Zipper: Latency-Tolerant Optimizations
for High-Performance Buses

Shibo Chen* Hailun Zhang* Todd Austin?

q RS
.’,.Q o
AAAAAAAAAAAAAAAA " University of Michigan — Ann Arbor % T
nHEﬂEﬁlﬁN ™
RUTOMATION ¥ i i ' th ' |
e University of Wisconsin — Madison é

» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator

Communication
(D Connect to the (3 Launch kernel
accelerator through MMIO Overhead ~500 ns (DRead the results
CPU/Host D mEsEsEsEEEEsEEEEEEEEsEEEEEEEEEEEEEEEsEEEEEEEn - >
@ Store input data to
shared memory @
Fetch Operands
Shared Memory
@ Write back results
& notify the host
Accelerator
@ Start computation
Overhead ~500 ns
~1000ns Overhead for Round Trip Latency
2

Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (%):

(Execution_Time py — Execution_Timey ceolerator)

P
O Communication_Latency

_ (Tepu —Tacc)

TLat

g > 1: Beneficial to offload

%<=1: Not beneficial to offload

Backeround Motivation

The Death Zone of Compute Offload

14 ,

P (Tepu —Tacc) ==Unoptimized
0 T 12 !
1 ~1000 ns
o % -
0.4
0.2
0

None Low Medium High
Locality/Parallelism

Backeround Motivation

More Forgiving Trade-Offs with Bus Optimizations

14 ,

-=Unoptimized —Zipper

Beneficial to Offload

E_ (Tcpu _Tacc)
0 TLat l

=
N

[T

o
o

New Design Space

Performance Gain(ns)
o
(e)]

0.4

None Low Medium High
Locality/Parallelism

Backeround Motivation

Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
e Support RISC-like instructions
* Compute on encrypted operands
* Running privacy-focused algorithms

— Enclave
key

e Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
* Positis an alternative to IEEE 754 Floating Point
» Support arithmetic operations
* Running scientific applications

Backeround Motivation Case Studies

Exploitable Opportunities Exist

"Within an 8-Request Window:

* Temporal Locality:
* Greater than 50% of input operands are from the results of the past 7 requests

* Request-level Parallelism:
* On average, 5 requests can be executed in parallel

e Traffic Reduction:
e Less than 22% of the accelerator results need to be sent back to the host

* Device-level Parallelism:
* On average, greater than100 ms between request issue and result use.

*Based on the two case studies covered in the talk 7

Backeround Motivation

Challenges

Analyzing Dependencies Between Two ISAs
* Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
* Generic communication semantics do not capture this information

Minimal Hardware Modifications
* Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APls to Support

Backeround Motivation Case Studies

Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware optimizatic
that tolerate the communication latency for latency-sensitive applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while

* Needs NO compiler modifications -- only C++ libraries
e Captures more than 90% of the locality and enables parallelism
* Has low hardware overhead and NO intrusive modifications

* |s agnostic to underlying bus APls/semantics

Backeround Motivation Case Studies

(4

4

o
4,
g '

R G :

Zipper Overview

Software Runtime Library:
* Detects dependencies between accelerator reque

and between the host and the accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches resultls Fetch results

back to the host.

Hardware Structure:
e Schedules request issuing
» Buffers recent results for locality
* Fetches input or forwards results

Host Program

Call API \

Zipper Runtime Library

Zipper Hardware
Structure

ts Return results

Send requests &
data

Zipper

Issue
instructions

k Buffer results

User-defined Hardware

Kernel

10

Backeround Motivation Case Studies Challenges Zipper

Zipper Runtime Library

Data_type
Three data structures: { Accl_val_t val
_ , bool valid;
* Overloaded data types: track results bool inAccl 3
status, location, etc. intlocation; ¥ | | e -
1
e Shared Memory: Separate intooperand | | ¢
partition and result partition. 0
Operand Partition Result Partition
Shared Memory
| . s
* Result list: track objects that share the g 8 N
same results. > -
i . Result LiStSJ

11

Backeround Motivation Case Studies Challenges Zipper

Zipper Runtime Library Example(1/2)

Example Code Snippet

@ Register a in

intm, n, i; ,
Result Lists Y _ @ Update a’s Status af
Accl_ta=m & n; — Accl_val_t val
(0) Accl_tb=a®i; \ bool valid EIS
1 -0 bool inAccl TN
int location;
2 “y @) Write m, n to } 3
3 B Shared Memory
Result Lists
- ./ 3 © (®, MEM.ADDRS5,
---------- MEM.ADDRS, 3)
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 12

Backeround Motivation Case Studies Challenges Zipper

Zipper Runtime Library Example(2/2)

Example Code Snippet

@ Register b in

intm, n, |; , b
Result Lists @ update b’s Status
Accl_ta=mQn; Accl_val_t val
5 B Accl tb=a ®ij =——— | bool valic EETES
1 - bool inAccl TN
int location; N
2 -0 Write i to Shared }
3 B Memory
_ Result Lists) 6 (®, Req.3,
3 MEM.ADDR?7, 0)
2
1
0
Operand Partition Result Partition Data Bus
Shared Memory 13

Backeround Motivation Case Studies Challenges Zipper

Zipper Hardware Structure

@ Receive Request Scheduling
Logic

@ Issueto

Index | Inst. | Op. 1 | Mode | Op. 2 |Mode | Result Compute Kernel
- ® — Agz,Zwal:/:iE II\:esu It H a rdwa re
; 6 Kernel
3 Q MEM MEM [21[1]
@ Read Operand © Update Operand

from Memory Value

Data Bus /{

© Write Back

Result m
Ay value

to Memory

14

Backeround Motivation Case Studies Challenges Zipper Evaluation Conclusions

QK our ‘ 3

FPGA-Based
Evaluation

15

Experiment Setup

Platform Name

Intel HARP V2

Host CPU

Host Frequency

FPGA Type

Interconnect

Bus Interface

Intel Xeon CPUs (E5-2699v4)

2.2GHz

Arrial0 GX1150

Intel QuickPath Interconnect (QPI)

Core Cache Interface(CCI-P)

Back

round Motivation

Case Studies Challenges Zipper

Evaluation

A Photo of Intel HARP V1

16

Performance Improvements with Low Area
Overhead (1)

Only RLP* = RLP + Dependency Relocation m RLP + Memory Coalescing ® Zipper

200%
L 180%
=N
] 160%
o
(7))
o 140%
Q
<
%D - | II II
100% II
50¢ éf\‘(’ Q™ (2 g0 e X,
e° & e \ L P\") (0
o \)bb\ 65 O \og %C ‘\aQ «\ «\\“50‘:\“‘6‘(\0“66‘ ‘ea ¢ Geo
S

VIP-Bench + Sequestered Encryption Enclave
1.5x Speedup with 0.9% Adaptive Logic Module overhead

*RLP = request-level parallelism

Backeround Motivation Case Studies Challenges Zipper Evaluation

Performance Improvements with Low Area
Overhead (2)

m Only RLP RLP + Dependency Relocation ® RLP + Memory Coalescing ® Zipper
900%

800%
700%
4
600%
500%
400%
300%
200%

Geomean

Higher is better

NAS Parallel Benchmark + Posit Hardware Kernel
8x Speedup with 4.3% Adaptive Logic Module overhead

Backeround Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Improves Performance by Reducing
Memory Traffic (1)

M Only RLP m RLP + Dependency Relocation m RLP + Memory Coalescing Zipper
100%

80%

60%
40%
v
20%
e

Lower is better

0%
Qa“ sec PN \\e
0“' xe
AL

‘o‘o\e” c’ﬁ e %d) \@63 \6\395 e «\\(\

oV 6\5" se’(.’

VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions 19

Backeround Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Improves Performance by Reducing
Memory Traffic (2)

® Only RLP m RLP + Dependency Relocation ® RLP + Memory Coalescing = Zipper
100%

80%

60%
v 40%
- I I I I I I

0%

Lower is better

Geomean

NAS Parallel Benchmark + Posit Hardware Kernel
Zipper reduces 77% of bus transactions 20

Backeround Motivation Case Studies Challenges Zipper Evaluation Conclusions

Conclusions & Looking Ahead
* Communication latency is not getting any lower
* However, they can be tolerated and hidden...

 Zipper achieves, even without any drastic and intrusive changes:
* On average, 1.5-8X speed-up with <5% area overhead.
* No compiler changes or intrusive changes to the hardware kernel.
* Portable to all buses, APIs, and operating systems.

 Zipper is open-sourced @ https://github.com/zipper-bus-optimizations

21

Backeround Motivation Case Studies 0 ' Evaluation

https://github.com/zipper-bus-optimizations

Questions?

3/7/2025

22

