

A©E-Lab

A Hierarchical Dataflow-Driven Heterogeneous Architecture for Wireless Baseband Processing

Limin Jiang, Yi Shi, Yintao Liu, Qingyu Deng, Siyi Xu, Yihao Shen, Fangfang Ye, Shan Cao, and Zhiyuan Jiang

School of Communication and Information Engineering, Shanghai University, China

Outline

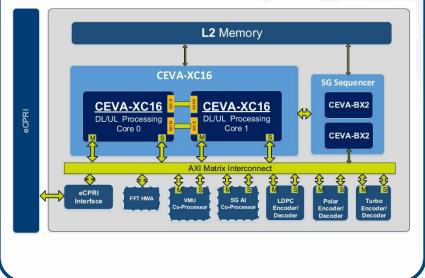
- Background & Motivation
- Related Works
- System Design
- Evaluation
- Conclusion

Background

Gexpansion drives demand for energy-efficient, open-source hardware to replace proprietary solutions.

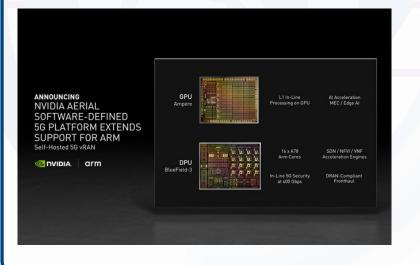
A©E-Lab

Implementing hardware for data-intensive wireless baseband processing (WBP) poses major challenges.

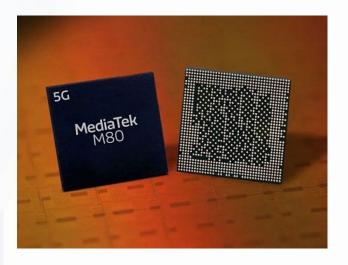


Background

WBP: How?


DDSP:

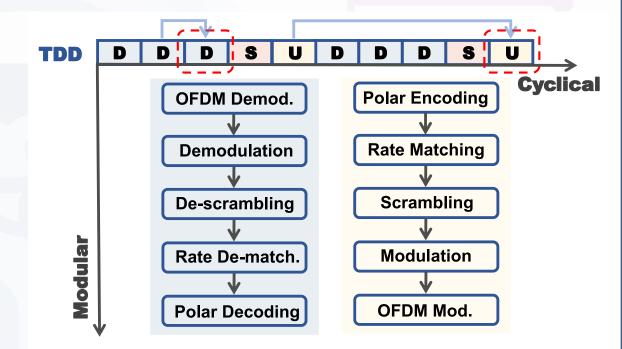
✓VLIW boosts ILP✓High control overheadlimits scalability


■X86 Server/GPGPU:

✓ Massive computing
capability
✓ High energy consumption

DASIC:

✓ Best PPA✓ Long time to market



Motivation

A©E-Lab

Two characteristics of WBP:
Modular: TDD frame structure separates uplink and downlink into data-independent, successive modules.

Cyclical: Signal generation or decoding based on communication protocols is on a *subframe* (periodic) basis.

WBP is decoupled and predictable.

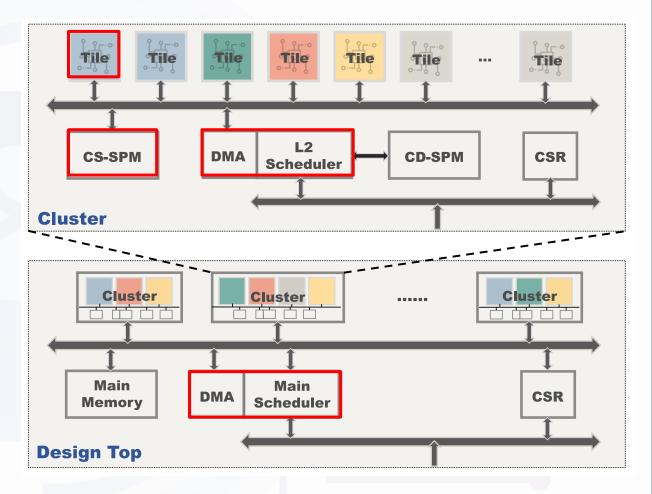
Contribution

A cache-free manycore architecture is proposed to increase energy and area efficiency without compromising performance due to the predictable data processing nature of WBP.

- We develop a *pack-and-ship* data dispatch system to enable the tiles to operate in a **bundled access and execution** style, which can drastically reduce the cost of data movement.
- A hierarchical dataflow task scheduling scheme is designed and two strategies, namely multi-threading and lazy-deletion, are proposed to fully utilize the hardware resources.

ACE-Lab

Related Works


Various works have been presented in academia seeking a way towards manycore parallel computing for WBP.

	Work	Core Heterogeneity	Scalability	DLP	TLP	HW/SW Co-design
GPPs	Sora		\odot	\odot	\odot	
Sys-leve	TeraPool				-	
Analyses	SPECTRUM		\bigcirc		\bigcirc	
NoCs	MACRON			\bigcirc	-	
	MAGALI			$\textcircled{\bullet}$	-	•••
ASIP	DXT501				\bigcirc	
	Ours					

System Design: Architecture

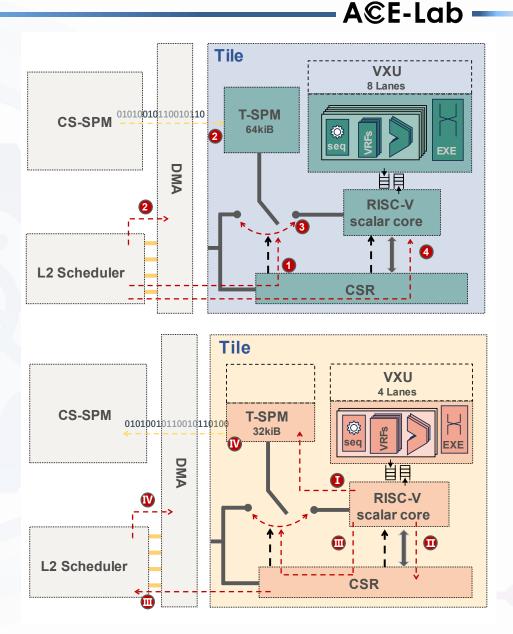
Tile: RV32IM core with customized vector extension & local scratchpad memory.

- L2 DMA: Orchestrating Tiles via a scalar scheduler.
- **CS-SPM:** Swap space for cluster.
- Main scheduler: Managing highlevel scheduling; Directing the main DMA engine to transfer data between main memory and the clusters.

System Design: Pack-n-Ship

NUMA Approach:

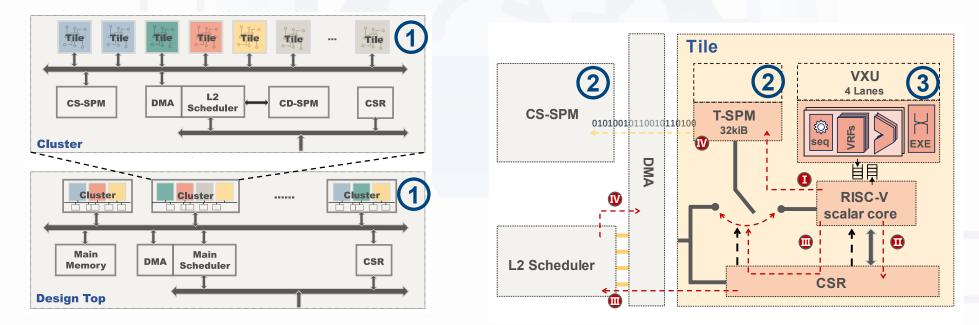
Each tile and cluster has its own SPM, accessed by *outside* DMA.


Eliminating fragment memory access.

Before Execution

Alter T-SPM direction by atomic instructions.
DMA moves data from CS-SPM to T-SPM.
Change back T-SPM direction to the RV core.
De-assert core reset.

After Execution

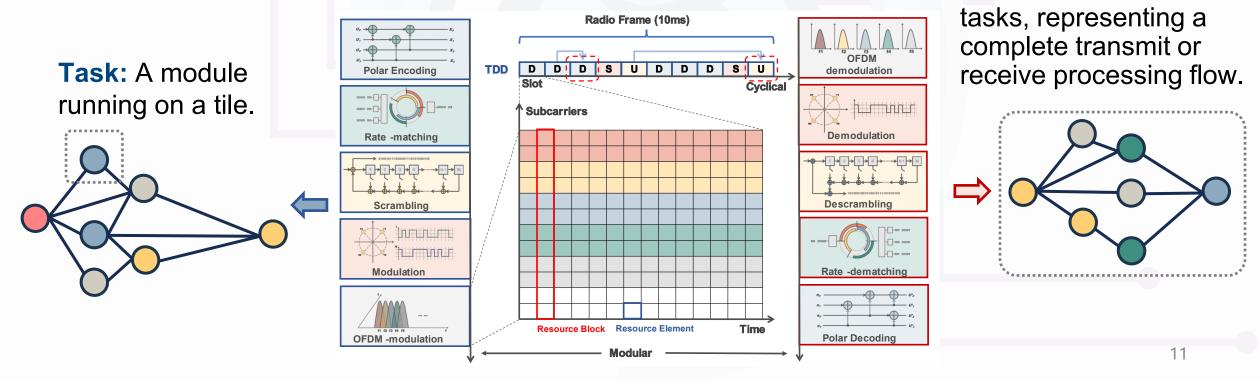

Store results in T-SPM.
Notify attributes of return value to CSRs.
Alter T-SPM direction & Issue an interrupt.
DMA retrieve data back to CS-SPM.

System Design: Heterogeneous Configuration

Configurable dimensions for WBP

- 1 # of clusters & tiles: Enhancing thread- & task-level parallelism of processing Tx & Rx in consecutive time slots – dependent on protocol throughput.
- 2 SPM footprint: Dependent on computation type: FFT, Polar decoding; Multithreading capability.
- **3** # of lanes and VRFs: Enhancing DLP capabilities.

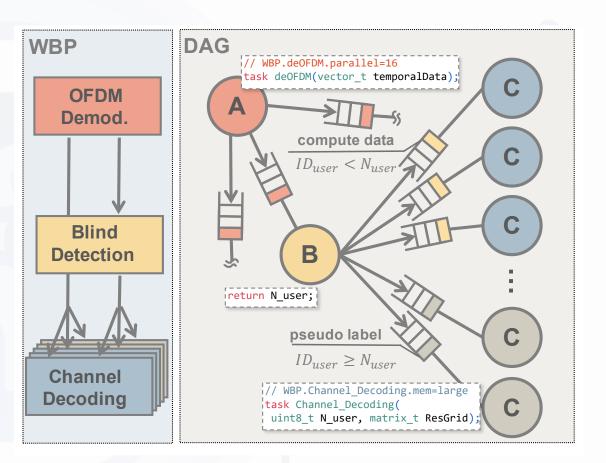
Execution Model: Dataflow Model

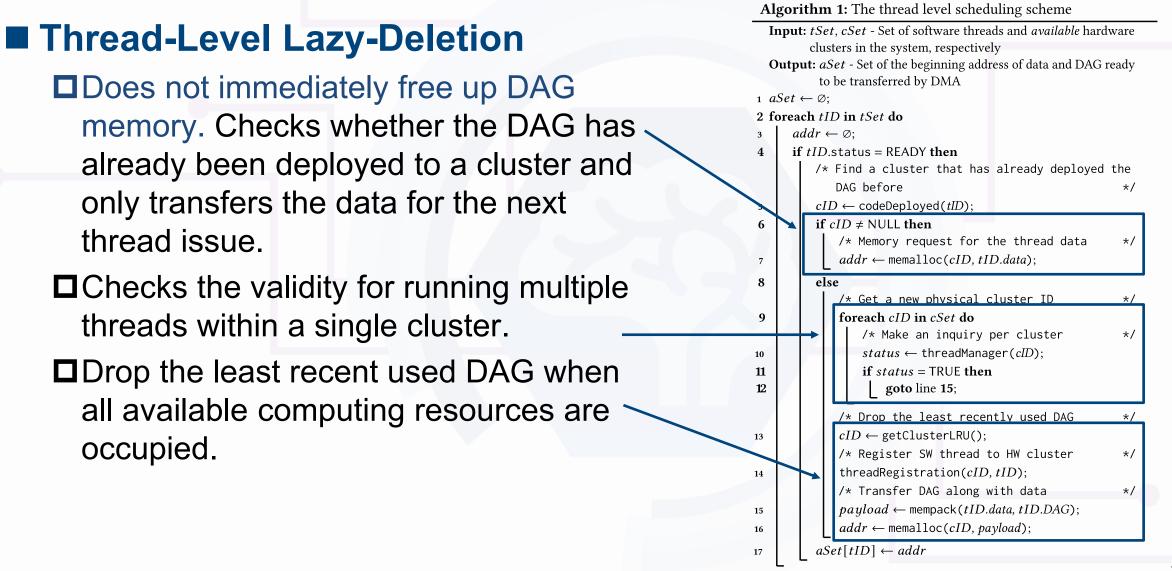

A©E-Lab

Thread: Several related

WBP interpreted as DAGs

A subsequent module is activated only when all preceding tasks are complete.
 WBP follows a consistent flow over time, enhancing data locality as the DAG information is unlikely to be reconfigured on the hardware.


Less scheduler-bounded


A©E-Lab

Execution Model: Dataflow Model

- Attributes guide the scheduler in selecting the most suitable tile for deployment.
- Runtime adjustment of DAGs
 - Tasks can be dismissed on-the-fly once the worst-case DAG is determined.
 - If the blind detection task detects fewer users, the computational burden can be reduced.

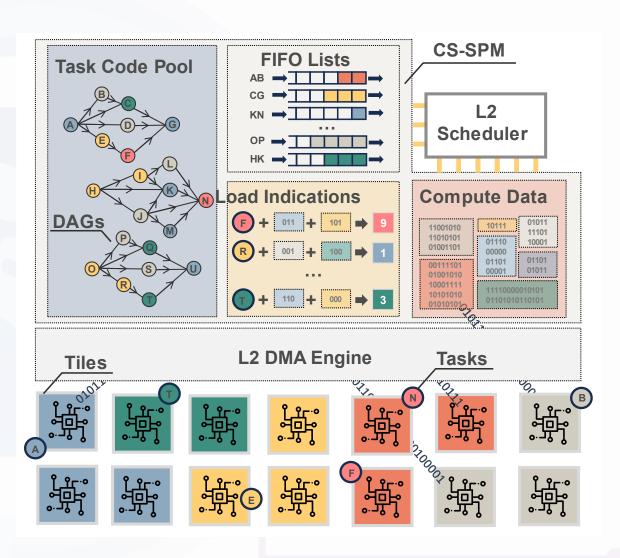
Execution Model: Multi-Level Scheduling

18 return aSet

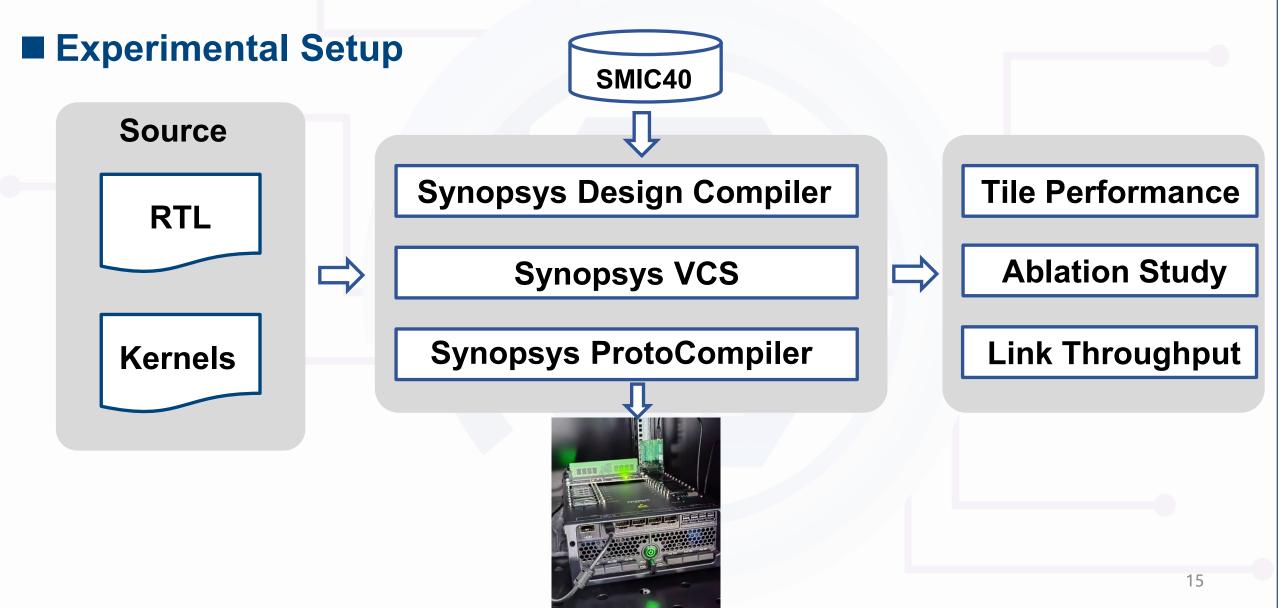
14

A©E-Lab

Execution Model: Multi-Level Scheduling


Tile-Level Scheduling

L2 Scheduler: Processes the nodes (tasks) in the task code pool and checks their readiness through the FIFO queues.


DAG nodes.

Load Indications: Task to be processed and the preferred tile.

L2 DMA: Transfers data from the compute data section to the heterogeneous tiles

Single-Tile Performance				Config	: A 64-lane	, 50.1 GO	PS VXU		
□Lies be	etween c	ommercia	al hardw	are and	AS	ICs			
□2.3x in FFT & 2x in BP □Still suffer from Von Neumann bottleneck				Kernel	Platform	FFT Length	Clock Cycles		
					UN			128	588
							DSP	512	2559
	Kernel	Platform	Dec. Length	Norm. Thrpt.				2048	11922
	BP Decode	GPU	512	0.25		FFT	HW Accel.	128	211
			1024	0.21				512	845
		ASIC	1024	15.23				2048	3875
		Ours	512	0.54				128	251
			1024	0.53			Ours	512	1122
			1027 0.00				2048	5073	

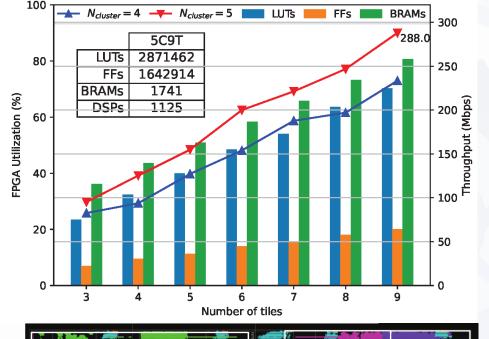
16

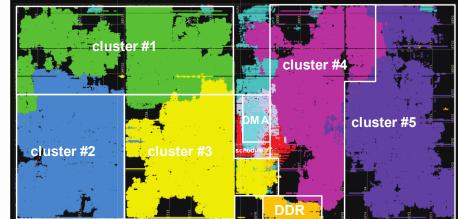
- A©E-Lab -

A©E-Lab

Ablation Study

12T vs. 3C4T-2L2S
6.5% power increase; 1.3x throughput
Under-utilization in single-level arch.
6.4% and 9.5% gain under lazydeletion Config:


Large (L) Tile (T): w/ 64-lane VXU, 32 VRFs Small (S) Tile: w/ 8-lane VXU, 64VRFs


Baseline	Ρο	wer (W)	Throughput (Mbps)			
+ extra features	12T	3C4T	Single-Level	Multi-Level		
12T / 3C4T arch.		3.45	8.5	21.2		
+ Multi-Threading	3.24		64.1	84.7		
+ Lazy-Deletion			68.5	93.6		

A©E-Lab

Link throughput experiment on prototype

□5C9T □288Mbps

Module	Configuration
Channel Coding	Polar Codes
Rate-Matching	RV0
Scrambling	Gold Sequence
Modulation	QPSK
OFDM	128 subcarriers
Channel Estimation	Least Squares
Channel Equalization	Zero Forcing
Channel Decoding	Min-Sum BP

Conclusion

- We propose a pack-and-ship approach within a cache-free NUMA system.
 - Instructions and data are organized in bundles and delivered by schedulers to local scratchpad memory in order to reduce data movement costs.
- We also develop a hierarchical dataflow scheme along with two strategies, namely multi-threading and lazy-deletion, to exploit and allocate the hardware resources more efficiently.
- Our HW/SW co-design surpasses the existing architectures attributed to strong single-tile performance as well as flexible scalability and coarse-grained parallelism.

<u>Advanced Communication and Computing Electronics Lab</u>

A©E-Lab

Q&A Thank you for your attention!

A Hierarchical Dataflow-Driven Heterogeneous Architecture for Wireless Baseband Processing

> Presenter: Limin Jiang jianglimin@shu.edu.cn Shanghai University