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Compute Offload Overhead

① Connect to the 
accelerator

② Store input data to 
shared memory

③ Launch kernel 
through MMIO

CPU/Host
⑦Read the results

Accelerator

Shared Memory

Overhead ~500 ns

Overhead ~500 ns

Memory Access

Host-Accelerator 
Communication

Compute Process

⑤ Start computation

⑥ Write back results 
& notify the host

④ Fetch Operands
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~1000ns Overhead for Round Trip Latency
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Equation for Computing Offload Trade-offs
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Ratio of Raw Time Saved Over Offload Overhead
P

O
:
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P

O
> 1: Beneficial to offload

P

O
<=1: Not beneficial to offload

(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝐶𝑃𝑈 − 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟)

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝐿𝑎𝑡𝑒𝑛𝑐𝑦

= 
(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)

𝑇𝐿𝑎𝑡



The Death Zone of Compute Offload
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~200 cycles 

P

O
=

(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)

𝑇𝐿𝑎𝑡
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~1000 ns



More Forgiving Trade-Offs with Bus Optimizations
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(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)
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Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
• Support RISC-like instructions

• Compute on encrypted operands

• Running privacy-focused algorithms

• Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
• Posit is an alternative to IEEE 754 Floating Point

• Support arithmetic operations

• Running scientific applications
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Host
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Host
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Exploitable Opportunities Exist

*Within an 8-Request Window:

• Temporal Locality:
• Greater than 50% of input operands are from the results of the past 7 requests

• Request-level Parallelism:
• On average, 5 requests can be executed in parallel

• Traffic Reduction:
• Less than 22% of the accelerator results need to be sent back to the host

• Device-level Parallelism:
• On average, greater than100 ms between request issue and result use.

7*Based on the two case studies covered in the talk
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Challenges

Analyzing Dependencies Between Two ISAs
• Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
• Generic communication semantics do not capture this information

Minimal Hardware Modifications
• Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

8
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Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware optimizations 
that tolerate the communication latency for latency-sensitive applications.

Our FPGA-based evaluation shows Zipper provides a significant performance 
boost while

• Needs NO compiler modifications -- only C++ libraries

• Captures more than 90% of the locality and enables parallelism

• Has low hardware overhead and NO intrusive modifications

• Is agnostic to underlying bus APIs/semantics

9
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Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator requests 

and between the host and the accelerator request.
• Manages shared memory.
• Sends requests to the accelerator & fetches results 

back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware 
Structure

User-defined Hardware 
Kernel
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Call APIReturn results

Send requests & 
data

Fetch results

Issue 
instructionsBuffer results

Zipper
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Zipper Runtime Library
Three data structures:

• Overloaded data types: track results’ 
status, location, etc.

• Shared Memory: Separate into operand 
partition and result partition.

• Result list: track objects that share the 
same results.

Data_type
{ Accl_val_t val;

bool valid;
bool inAccl;
int location;  }

Shared Memory
Operand Partition Result Partition

0

1

2

3

Result Lists

1
0

2

3
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Zipper Runtime Library Example(1/2)

(⊗, MEM.ADDR5, 
MEM.ADDR6, 3)

int m, n, i; 
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in 
Result Lists

Result Lists

1
0

2

3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write m, n to 
Shared Memory

Data Bus

3

Update a’s Status a{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

4

True
False

3
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Example Code Snippet
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Zipper Runtime Library Example(2/2)

(⊗, Req.3, 
MEM.ADDR7, 0)

int m, n, i; 
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in 
Result Lists

Result Lists

1
0

2

3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared 
Memory

Data Bus

3

Update b’s Status b{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

4

True
False

0
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Example Code Snippet
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Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to 
Compute Kernel

Hardware 
Kernel

Memory 
Controller

1

value

Scheduling 
Logic

Mode

3

Receive Request

2 Read Operand 
from Memory

3 Update Operand 
Value

4

5 Write Back
Result

6 Forward Result

7 Write               
to Memory

value

value

value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2
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FPGA-Based 
Evaluation
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Experiment Setup
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Platform Name Intel HARP V2

Host CPU Intel Xeon CPUs (E5-2699v4)

Host Frequency 2.2GHz

FPGA Type Arria10 GX1150

Interconnect Intel QuickPath Interconnect (QPI)

Bus Interface Core Cache Interface(CCI-P)
A Photo of Intel HARP V1
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Performance Improvements with Low Area 
Overhead (1)
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Performance Improvements with Low Area 
Overhead (2)
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Zipper Improves Performance by Reducing 
Memory Traffic (1)
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VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions
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Zipper Improves Performance by Reducing 
Memory Traffic (2)
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Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
Zipper reduces 77% of bus transactions
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Conclusions & Looking Ahead

• Communication latency is not getting any lower

• However, they can be tolerated and hidden…

• Zipper achieves, even without any drastic and intrusive changes:
• On average, 1.5-8X speed-up with <5% area overhead.
• No compiler changes or intrusive changes to the hardware kernel.
• Portable to all buses, APIs, and operating systems.

• Zipper is open-sourced @ https://github.com/zipper-bus-optimizations

21
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Questions?
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