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-Typical Network-on-Chip (NoC)

Strong Demand for NoC

Network-on-Chip (NoC) gains considerable attention for its remarkable
advantages in scalability and high bandwidth.
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Figl. Celerity block diagram?. Fig2. Typical NoC architecture.

1S. Davidson et al., "The Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast
Architectures and Design Methodologies for Fast Chips,” in IEEE Micro, vol. 38, no. 2, pp. 30-41.
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-Typical Network-on-Chip (NoC)
Typical Node Architecture

a)

b)

c)

Router

Routing the packets to their
destination.

Network Interface

RX: Receiving and analyzing the
packets from network.

TX: Transferring the information
Into flits and send them to network.
Processor

CPU/Mem/Computing Unit...
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-Long Path Congestion in NoC
Long Path Congestion
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Figl. Node congestion. Fig2. Prolonged path congestion.

Existed Solution
a) Carefully designed routing algorithm — Self-relief mechanism

Often require extra paths and relay on global information, which results in
route latency and high resource usage
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-Existed Solution

b) Two-Level Network (TLN) — Pseudo-3D topology
Symmetric TLN (S-TLN): two layers have equal

- - - 0 0 o O O I g O O O O
sizes, where each node In one layer Is Loinggaaaan
associated with a corresponding node in the CHEHE CHEH S EHHEH
other laver CHO-EHE -

yer. CHOHEHEHEHEEHEHHE

" . i CHO-CHHOHHOHOHH
Asymmetric TLN (A-TLN): consists of [t et et
complete network and a sparse network with ooooooooono

OO CHHOHCH O O
fewer nodes. nuffuagnt et agntfn

0 o 0 o I o 0 o I O o I o
Existing architectures have their own lack Fig. An asymmetric TLN.
Including power and area consumption, load

balancing and deadlock.
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-Existed Solution

c) Partition-based NoC

In asymmetric TLN, partition a large network into several smaller subnets
and use the sparse net to enable inter-subnet transmission.

Effectively reducing the hop count, thus enhancing overall system efficiency.

%7%%%7 /é%é%éé/

Not all inter-subnet transmissions
achieve the same reduction in hop

count. Fine-grained optimization is ﬁm s
often overlooked, which makes it LT T T2
difficult to fully exploit the LT TH T £ T T
advantages of TLN. LA TTAL T LA AT

Fig. Partition-based NoC.
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- Motivation

Load Distribution in TLN

When the traffic pattern tends toward either long paths or short paths, there
IS always a network that is underutilized.

Suppose the two layers of TLN are Net, and Netg, the ideal ratio of the
number of packets in Net, and Net; is

_ N, - AvgHopsg

~ Nj - AvgHopsy

Hot Nodes

Routing packets to the sparse layer based solely on path length calculation
can lead to severe congestion and blocking in the sparse layer and
communication nodes.
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Deadlock and livelock in TLN DOPRT Po e
Deadlock occurs when dependency ring PREHFH B jﬁE*;ﬂD
appears. XY Routing is a widely used R
deadlock-free routing algorithm. S e s R e A
Even if both layers of network use (@) (b)
deadlock-free routing algorithm, inter-layer Figl. (a) Deadlock Example.

communication may still cause deadlocks. (b) Deterministic XY Routing.

A livelock occurs when packets infinitely

loop between the two layers of the network C
without making any progress towards their éég/ @7
ultimate destinations. /AW/%

Fig2. A Deadlock in TLN.
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-High-LeveI Idea

Main Contributions

a) We propose RUNo0C, a novel partition-based TLN architecture, aimed at
significantly reducing long path latency in large-scale NoC. It consists of
a Main Network (M-NET) and a sparse Underground Network (U-NET).
M-NET can re-inject packets to U-NET to alleviate congestion.
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Fig. Subnet architecture.
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-High-LeveI Idea

Main Contributions

b) We use Shared Row Buffers |"™* s | -
. , =
(SRBs) and modified Network P yume X | | TONET Chamner
- fFo [€T° v
Interface (NI) to ensure that there o ¥ g RR
. . ¥ Manager Request ity > 111} —Aer
IS no deadlock or livelock. ] Generator |74 | Request FIFO
_ _ S LTI N R M e | R Butfer | RX port
c) We develop CDRU, which decides | w55 s ik e T
- . ' - M-NET [«>] _
when to re-inject packets into U- SR, B S N
NET based on the congestion e TS| ="
. s e A NIT ] o mmmmemmmmmm——e- Adress |
information from M-NET and N i) T ¢R2“ ¢R3A
. 1 1 | ont_ro : ' \ 4 \ 4
packet destination distance. CDRU {3t LW G0 1| [ 5
can reduce latency and achieve == R JE N T
load balance between two layers. Fig. A subnet with SRBs and modified NI.
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- Inter- & Intra-Layer Communication

Inter-layer Communication

Routers in a subnet select packets to be
re-injected into U-NET router. The Re-
Injection Allocator selects the packet to
be re-injected in a Round-Robin manner
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Fig. Subnet inter-layer communication architecture.
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Intra-layer Communication

In M-NET, packets are routed

via XY routing.
In U-NET, benefit from

sparse topology, we implement
a full-connected routing with
acceptable hardware complexity.
A packet in any router and be
routed to another router in only

one hop.

Full-connected routing method
significantly  decreases the

latency of U-NET.
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-Router Architecture

M-NET Router
Routing Unit: CDRU

M-NET Router Fommmmmoooos

: : : : Y | —Flit |
* Routing packets to their destination Input Buffer [ Credit Manager | ;i:g;’};{fli
normally. B 1o B S S o ||
- .. VeI 111
* Deciding whether to re-inject the e T SIEEEN X
From downstream —> . >
paCket . to . U-NET based On Switch Allocator Switch . To dm)vnstream
congestion information and the R
. y . . A\ 4 :
distance to the packet’s destination. Uodie Allooaton ——:D To U-dlirection
: 1 —» VC Allocator [ | ...
From UDG-ET-I-E-;J;" >| Credht Manager I To up:tream

Enable the sixth direction for output —
U-direction
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Fig. M-NET router architecture.
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-Load Distribution

Load Balance Model

CDRU makes decisions based on The probability of the packet with a
a probability model that we have hop count of h to its destination being
designed. re-injected at the current node is p(h).

The ideal ratio of the number of P(0) =0. -
packets in M-NET to the number Hence, the probability of the packet

of packets in U-NET is with a hop count of H from the source
Pktyain  Nmain - AvgHops, g4 to the destination being re-injected to
k = = _ o
Pktyag  Nuag - AvgHODPSmain U-NETs:

( 1 H=1
However, not all packets benefit P,

H -1
equally when they are re-injected P(H) = Zp(i) 1_[[1 -p(m)], H>1
into U-NET. (=1 m=l
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-Load Distribution

Load Balance Model

. kty
The value of P(H) should satisfy:P(H) = — - :Pigt = kil
udg main

p(h:,) = 1/(k + 1), We set up three probabilistic models to describe p(h):

(1) KP Model: p(h) 0, < P
odel: =3
P (ahhep(hy),  h= he,
(0, h< hy,
2) L Model: h) ={B(h—hg) +h
(2) p(h) hth h p(hen), h = hp,
\ th

(3) CA Model: Hybrid

The load balance model is pre-calculated and is stored into CDRU in each
M-NET router, which is based on look-up table.

» RUNOoC Architecture >”
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-Router Architecture

U-NET Router

UDG Routing Unit (URU) within the
router directly routes the packets to

the corresponding output port of
destination.

Deadlock & Livelock Freedom

Since no packet travels from U-NET
to M-NET, there is no risk of inter-
layer deadlock and livelock.

No packet is directly injected into U-
NET by NI, thus, there is no
protocol level deadlock in U-NET.
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-Shared Row Buffer and Network Interface
Shared Row Buffer

Each row of a subnet has an SRB. UNETR, Ry __ NI _
. : <« | port
SRAM: Storing the packets from Pl samsger . H‘l e l
the U-NET router. — il Ko O [
. E Manager Request ——llé_ >l —Ajrb
Address FIFO: Managing free | [=—— Genertor [} | Request FIFO. __,
S &Ejecn_(_’_n_______ H : RX Buffer | RX port
SpaCe Of SRAM. . 'L_—_—_—_v'_—_—_—_—_—_—_—_—_-r——
. 5 Decoder CINET e P ‘-JI
Request Generator: Generating SRB, R, R |ep|Z
______________________________________ SRAM [ |- I Subnet i
requests to NI. ] =2 (| [oNET] [MNET
e R, R,
= [T e b
T I e ﬁi‘iﬁisti Giiififﬁr 1 : NIV NIV
Initially, all the index of the SRAM  fmmmd | [hoe L:L el E

are stored in the address FIFO.
Fig. A subnet with SRBs and modified NI.
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-Shared Row Buffer and Network Interface

Network Interface

TX channel: Connected to the [v~etw T NI _
.. . - + port
injection port of M-NET router and . Gt = i' U-NET Chamnel l
utilizing credit-based flow control _ TN o O ey il [ 22
. izl Re*uest |——>| | |"| |—J] Arb
mecC h anism. Manager Gencé:rator B _H Request FIFO —
RX C h an n el . ___________ &Ejec'fi_(_’_n_______ : : M-NET Channel RX Buffer | RX port
L : T __%__________________r ——
. . E Decoder | |
M-NET channel: Ejection of M-NET T M Tl E
ro ute r. SRAM [ |- | Subnet i
o s Ad?ess Il [M-NET M-NET
U-NET channel: Receiving packets [=5wi ] rrro_[* T {‘1 ¢R;
l ontrol | v
from SRB. i MER o O
. . TTTTTmmmmmmT I [
Request FIFO: Communication s r=fdoooH
with SRB. Fig. A subnet with SRBs and modified NI.
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-Setup and Implementation of RUNoC
Setup Layout of One Subnet

Network Parameters

M-NET: 12*12,
U-NET: 3*3

Network Size

Routing Algorithm XY

Packet Size Single Flit
Router Latency One Cycle
Virtual Channels 1

FIFO Depth 8

SRB Size 16

Ny 4
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-Network Performance with Typical Traffic

Network Latency Saturation throughput
o o ] Saturation Throughput
5o, 5o, - Uniform Bit- Transpose
2 4] 2 4] random complement
o S 027 015 0.10
10 sodoneere> 0] eheeertr SCNoC 0.67 0.23 0.23
0.0 01 Iorﬁectiod-; Raoé 05 06 0.00  0.05 Inj()élc(zcionolgaste 020 025 KP-RUNoC 0.36 0.18 0.15
(a) Uniform Random (b) Transpose L-RUNOC 0.36 0.18 0.15
o | —— XY CA-RUN0C [T 0.20 0.16
gso == TLM
by =&= SCNoC Single model: 20% - 50% improvement
® 30- =@ KP-RUNoC
i J o L RUNGC compared to XY. |
* CA-RUNoC CA model: 33% - 60% improvement
0.00 0.0.5 Injpe.lcotionolilaSte 0.20  0.25 Compared to XY
(c) Bit-complement Close to SCNoC under Bit-complement.
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-Area and Power

Area and Power of RUNoC and other schemes

| Area(um? | Power (mW)
2.84 330.38

SCNoC 9.31 1132.80
TLM 5.40 655.11
RUNo0C 6.04 729.57

Area efficiency of RUNoC and other schemes

RUNo0C exhibits the highest

34% improvement with the two Uniform Bit- Transpose
: random complement
non-random traffic patterns 719 76 247 08 24708
compared to state-of-the-art. 595.60 297.80 248.17
RUNOoC is well-suited for large- 595.60 297.80 248.17
scale requirements_ 645.24 330.89 264.71
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-Conclusion and Future Work

Conclusion

« We propose a new partition-based asymmetric TLN architecture named
RUNo0C. RUNoC utilizes congestion-aware probabilistic model implemented
In CDRU to balance the workload of the two layers. We develop SRBs and
modified NI to achieve effective function.

« RUNOC achieves up to 60% improvement in performance compared to XY
routing and up to 34% improvement in area efficiency compared to the state-
of-the-art.

Future Work

» Real-world traffic experiment.
 Embedding RUNOC into a many-core system.
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