
Zipper: Latency-Tolerant Optimizations
for High-Performance Buses

Shibo Chen† Hailun Zhang‡ Todd Austin †

† University of Michigan – Ann Arbor
‡ University of Wisconsin – Madison

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host
⑦Read the results

Accelerator

Shared Memory

Overhead ~500 ns

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

⑥ Write back results
& notify the host

④ Fetch Operands

2
~1000ns Overhead for Round Trip Latency

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

P

O
=

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead
P

O
:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

P

O
> 1: Beneficial to offload

P

O
<=1: Not beneficial to offload

(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝐶𝑃𝑈 − 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟)

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝐿𝑎𝑡𝑒𝑛𝑐𝑦

=
(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)

𝑇𝐿𝑎𝑡

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

Intel 8087
First Floating Point

CoProcessor

4

~200 cycles

P

O
=

(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)

𝑇𝐿𝑎𝑡

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

More Forgiving Trade-Offs with Bus Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 33 61 92 122 153 183 214 245 275

P
e

rf
o

rm
an

ce
 G

ai
n

(n
s)

Locality/Parallelism

Unoptimized Zipper

None Low Medium High

New Design Space

Beneficial to Offload

Do NOT Offload

5

P

O
=

(𝑇𝑐𝑝𝑢 −𝑇𝑎𝑐𝑐)

𝑇𝐿𝑎𝑡

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
• Support RISC-like instructions

• Compute on encrypted operands

• Running privacy-focused algorithms

• Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
• Posit is an alternative to IEEE 754 Floating Point

• Support arithmetic operations

• Running scientific applications

6

Host
Enclave

key

Host
Posit

Kernel

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Exploitable Opportunities Exist

*Within an 8-Request Window:

• Temporal Locality:
• Greater than 50% of input operands are from the results of the past 7 requests

• Request-level Parallelism:
• On average, 5 requests can be executed in parallel

• Traffic Reduction:
• Less than 22% of the accelerator results need to be sent back to the host

• Device-level Parallelism:
• On average, greater than100 ms between request issue and result use.

7*Based on the two case studies covered in the talk

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Challenges

Analyzing Dependencies Between Two ISAs
• Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
• Generic communication semantics do not capture this information

Minimal Hardware Modifications
• Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

8
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware optimizations
that tolerate the communication latency for latency-sensitive applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while

• Needs NO compiler modifications -- only C++ libraries

• Captures more than 90% of the locality and enables parallelism

• Has low hardware overhead and NO intrusive modifications

• Is agnostic to underlying bus APIs/semantics

9
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator requests

and between the host and the accelerator request.
• Manages shared memory.
• Sends requests to the accelerator & fetches results

back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined Hardware
Kernel

10

Call APIReturn results

Send requests &
data

Fetch results

Issue
instructionsBuffer results

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library
Three data structures:

• Overloaded data types: track results’
status, location, etc.

• Shared Memory: Separate into operand
partition and result partition.

• Result list: track objects that share the
same results.

Data_type
{ Accl_val_t val;

bool valid;
bool inAccl;
int location; }

Shared Memory
Operand Partition Result Partition

0

1

2

3

Result Lists

1
0

2

3

11
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)

(⊗, MEM.ADDR5,
MEM.ADDR6, 3)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in
Result Lists

Result Lists

1
0

2

3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write m, n to
Shared Memory

Data Bus

3

Update a’s Status a{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

4

True
False

3

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)

(⊗, Req.3,
MEM.ADDR7, 0)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in
Result Lists

Result Lists

1
0

2

3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared
Memory

Data Bus

3

Update b’s Status b{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

4

True
False

0

13

Example Code Snippet

b

i

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to
Compute Kernel

Hardware
Kernel

Memory
Controller

1

value

Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4

5 Write Back
Result

6 Forward Result

7 Write
to Memory

value

value

value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

FPGA-Based
Evaluation

3/7/2025 15

Experiment Setup

16

Platform Name Intel HARP V2

Host CPU Intel Xeon CPUs (E5-2699v4)

Host Frequency 2.2GHz

FPGA Type Arria10 GX1150

Interconnect Intel QuickPath Interconnect (QPI)

Bus Interface Core Cache Interface(CCI-P)
A Photo of Intel HARP V1

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Performance Improvements with Low Area
Overhead (1)

17

100%

120%

140%

160%

180%

200%
Only RLP* RLP + Dependency Relocation RLP + Memory Coalescing Zipper

VIP-Bench + Sequestered Encryption Enclave
1.5x Speedup with 0.9% Adaptive Logic Module overhead

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions
*RLP = request-level parallelism

H
ig

h
er

 is
 b

et
te

r

Performance Improvements with Low Area
Overhead (2)

18

100%

200%

300%

400%

500%

600%

700%

800%

900%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
8x Speedup with 4.3% Adaptive Logic Module overhead

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

H
ig

h
er

 is
 b

et
te

r

Zipper Improves Performance by Reducing
Memory Traffic (1)

19

VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

0%

20%

40%

60%

80%

100%
Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

Lo
w

er
 is

 b
et

te
r

Zipper Improves Performance by Reducing
Memory Traffic (2)

20

0%

20%

40%

60%

80%

100%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
Zipper reduces 77% of bus transactions

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Lo
w

er
 is

 b
et

te
r

Conclusions & Looking Ahead

• Communication latency is not getting any lower

• However, they can be tolerated and hidden…

• Zipper achieves, even without any drastic and intrusive changes:
• On average, 1.5-8X speed-up with <5% area overhead.
• No compiler changes or intrusive changes to the hardware kernel.
• Portable to all buses, APIs, and operating systems.

• Zipper is open-sourced @ https://github.com/zipper-bus-optimizations

21
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

https://github.com/zipper-bus-optimizations

Questions?

3/7/2025 22

