
Limin Jiang, Yi Shi, Yintao Liu, Qingyu Deng, Siyi Xu, 

Yihao Shen, Fangfang Ye, Shan Cao, and Zhiyuan Jiang

School of Communication and Information Engineering, 

Shanghai University, China

A Hierarchical Dataflow-Driven Heterogeneous 

Architecture for Wireless Baseband Processing

Advanced Communication and Computing Electronics Lab



Outline

◼ Background & Motivation

◼ Related Works 

◼ System Design

◼ Evaluation

◼ Conclusion

2



Background

3

◼ 5G expansion drives demand for energy-efficient, open-source

hardware to replace proprietary solutions.

◼ Implementing hardware for data-intensive wireless baseband 

processing (WBP) poses major challenges.



Background

4

X86 Server/GPGPU:
✓ Massive computing 

capability

✓High energy consumption

ASIC:
✓Best PPA

✓Long time to market

DSP: 

✓VLIW boosts ILP

✓High control overhead 

limits scalability

WBP: How?



Motivation

5

◼ Two characteristics of WBP:

Modular: TDD frame structure 

separates uplink and downlink into 

data-independent, successive

modules.

Cyclical: Signal generation or decoding 

based on communication protocols is 

on a subframe (periodic) basis.

WBP is decoupled and predictable.



Contribution

6

◼ A cache-free manycore architecture is proposed to increase energy 

and area efficiency without compromising performance due to the 

predictable data processing nature of WBP.

◼We develop a pack-and-ship data dispatch system to enable the 

tiles to operate in a bundled access and execution style, which can 

drastically reduce the cost of data movement.

◼ A hierarchical dataflow task scheduling scheme is designed and 

two strategies, namely multi-threading and lazy-deletion, are 

proposed to fully utilize the hardware resources.



7

Related Works

Work
Core 

Heterogeneity
Scalability DLP TLP

HW/SW 

Co-design

Sora

TeraPool -

SPECTRUM

MACRON -

MAGALI -

DXT501

Ours

◼ Various works have been presented in academia seeking a way 

towards manycore parallel computing for WBP.

GPPs

Sys-level

Analyses

NoCs

ASIP



8

System Design: Architecture

◼ Tile: RV32IM core with 

customized vector extension & 

local scratchpad memory.

◼ L2 DMA: Orchestrating Tiles via a 

scalar scheduler.

◼ CS-SPM: Swap space for cluster.

◼Main scheduler: Managing high-

level scheduling; Directing the 

main DMA engine to transfer data 

between main memory and the 

clusters.



System Design: Pack-n-Ship

9

                 

   

       

           

   
       

     
     

      

 
 
 

            
 

 

 

 

 

    

 
 
 
 

      

                    

   

       

           

   
       

     
     

      

 
 
 

            

 

  

 

 

 

    

 
 
 
 

      

◼ NUMA Approach:
Each tile and cluster has its own SPM, 

accessed by outside DMA.

Eliminating fragment memory access.

◼ Before Execution
Alter T-SPM direction by atomic instructions.

DMA moves data from CS-SPM to T-SPM.

Change back T-SPM direction to the RV core.

De-assert core reset.

◼ After Execution
Store results in T-SPM.

Notify attributes of return value to CSRs.

Alter T-SPM direction & Issue an interrupt.

DMA retrieve data back to CS-SPM.



System Design: Heterogeneous Configuration

10

◼ Configurable dimensions for WBP

① # of clusters & tiles: Enhancing thread- & task-level parallelism of processing 

Tx & Rx in consecutive time slots – dependent on protocol throughput.

②SPM footprint: Dependent on computation type: FFT, Polar decoding; Multi-

threading capability.

③ # of lanes and VRFs: Enhancing DLP capabilities.

                    

   

       

           

   
       

     
     

      
 
 
 

            

 

  

 

 

 

    

 
 
 
 

      

1

1

2 2 3



Execution Model: Dataflow Model

11

◼WBP interpreted as DAGs

A subsequent module is activated only when all preceding tasks are complete.

WBP follows a consistent flow over time, enhancing data locality as the DAG 

information is unlikely to be reconfigured on the hardware.

Less scheduler-bounded

              

             

          

          

               

    

            

            

            

               

              
                              

Task: A module 

running on a tile.

Thread: Several related 
tasks, representing a 
complete transmit or 
receive processing flow.



Execution Model: Dataflow Model

12

◼ Attributes guide the scheduler in 

selecting the most suitable tile for 

deployment.

◼ Runtime adjustment of DAGs

Tasks can be dismissed on-the-fly once 

the worst-case DAG is determined.

If the blind detection task detects fewer 

users, the computational burden can be 

reduced.

 

      

       

        

    

      

      

          

 

 

 

 

 

 

            

            

                                 
                     
                                 

                         
                                 

              

𝐼𝐷𝑢𝑠𝑒𝑟 < 𝑁𝑢𝑠𝑒𝑟

𝐼𝐷𝑢𝑠𝑒𝑟 ≥ 𝑁𝑢𝑠𝑒𝑟



Execution Model: Multi-Level Scheduling

13

◼ Thread-Level Lazy-Deletion

Does not immediately free up DAG 

memory. Checks whether the DAG has 

already been deployed to a cluster and 

only transfers the data for the next 

thread issue.

Checks the validity for running multiple 

threads within a single cluster.

Drop the least recent used DAG when 

all available computing resources are 

occupied.



Execution Model: Multi-Level Scheduling

14

◼ Tile-Level Scheduling

L2 Scheduler: Processes the nodes 

(tasks) in the task code pool and 

checks their readiness through the 

FIFO queues.

FIFO Lists: Track edges between the 

DAG nodes.

Load Indications: Task to be 

processed and the preferred tile.

L2 DMA: Transfers data from the 

compute data section to the 

heterogeneous tiles

 

        

        

        

        

        

        

        

        

     

     

     

     

     

              

              

     

     

     

     

     

        

        

        

 

                        

                            

             

  

  

  

  

  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

          

 

 

 

 

 

    

   

         

      

 

 

 



Evaluation

15

◼ Experimental Setup

RTL

Kernels

Source

Synopsys Design Compiler

Synopsys VCS

Synopsys ProtoCompiler

SMIC40

Tile Performance

Ablation Study

Link Throughput



Evaluation

16

◼ Single-Tile Performance

@ 500 MHz

Lies between commercial hardware and ASICs

2.3x in FFT & 2x in BP

Still suffer from Von Neumann bottleneck
Kernel Platform

FFT 

Length

Clock 

Cycles

FFT

DSP

128 588

512 2559

2048 11922

HW

Accel.

128 211

512 845

2048 3875

Ours

128 251

512 1122

2048 5073

Kernel Platform
Dec. 

Length

Norm.

Thrpt.

BP

Decode

GPU
512 0.25

1024 0.21

ASIC 1024 15.23

Ours
512 0.54

1024 0.53

Config: A 64-lane, 50.1 GOPS VXU



Evaluation

17

◼ Ablation Study

12T vs. 3C4T-2L2S

6.5% power increase; 1.3x throughput

 Under-utilization in single-level arch.

6.4% and 9.5% gain under lazy-

deletion

Baseline

+ extra features

Power (W) Throughput (Mbps)

12T 3C4T Single-Level Multi-Level

12T / 3C4T arch.

3.24 3.45

8.5 21.2

+ Multi-Threading 64.1 84.7

+ Lazy-Deletion 68.5 93.6

Config: 

Large (L) Tile (T): w/ 64-lane VXU, 32 VRFs

Small (S) Tile: w/ 8-lane VXU, 64VRFs



Evaluation

18

◼ Link throughput experiment on prototype

5C9T

288Mbps

Module Configuration

Channel Coding Polar Codes

Rate-Matching RV0

Scrambling Gold Sequence

Modulation QPSK

OFDM 128 subcarriers

Channel 

Estimation
Least Squares

Channel 

Equalization
Zero Forcing

Channel 

Decoding
Min-Sum BP

          

                    

   

          

          

   

         



Conclusion

19

◼We propose a pack-and-ship approach within a cache-free NUMA 
system.
Instructions and data are organized in bundles and delivered by schedulers 

to local scratchpad memory in order to reduce data movement costs.

◼We also develop a hierarchical dataflow scheme along with two 
strategies, namely multi-threading and lazy-deletion, to exploit and 
allocate the hardware resources more efficiently.

◼Our HW/SW co-design surpasses the existing architectures 
attributed to strong single-tile performance as well as flexible 
scalability and coarse-grained parallelism.



20

Q&A

Thank you for your attention!

A Hierarchical Dataflow-Driven Heterogeneous Architecture 

for Wireless Baseband Processing

Presenter: Limin Jiang

jianglimin@shu.edu.cn

Shanghai University

Advanced Communication and Computing Electronics Lab


	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Background
	幻灯片 4: Background
	幻灯片 5: Motivation
	幻灯片 6: Contribution
	幻灯片 7: Related Works
	幻灯片 8: System Design: Architecture
	幻灯片 9: System Design: Pack-n-Ship
	幻灯片 10: System Design: Heterogeneous Configuration
	幻灯片 11: Execution Model: Dataflow Model
	幻灯片 12: Execution Model: Dataflow Model
	幻灯片 13: Execution Model: Multi-Level Scheduling
	幻灯片 14: Execution Model: Multi-Level Scheduling
	幻灯片 15: Evaluation
	幻灯片 16: Evaluation
	幻灯片 17: Evaluation
	幻灯片 18: Evaluation
	幻灯片 19: Conclusion
	幻灯片 20

