
[3]	ResNet	Add 3 FP16 fine-tuning	0.32%	32b FP Add	0.9			
[3] -50		epochs (originally 4bit)	0.5270	8b INT Mult	0.2			
				32b INT Mult	3.1			
 Reference List [1] [Naigang Wang et al., NeurIPS 2018] [2] [Xiao Sun et al., NeurIPS 2020] [3] [Brian Chmiel et al., ICLR 2023] 			8b FP Mult	1.1				
			32b FP Mult	3.7				
			M. Horowitz, /S.	SCC 2014]	1 10	10 ²	10 ³	


Outline

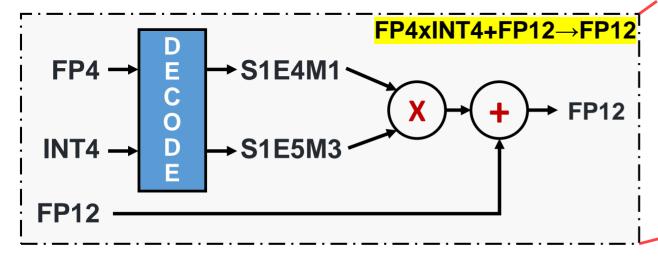
- Background & Challenges
- Overall Introduction of MPICC
 - Multiple-Precision Inter-Combined Computing
- Key Features of MPICC
- Experiment & Results
- Conclusion


Overall Introduction of MPICC

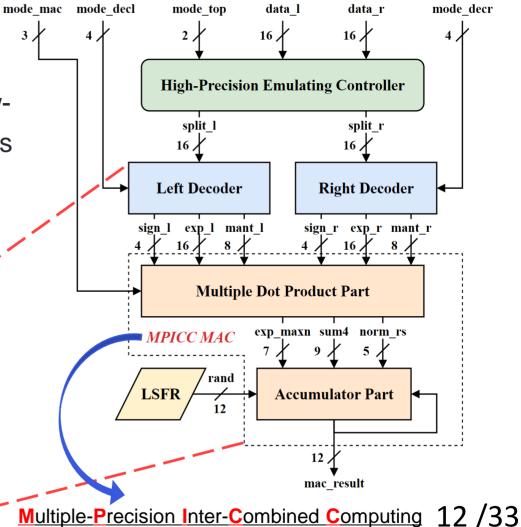
Function of MPICC

- Performs 1/2/4 (K) dot products per operation
- Accumulates the results in FP12 & INT8
- $F = \begin{cases} A_1 \times B_1 + C & K \le 1 \\ A_1 \times B_1 + A_2 \times B_2 + C & K = 2 \\ A_1 \times B_1 + A_2 \times B_2 + A_3 \times B_3 + A_4 \times B_4 + C & K = 4 \end{cases}$
- Supported Precision Modes

MPICC Overall Architecture


Feature 1 of MPICC

Feature1: MPICC Architecture


- Aim: Supports inter-computations among multiple FP, INT, and LOG formats
- **Chal. 1:** Solve need for multiple precision in ultra-low-precision training & Direct computing saves resources

Principle of MPICC

Compute after decoding into a <u>unified format</u>

MPICC Overall Architecture

Feature 2 of MPICC

mode mac mode decl

4

3

mode top

split l

Left Decoder

16

data 1

High-Precision Emulating Controller

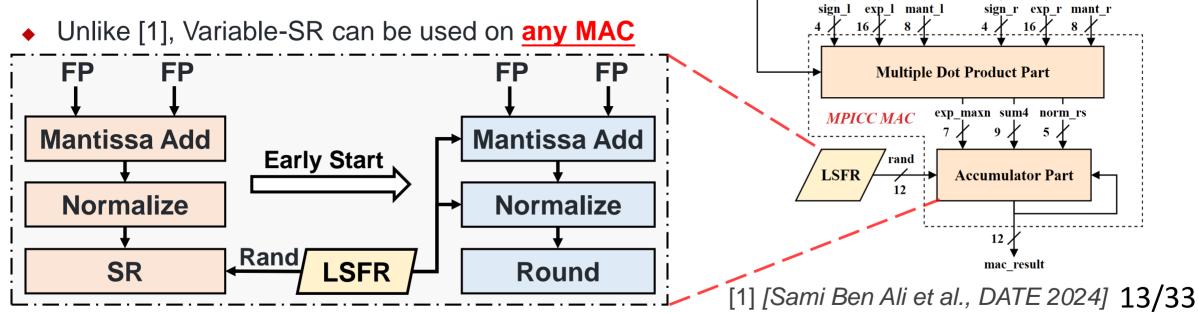
16

data r

split r

Right Decoder

16

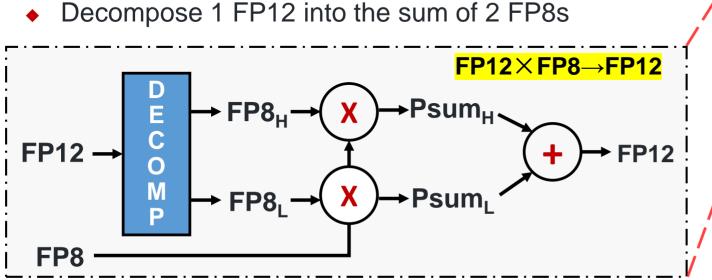

16

mode decr

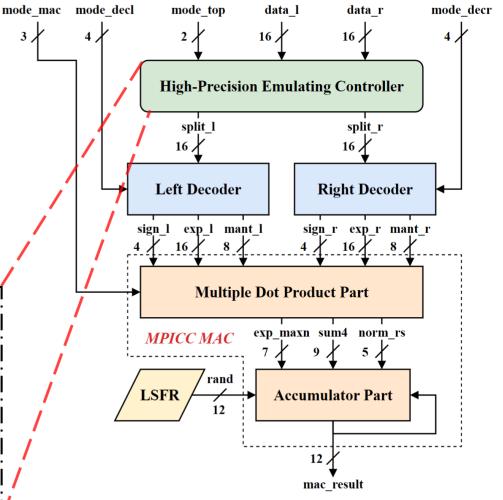
Feature2: Optimized Stochastic Rounding MPICC Overall Architecture

- Aim: Perform SR in advance to maintain accuracy and reduce cumulative bit width
- Chal. 2: Prevent <u>swamping</u> and training stagnation
 & Save accumulator resource consumption

Principle of Variable-SR



Feature 3 of MPICC

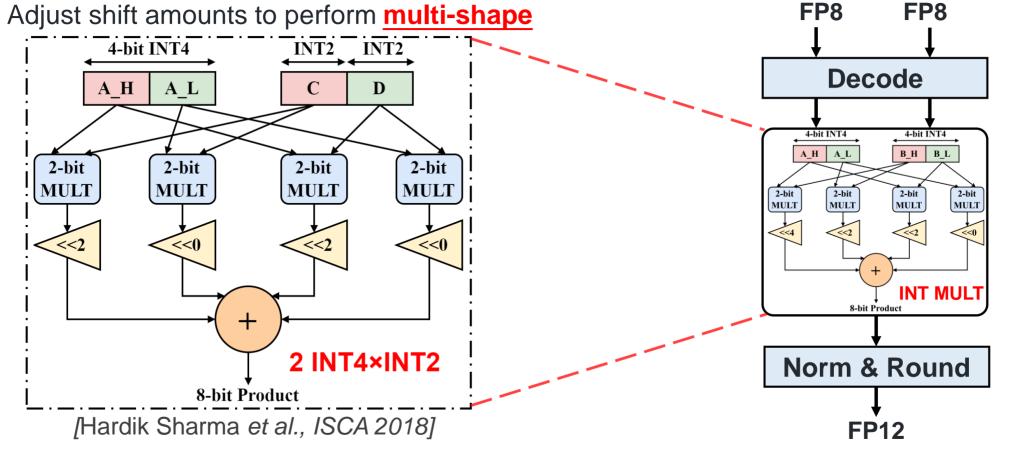

Feature3: High-Precision Emulating

- Aim: <u>Decompose</u> FP12 computation into multiple FP8 computations in low-precision hardware
- Chal. 3: <u>Avoid adding</u> high-precision hardware & Only 5.7% increase in area cost for control

Principle of High-Precision Emulating

MPICC Overall Architecture

Outline


- Background & Challenges
- Overall Introduction of MPICC
- Key Features of MPICC
 - Feature 1: MPICC Architecture
 - Feature 2: Optimized Stochastic Rounding Strategy
 - Feature 3: High-Precision Emulating Controller
- Experiment & Results
- Conclusion

Feature 1 — MPICC Implementation Principle

Migration of INT Scheme to FP Realize Multi-Shape Multiplication (INT)

- Decompose 2ⁿ bit multiplication into the sum of multiple 2 bit multiplications after shifting
- Adjust shift amounts to perform multi-shape

 Add FP-specific processes such as decoding, normalization, rounding ...

Feature 1 — Logic of Decoding

15

FP4 K=4

11

A₄

7 :

A3

Decode to Uniform Type

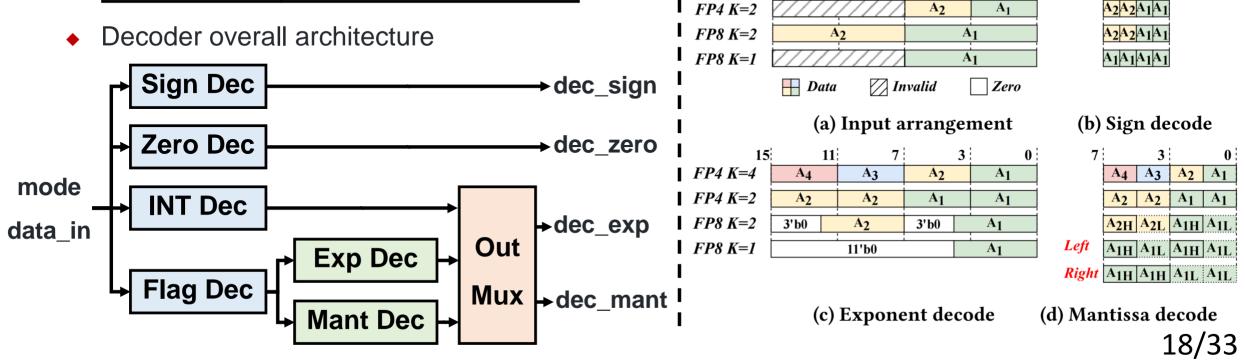
• Decode to sign, exponent, and mantissa

Result	Input		
S1E5M3	FP8, FP6, INT4		
S1E4M1	FP4, LOG4		

Input & Output Arrangement

- Input comprises 2 8b data or 4 4b data
- Adjust bias when decoding exponents

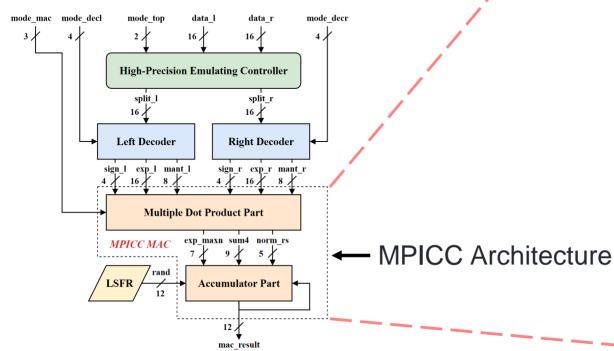
3

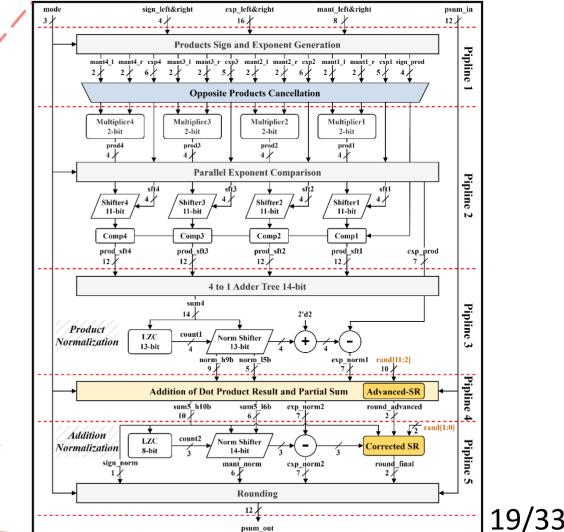

A2

Mant. decoding result contain leading bit

A₁

3


A4A3A2A1

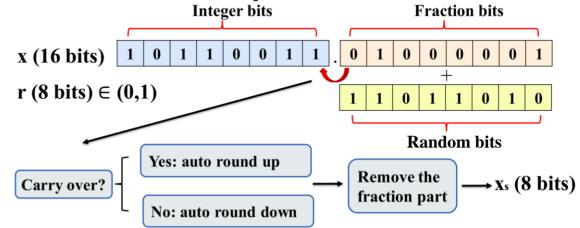

Feature 1 — Multiple Dot Product Unit

Functions of the 5 Pipelines

- 1: Product unpack and cancellation
- 2: Multiplication, exponent comparison and align
- 3: Reduction and product normalization
- 4: Addition of dot product result and partial sum
- 5: Normalization and rounding

Multiple Dot Product Unit Architecture

Feature 2 — Introduction of Stochastic Rounding


Principle & Advantages

- $SR(x) = \begin{cases} [x], & probability: 1 (x [x]) \\ [x], & probability: x [x] \end{cases}$
- Prevent <u>swamping</u> and training stagnation
- Reduce bit width and cost for accumulation

Comparison of FP16 and FP32 18000 ChunkSize=8 -FP32 SR--FP16 - SR 16000 14000 **Accumulation Values** <FP16 - NR > 12000 ChunkSize=16 -ChunkSize=1 **FP32. FP16-ChunkSize=32-256** 10000 ChunkSize=2 8000 ChunkSize=4 6000 ChunkSize=8 4000 ChunkSize=16 -ChunkSize=32 2000 -ChunkSize=64 0 ChunkSize=128 4096 8176 12256 16336 16 —ChunkSize=256 Accumulation Length

[Naigang Wang et al., NeurIPS 2018]

Hardware Implementation of SR

Example of 2 Fraction Bits SR

Fraction Bits	SR Result	
00	0% round up	
01	25% round up	
10	50% round up	
11	75% round up	
[Sun Chang e	otal DATE 20231	1

[Sun Chang et al., DATE 2023] 19/33

Feature 2 — Introduction of Advanced SR

r-2

2

CarrySelect

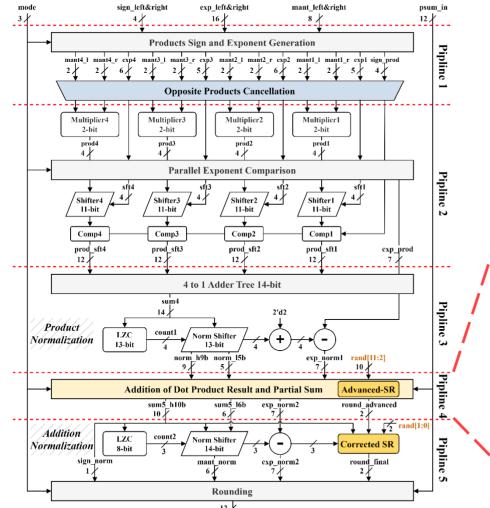
1

Comparison of 2 FP Adders with SR rand rand Exponent difference / Swap Exponent difference / Swap m_u p $e_x - e_y$ rand m_y p $e_r - e_u$ op e_x Shift m_{-} e_x opShift m_{x} rand c/fp - 1 + r2's Complement p + r - 1pp - 1 + r2's Complement \boldsymbol{p} C r-2p + r - 1Sticky Round Advanced SR p+2p + r $S'=S'_1,S'_2$ LZD/Shift Normalization LZD/Shift Normalization S' = 0, 0p+1p+1 e_z p-1+rp - 1 + r e_z $^{\prime}2$ e_z e_z c/fS'p+1p-1+r e_z e_z R, Sp-1p-1Round Correction Increment **Normal SR** \Box Increment 2 [Sami Ben Ali et al., DATE 2024] $\bigcirc z$

Motivation of Adv. SR

- SR starts early on addition
- **<u>Correct</u>** SR results at rounding
- Reduce bit with of LZD & Norm.

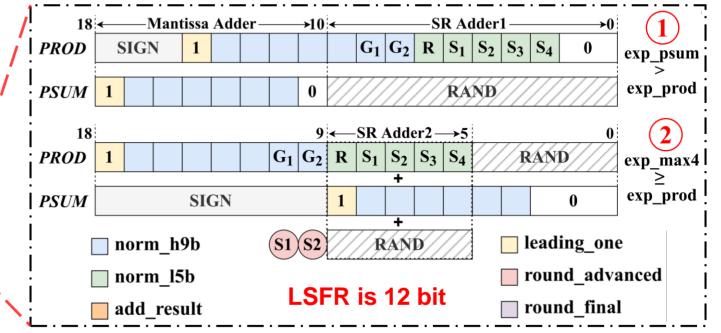
Advantage of Adv. SR


- Lower logic latency
- Smaller area & power usage
- Maintaining the accuracy

Existing Problems

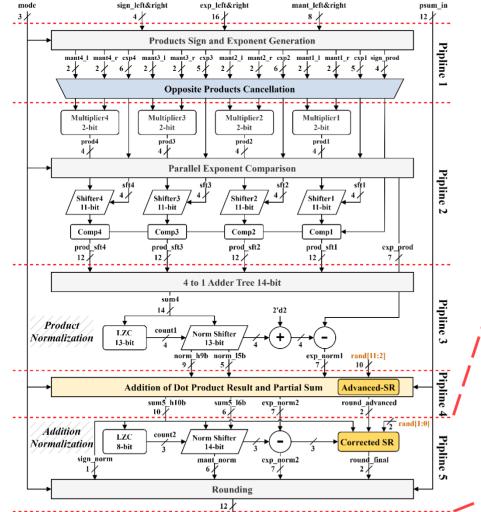
- 1. Support for FP addition only
- 2. Cannot be applied to any MAC

Feature 2 — Principle of Variable-SR


Multiple Dot Product Unit

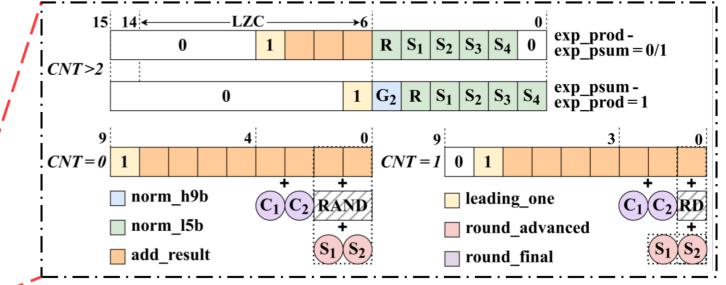
psum_out

Variable-SR During Mantissa Addition


- Product's higher for mantissa ADD, lower for SR ADD
- Insert random number in exponent alignment by case
- **Case 1:** Random number inserted to PSUM's right
- **Case 2:** Inserted to PROD's right and SR Adder2

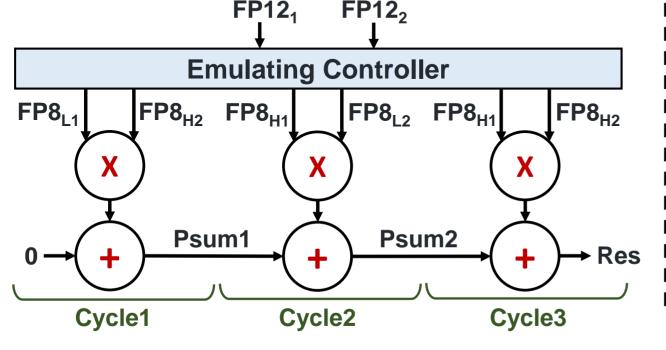
21/33

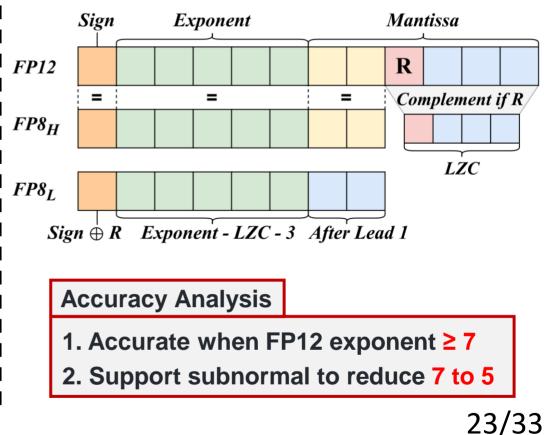
Feature 2 — Principle of Variable-SR


Multiple Dot Product Unit

psum_out

SR Correction During Normalization


- Based on the count of leading zeros divided 4 cases
- **CNT=0:** Carry-over; Perform 2 bit addition to correct
- **CNT=1:** Hold; Perform 1 bit addition to correct
- CNT=2: Carry-back; No need to correct
- CNT 23: Cancellation; No need to SR


Feature 3 — High-Precision Emulating Controller

Realization of High-Precision Emulating Specific Decompose Process

- $FP12_1 \times FP12_2 = FP8_{H1} \times FP8_{H2} + FP8_{H1} \times FP8_{L2} + FP8_{L1} \times FP8_{L2} + FP8_{L1} \times FP8_{L2} + FP8_{L2} +$
- $FP12 \times FP8 = FP12_H \times FP8 + FP12_L \times FP8$ Omitted
- Multiplex Low-Precision MAC

- FP8_H is FP12 truncated and rounded
- FP8_L is smaller, indicating remainder

Outline

- Background & Challenges
- Overall Introduction of MPICC
- Key Features of MPICC
- Experiment & Results
 - Analysis of Different Accumulator Modes
 - Practical Results of Network Training
 - Accuracy for High-Precision Emulation
 - Performance Comparison
- Conclusion

Experiment Conditions

Hardware Experiment Conditions

- TSMC 28nm technology
- Under typical corner (TT, 0.9V, 25°C)
- Area from Synopsys Design Compiler 2021.09
- Power consumption from Synopsys PrimeTime PX 2021.06

Software Experiment Conditions

- ResNet-20 model on CIFAR-100 dataset
- SGD optimizer with an initial learning rate of 0.1
- Use gradient scaling, gradient clipping, and a momentum parameter of 0.9
- Train with a batch size of 128 for 200 epochs

Analysis of Different Accumulator Modes

Accuracy Analysis

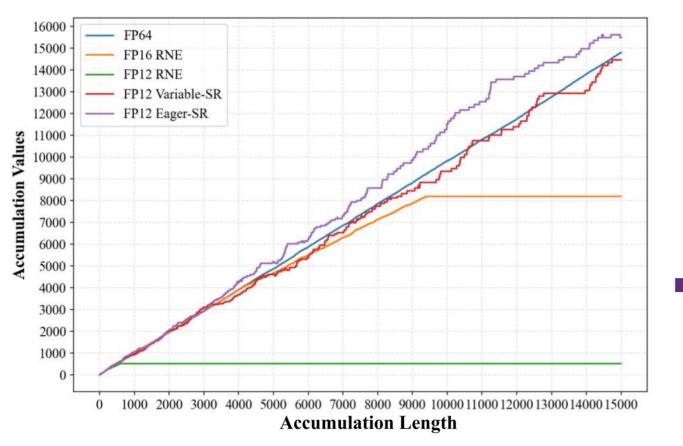


Figure 7: Accumulation results for different accumulators

[Eager-SR] [Sami Ben Ali et al., DATE 2024]

Experiment Setup

- The operation mode is FP8×FP8
- One input set to 1
- The other following a uniform distribution (mean=1, standard deviation=1)
- Accumulated over 15,000 times

Experiment Result

- Nearest Even (RNE) leads to swamping
- Variable-SR is <u>accurate than</u> Eager-SR
- Former less rounded <u>1 time</u> than latter

Analysis of Different Accumulator Modes

Experiment Setup

- Select accumulators in MPICC MACs
- Eager-SR performs SR on product to ensure that subsequent addition bit widths are equal

[10] [Sami Ben Ali et al., DATE 2024]

Experiment Result

- Compared with Conventional-SR, area/ power reduced by 6.6%/11.3%
- Compared with E5M10 RNE, delay/area/
 power reduced by 16.7%/15.7%/14.9%

	L			
Configuration	Area(µm²)	Power(µW/MHz)	Delay(ns)	Accuracy
E5M6 RNE	320.81	0.282	5	Low
E5M6 Variable-SR	390.94	0.337	5	High
E5M6 Eager-SR[10]	401.16	0.342	5	Middle
E5M6 Conventional-SR	418.52	0.375	5	High
E5M10 RNE	463.64	0.396	6	High
	E5M6 RNE E5M6 Variable-SR E5M6 Eager-SR[10] E5M6 Conventional-SR	E5M6 RNE 320.81 E5M6 Variable-SR 390.94 E5M6 Eager-SR[10] 401.16 E5M6 Conventional-SR 418.52	E5M6 RNE320.810.282E5M6 Variable-SR390.940.337E5M6 Eager-SR[10]401.160.342E5M6 Conventional-SR418.520.375	E5M6 RNE320.810.2825E5M6 Variable-SR390.940.3375E5M6 Eager-SR[10]401.160.3425E5M6 Conventional-SR418.520.3755

Table 3: Performance comparison of different accumulators

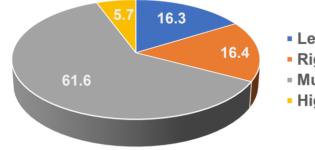
Practical Results of Network Training

Experiment Result

- E8M6 RNE shows a **2.17%** degradation
- E8M6 SR12 shows a **0.64%** degradation
- E8M6 SR12 than E8M10 RNE 0.38% accurate

Existing Improvements

- SR16 accuracy reduced due to small model
- Not employing SOTA quantization scheme

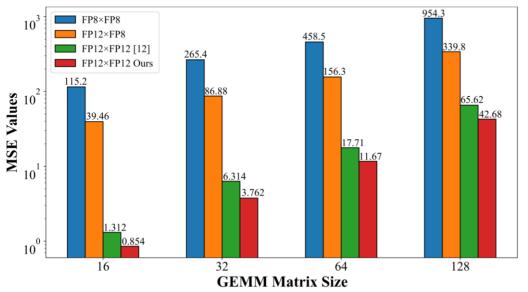

to compress 8 bit exponent to 5 bit

	Precision	Rounding Mode	SR bit width	Accuracy (%)	
	E8M23	RNE	-	75.05	
	E8M10	RNE	-	74.03	
	E8M6	RNE	-	72.88	
	E8M6	SR	16	74.39	
Act & Wt: FP8	E8M6	SR	12	74.41	
	E8M6	SR	8	74.23	
	E8M6	SR	4	73.94	

Table 4: Training accuracy with ResNet-20 on CIFAR-100

Accuracy for High-Precision Emulation

Area Decomposition of MPICC MAC Experiment Setup



Left decoder

Right decoder

- Multiple dot product unit
- High-precision emulating controller

Accuracy Result for High-Precision

 Perform GEMM with random matrices of different sizes on MPICC MACs

Direct precision decomposition in [12]
 means not using rounding or subnormal

Experiment Result

- FP8×FP8 MSE 3× larger than FP12×FP8,
 22-135× larger than FP12×FP12 Ours
- Small accuracy improvement over [12]

[12] [Stefano Markidis et al., IPDPSW 2023]

Figure 8: MSE for different sizes of GEMM computations

Performance Comparison

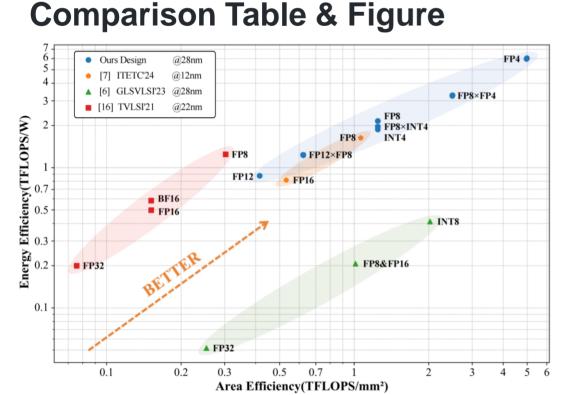


Figure 9: Comparison of area/energy efficiencies among PEs

Reference List

[6] [Jing Zhang et al., GLSVLSI 2023]
[7] [Luca Bertaccini et al., NeurIPS 2024]
[16] [Zürich Switzerland et al., TVLSI 2021]

Summary of Improvement

- Support widest (18) precision combinations
- ◆ FP8 area/energy efficiencies up 1.17×/1.19×
- ◆ FP4 area/energy efficiencies up 4.69×/3.64×

Improvement Analysis

- Focused Design: Target ultra-low-precision,
 <u>eliminate support</u> for redundant precisions
- Integrated Multiple-Precision: Not combine
 various single-precision PEs for efficiency
- MPICC: Use <u>direct computation</u>, eliminate precision conversion overhead

Outline

- Background & Challenges
- Overall Introduction of MPICC
- Key Features of MPICC
- Experiment & Results
- Conclusion

Conclusion

We present a MPICC MAC unit to maximize the hardware performance brought by the ultra-low-precision training.

		1			-part			eep rearming
Decign	Low-Precision Supported				ed	Stochastic	MPICC	High-Precision
Design	FP16	FP8	FP4	LOG4	INT4	Rounding	MIFICC	Emulation
Ours	0	\checkmark						
[16]	\checkmark	\checkmark	Х	×	×	×	×	×
[7]	\checkmark	\checkmark	X	×	×	\checkmark	×	×
[10]	X	×	\checkmark	×	\checkmark	×	\checkmark	×

Table 1: Characteristics comparison of PEs for deep learning

• Supports FP12 with the same accumulation accuracy as FP16

- Three key features are proposed:
 - **A MPICC architecture** that supports inter-computations among multiple precisions;
 - A Variable-SR strategy to reduce accumulator bit width while maintaining accuracy;
 - A high-precision emulating controller to support high-precision at low cost.
- Compared to SOTA designs, our design supports the widest precisions and improves area/energy efficiencies by 1.17×/1.19×(FP8) & 4.69×/3.64×(FP4).

Thanks for Attention! Q&A