
1

AssertLLM: Generating Hardware Verification
Assertions from Design Specifications via Multi-LLMs

Zhiyuan Yan1*, Wenji Fang2*, Mengming Li2, Min Li3,
Shang Liu2, Zhiyao Xie2†, Hongce Zhang1†

1Hong Kong University of Science and Technology (Guangzhou)
2Hong Kong University of Science and Technology

3Huawei Technologies Co., Ltd

Functional Verification

• Check if implementation complies with specification

2

RTL for hardware design

assert property (
ready => ##[3:5] valid ##1 finish);

SystemVerilog Assertion

• Implementation (RTL)

• Hardware description
language (HDL)

• Specification (Assertion)

• Ad-hoc properties

• Security properties

……

Functional Verification

• Simulation

3

0101101

0101110

1010101

0011111

Test vector Simulation Simulation results

1010110

1010111

0101010

1001111

4

Hardware Formal Verification
• RTL complies with predefined assertions?

Behavioral Model (RTL) Property (e.g., SystemVerilog Assertions)

Model Checking

req |->

##[1:4]

resp

Result

• a counterexample, or

• a proof

Assertion for Verification

• System Verilog Assertion (SVA)

• Need understanding of

• System Verilog syntax

• Verification techniques

• Hardware design

5

• Account for

• Completeness

• Coverage

assert property (
ready => ##[3:5] valid ##1 finish);

SystemVerilog Assertion

Automatic Assertion Generation

• Dynamic mining

• Simulation traces + design constraint analysis

• No golden reference, rely on RTL designs under verification(DUT)

• Static analysis of specifications

• Predefined templates → Still need a few human efforts

• ML-based methods

• Traditional natural language processing (NLP)

• Large language model (LLM)

6

Previous ML-based Assertion Generation

• LLM-based1

• Human-written specification sentences (from comments)

• No golden reference

• NLP-based2

• Human-extracted specification sentences

• Hard to generalize across distinct grammar

• Waveform diagrams in specification are ignored

• Can we directly generate assertions from SPEC?

7
1. Kande et al. LLM-Assisted Generation of Hardware Assertions, arXiv (2023).
2. Frederiksen et al. Automated assertion generation from natural language specifications, ITC (2020).

Challenges of Generating Assertion from SPEC

• Natural language SPEC is not uniformly structured

• Translating NL to assertion is a non-trivial task

• Waveform diagrams need to be tackled

8

Our Method: AssertLLM

• Generating Assertions from Design Specifications by
incorporating three LLMs

9

Spec

Description 1

Description 2

Description n

…

SVA 2

…

LLM ❶ --

Language

Analyzer
LLM ❸ -- SVA

Generator
LLM ❷ --

Waveform

Analyzer

SVA 1

SVA n

AssertLLM

VLSI Design and Verification Flow

Design Verification

Specification and
Architectural Design

Logic Design (RTL)

Physical Design

Functional Verification
x

√

AssertLLMSPEC
Doc

Generated SVAs

10

Natural Language Extraction

• LLM1: Natural Language Analyzer
• Input

• Complete SPEC document file

• Customized LLM

• Custom instructions

• Output

• Template-based extraction
• Signal name

• Description

• Related signals

11

Natural Language Extraction

• Example
• Structural SPEC for each signal

12

Waveform Information Extraction

13

• LLM2: Waveform Analyzer
• Input

• Waveform Diagram in SPEC

• Customized LLM

• Multi-step

• Custom instructions

• Output

• Extracted descriptions

Waveform Information Extraction

• Step 1: Template Generation
• Input

• Customized prompt

• Output

• Templates

14

[Prompt for Template Generation]
You are an expert in digital hardware design at the register-transfer lev

el (RTL). Please generate a set of prompt templates. We will use these

prompt templates to summarize the behaviors that can be observed in h

ardware waveforms, and these observations will be further utilized to g

enerate assertions in SystemVerilog format. As a consequence, the gen

erated templates need to describe all logic behaviors at the RTL level f

or a variable or across different variables. And it needs to be easily tran

sferred to the SystemVerilog assertions by human engineers. Here are t

he requirements for the answer:

1. Please keep templates as brief and clear as possible.

2. Please number the templates.

1.If <signal> is high, then <variable> must be low in the

next cycle.

2.When <condition> occurs, <variable1> should be equ

al to <variable2>.

…

…

18.<variable> should remain stable for <number> cycle

s after <event>.

19.<variable1> must be greater than <variable2> after <

event>.

20.<variable> must be equal to <expression> when <co

ndition> is true.

[Response from Template Generation]
Here are some prompt templates for summarizing observed

behaviors in hardware waveforms at the RTL level:

Waveform Information Extraction
• Step 2: Description Generation

• Input

• Customized instruction

• Generated templates

• Waveform diagram

• Output

• Waveform descriptions

15

You are an expert in digital hardware design and verification at the Regist

er-transfer level (RTL). Your task is to analyze the behaviors from the giv

en hardware waveform for a variable or across different variables. Please

use different serial numbers to represent different behaviors from the wav

eform.

Furthermore, we provide the potential templates for describing behaviors.

There is no need for you to use all templates. You only need to select som

e templates. Also, you can revise the templates if they can better describe

the behavior in the waveform:

• [Upload the generated templates from Template Generator]

…

…

I will provide the waveform you need to analyze in the following blocks.

Please do use the English to answer the question.

• [Upload the waveform diagram]

[Prompt for Description Generation]

[Response from Description Generation]
1. When byte_controller.dcnt is 3'b000, byte_controller.cnt_don

e is set to high.

…

…

4. byte_controller.cnt_done remains high once byte_controller.d

cnt is 3'b000.

1.When ien rises, irq_flag should be high in the next cycle.

…

…

4.irq_flag should be high only if ien has been true for 1 cycle.

Automatic Assertion Generation

• LLM3: SVA Generator
• Input

• Extracted information

• Architecture diagram(if available)

• Customized LLM

• Retrieval Augmented Generation

• Custom instructions

• Output

• Multi-type SVAs

• Width + Connectivity + Function

16

Automatic Assertion Generation

• Example

17

Generated SVA Evaluation

• Generated SVA + Golden RTL Design
• RTL is error-free and strictly implemented according to SPEC

• Model Checker
• Formal verification (FPV)

• Evaluation Metrics
• SVA syntax

• FPV pass/fail

• COI coverage

18

Golden RTL

Design

Generated

SVAs Evaluation Metrics

• SVA Syntax

• FPV Pass/Fail

• COI Coverage

Model

Checker

Experimental Results

• Experimental Setup
• SPEC document: PDF format
• Model checker: Cadence JasperGold
• LLM: GPT3.5/4o from OpenAI

• Evaluation Metrics
• # generated SVAs
• # syntax-correct SVAs
• # FPV-passed SVAs
• COI Coverage

• Test Design
• I2C with 23 signals (17 IO ports and 6 architecture-level registers)

19

Experimental Results

• All bit-width SVAs are correct

• Few connectivity and function SVAs contain errors

• 86% SVAs are both syntactically and functionally correct

20

21

Experimental Results

• All IO-related SVAs have lower COI coverage

• Register-related and Waveform-related SVAs have high COI

• SVAs generated by AssertLLM achieve 93.44% of coverage

0.15% 0.15% 1.02% 0.15%

90.96%
84.40% 85.87%

93.44%

82.05%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

22

Experimental Results

• Can generate SVAs with high quality on the other designs

23

Conclusion
• AssertLLM: generating assertions from complete design specifications

• Utilize multi-step strategies and LLMs to generate SVAs

• Rely on golden reference specification, rather than DUT

• Can generate SVAs from waveform diagram

• Quantitative evaluation method based on golden RTL

Thank You!

25

Cone of Influence (COI) Coverage
• COI coverage measures the percentage of design logic that is structurally connected to

the assertions.

