@ THE HONG KONG
== |NIVERSITY OF SCIENCE

llm AND TECHNOLOGY

(GUANGZHOU)

AssertLLM: Generating Hardware Verification
Assertions from Design Specifications via Multi-LLMs
Zhiyuan Yan'*, Wenji Fang?*, Mengming Li%, Min Li3,

Shang Liu?, Zhiyao Xieer, Hongce ZhanglJr

'Hong Kong University of Science and Technology (Guangzhou)
Hong Kong University of Science and Technology
3Huawei Technologies Co., Ltd

D |

Functional Verification

* Check if implementation complies with specification

* Implementation (RTL) <4mmmp * Specification (Assertion)

* Hardware description * Ad-hoc properties
language (HDL) Security properties
always @(posedge clk) begin
if (lresetn) begin '
end else begi . $ assert property (
e vord reg <o man 1 ready => ##[3:5] valid ##1 finish);
e | SystemVerilog Assertion

RTL for hardware design

Functional Verification

e Simulation

0101101
0101110
1010101
0011111

Test vector

o

Simulation

1010110
1010111

0101010 «
1001111

Simulation results

Hardware Formal Verification
* RTL complies with predefined assertions?

always @(posedge clk) begin 9)
if (!resetn) begin

mem_la_firstword_reg <= ©;

last_mem_valid <= e; req | ->
end else begin
if (!last_mem_valid) ## [l . 4]
mem_la_firstword_reg <= mem_la_firstword; re Sp

last_mem_valid <= mem_valid && !mem_ready;

end (I
end Z J

Behavioral Model (RTL) Property (e.g., SystemVerilog Assertions)

N " 4

Result
Model Checking e acounterexample, or
_* aproof

Assertion for Verification

e System Verilog Assertion (SVA)

* Need understanding of * Account for
* System Verilog syntax * Completeness
* Verification techniques * Coverage

e Hardware design

assert property (
ready => ##[3:5] valid ##1 finish);

SystemVerilog Assertion

Automatic Assertion Generation

* Dynamic mining
e Simulation traces + design constraint analysis
* No golden reference, rely on RTL designs under verification(DUT)

 Static analysis of specifications
* Predefined templates = Still need a few human efforts
* ML-based methods
* Traditional natural language processing (NLP)
e Large language model (LLM)

Previous ML-based Assertion Generation

* LLM-based!

* Human-written specification sentences (from comments)
* No golden reference

* NLP-based?

* Human-extracted specification sentences
* Hard to generalize across distinct grammar
* Waveform diagrams in specification are ignored

e Can we directly generate assertions from SPEC?

1. Kande et al. LLM-Assisted Generation of Hardware Assertions, arXiv (2023).
2. Frederiksen et al. Automated assertion generation from natural language specifications, /TC (2020).

Challenges of Generating Assertion from SPEC

* Natural language SPEC is not uniformly structured
* Translating NL to assertion is a non-trivial task

* Waveform diagrams need to be tackled

D

Our Method: AssertLLM

o AssertLLM

LLM - Description 1

Language P SVA1l
:> Analyzer

| > Description 2 :> LLM @ -- SVA |:> SVA2

I LLM e _ : Generator
—> -

Waveform
Analyzer Description n

SVAn

* Generating Assertions from Design Specifications by
incorporating three LLMs

VLSI Design and Verification Flow

—>
—>

Design

Specification and
Architectural Design

R SPEC
Doc

Verification

b AssertLLM
v

module a
inputin [2];

endmodule

\ 4

Logic Design (RTL)

T
I

\ 4

Physical Design

+

Generated SVAs]
;

Functional Verification

module a Y){
inputin [2];

endmodule

10

Natural Language Extraction

* LLM1: Natural Language Analyzer
* Input
* Complete SPEC document file
* Customized LLM
* Custom instructions
* Output
* Template-based extraction
* Signal name
* Description
* Related signals

r[Cusmm Instructions for SPEC Analyzer]

Please act as a professional VLSI specification analyzer.

Firstly, I'll upload the the design specification file (in PDF format).
Each time [ask a question, please read and analyze the specification
PDF file carefully, and answer the question only based on the
uploaded files, don't use any content outside the file.

When I ask for information on a [xxx] signal, please extract all the
information related to this signal in the spec [ile, nole (hat the
extracted information should be suitable for the SystemVerilog
Assertions (SVAs) generation, and output all the information in the
following format:

[Signal name]: name in SPEC
[Description]: including but not limited to
[Definition): such as bit-width, signal type (infout/register), etc

Functi

nality]: all the function information illustrated in SPEC

[Interconnection]: the relationship with all other signals

| Additional information]: all other related information
[Related Signals]: names of all other signals mentioned in the
Description part

11

Natural Language Extraction

° I [Response from SPEC Analyzer]
Exa m p e | The Control Register (CTR) in the I2C-Master Core specification has the
| following characteristics:

r
1
1

* Structural SPEC for each signal

1. [Signal Name]: In Spec - Control Register (CTR).
2. [Description]:
2.1. [Definition]:
- Bit-width: 8 bits
- Signal Type: Register (Access Type: RW - Read/Write)

2.2. [Functionality]:

- Bit 7: 12C core enable bit. When set to '1', the core is enabled,
and when set to '0', the core 1s disabled.

- Bit 6: I2C core interrupt enable bit. When set to 'l', interrupts
are enabled, and when set to '0', interrupts are disabled.

- Bits 5:0: Reserved. These bits are read/write but are reserved for
future use.

2.3, [Interconnection|: This register directly controls the operation
of the I2C core, enabling or disabling it and controlling interrupt
behavior.

2.4. [Additional Information]:

- Reset Value for the Control Register is 0x00
3. [Related Signals]:
- EN: Controls the enable state of the 12C core.
- IEN: Controls the interrupt enable state of the I2C core.

[Prompt for SPEC Analyzer]

* [Upload the original SPEC file] Here is the design specification file,
please analyze it carefully.

* [For each signal] Please extract all the information related to the signal
control register (CTR) from the spec file.

Waveform Information Extraction

e LLM2: Waveform Analyzer
* Input
e Waveform Diagram in SPEC
* Customized LLM
* Multi-step
* Custom instructions
* Output

» Extracted descriptions

13

Waveform Information Extraction

e Step 1: Template Generation
* Input P)
e Customized prompt
* Output
* Templates

Here are some prompt templates for summarizing observed
behaviors in hardware waveforms at the RTL level:

LIf is high, then must be low in the
next cycle.

2.When <condition> occurs, <variable1> should be equ
al to <variable2>.

You are an expert in digital hardware design at the register-transfer lev

el (RTL). Please generate a set of prompt templates. We will use these 1. Sl TSRl Bl cycle
prompt templates to summarize the behaviors that can be observed in h s after

ardware waveforms, and these observations will be further utilized to g 19. must be greater than alter
enerate assertions in SystemVerilog format. As a consequence, the gen '

erated templates need to describe all logic behaviors at the RTL level f 20. is truemUSt be equal to when

or a variable or across different variables. And it needs to be easily tran
sferred to the SystemVerilog assertions by human engineers. Herearet [Se=meeee- - L LR E Tt
he requirements for the answer:
1. Please keep templates as brief and clear as possible.
2. Please number the templates.

[Prompt for Template Generation]

14

Waveform Information Extraction
» Step 2: Description Generation

N\
J

[Prompt for Description Generation]

° In ut You are an expert in digital hardware design and verification at the Regist
p er-transfer level (RTL). Your task is to analyze the behaviors from the giv
. . . en hardware waveform for a variable or across different variables. Please
e Customized instruction use different serial numbers to represent different behaviors from the wav
eform.
b G ene r‘atEd tem plates Furthermore, we provide the potential templates for describing behaviors.
There is no need for you to use all templates. You only need to select som
° Waveform d | agra m e templatgs. Also, you can revise the templates if they can better describe
the behavior in the waveform:
° Output * [Upload the generated templates from Template Generator]
* Waveform descrl ptlons I will provide the waveform you need to analyze in the following blocks.
[T T \ Please do use the English to answer the question.

* [Upload the waveform diagram]
ac N/ N/ NS

1. When byte controller.dent is 3'b000, byte controller.cnt_don

e is set to high. done /
¥3 000000 X Valid output data
¥3 HOXOKHKK x Walid output data

g . zero3 Valid output da

4. byte_controller.cnt_done remains high once byte_controller.d 200000C Vol ouiput data

cnt is 3'b000. P Y W e VY e W o Y o WY e Y o T e WY e WY e N s WY
wb_inta o i
. irq flag / |
1.When ien rises, irq_flag should be high in the next cycle. ien f
4.irg_flag should be high only if ien has been true for 1 cycle. 15

i

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Automatic Assertion Generation

* LLM3: SVA Generator
* Input
e Extracted information
* Architecture diagram(if available)
e Customized LLM
* Retrieval Augmented Generation
* Custom instructions
* Output
* Multi-type SVAs

* Width + Connectivity + Function |

f

Custom Instructions for SVA Generator]
Please act as a professional VLSI verification engineer. You can refer to
the uploaded knowledge base about the SystemVerilog assertion
(SVA) and formal verification techniques.
Firstly, I'll upload an workflow diagram of the design architecture.
Then every time I provide the specification of a signal of the design,
please write all the corresponding SVAs based on the defined Verilog
signals that benefit both the RTL design and verification processes.
Please note that don't generate signals that do not exist in the signal
declaration Verilog file.
Please make sure that the generated SVAs have no syntax error, and
strictly follow the function of the given specification/description.
The generated SVAs should include but not be limited to the following
types:

width|: Check the signal width using 3bits operator

connectivify]: Check if the signal can be correctly exercised and also the
value propagation among all connected signals.

[function|: Check if the function defined in the specification is

implemented as expected.

.‘

16

Automatic Assertion Generation

[Response from SVA (}cneratur_l_ }
i Exa m p I e Based on the provided specification for the control register (CTR), we can |
| write SVAs to validate its behavior. Let's break down the SVAs according
! to the types you specified:
[width) H
i [@(posedoe wh_clk_i) (ctr) == 8);
[Prompt for SVA Generator] { | Leonnectivity]
* |[Upload the architecture diagram| Here is the owverall diagram) H
workflow of the design architecture. asert proy 1Ibl}(}@t|:-05t"?":at- wb_clk_i) (ctr[7] == 1'bl) |-> !
' of P] S i t (@(posedge wh_clk_i) (ctr(7] = 1'b8) |-»
- P ! | (core_en == 1'b@));
WISHBONE . . ; l_+ 1 1
Imerface - lel.-;n-l =, =, | :
eginer Byt i " | 1
- {r Comamd | ! {@lposedge wb_clk_i) (ctrl6] == 1'b1) |-=] |
Elginlg } | (en == 1'61)); :
= ¥ ! (@(posedge wb_clk_i) (ctrl6] == 1'b@) |=>]|
1 kr‘::-::‘: = s | {ien == 1'b0)); :
|] .ll.cunn:r .' L J 1
* [For each signal, upload the extracted specification and signal mapping] i (@{posedge wb_clk i) (etr[7]) 1=
Please generate SVAs for the signal control register (CTR).) ctrl7] |- ##1 (co re en == ctrl711); !
(@(posedge wb_clk_1i) (etr[e]l) =]}
ctr[6] |=> ##1 (ien == ctr[61});
1
(@(posedge wb_clk_i) (wb_rst_i == 1'bl) |-=
{ctr == 8'hoa));
1
(@(posedge wb_clk_i) (wb_rst i == 1'bB && |
! |etrl7] = 1'b1) |- (core_en == 1'b1)};
1
| {@lposedge wh_clk_i) (wb_rst_i == 1'b0 &&| 4
| [ctrl6] = 1'b1) |-> (ien = 1'b1)); H
LY ’

Generated SVA Evaluation
* Generated SVA + Golden RTL Design

e RTL is error-free and strictly implemented according to SPEC

[

* Model Checker |
 Formal verification (FPV) Geg\e/ged J» Evaluation Metric;
e Evaluation Metrics | Model [|- SVASyntax
* SVA syntax Checker "|. Fpv Pass/Fall
* FPV pass/fail Golden RTL | | — (COlCoverage
Design

* COI coverage

18

Experimental Results

* Experimental Setup
 SPEC document: PDF format

* Model checker: Cadence JasperGold
e LLM: GPT3.5/40 from OpenAl

* Evaluation Metrics
e # generated SVAs
* # syntax-correct SVAs
* # FPV-passed SVAs
* COIl Coverage

* Test Design
e 12C with 23 signals (17 10 ports and 6 architecture-level registers)

19

Experimental Results
o All bit-width SVAs are correct

* Few connectivity and function SVAs contain errors

* 86% SVAs are both syntactically and functionally correct

AssertLLM | GPT-40 | GPT-35

Assertion Evaluation (#. Generated/#. Syntax Correct/#. FPV Pass)

Signal Type Width Conectivity [Function | Signal Total | Function
Clock (1) V171 / 1/1/1 3/1/0
Reset (2) 2/2/2 / 2/2/2 6/2/0
From natual language | 10 (17) |- 0 Fa 3737 aan |] 77774 9/3/0 i
Data (11) | 11/11/11 / 11/11/11 33/11/0 Cat‘ﬂe"g:ih?:al €
Reg (6 Control (2) 2/2/2 10/10/9 13/13/13 25/25/24 622 | iﬁcatiin s
Data (4) 4/4/4 / 6/6/4 10/10/8 14/4/4 | °P :
From waveform / 9/9/6 9/9/6 4/4/2
Design Total 23/23/23% 14/14/10 | 28/28/23 65/65/56 75/27/8
100%/100% | 100%/71% | 100%/82% | 100%/86% | 36%/11%

20

Experimental Results

* All 10-related SVAs have lower COIl coverage
* Register-related and Waveform-related SVAs have high COI
* SVAs generated by AssertLLM achieve 93.44% of coverage

100.0% 90.96% 93.44%

(o]
84.40% 85.87% 82.05%

80.0%
60.0%
40.0%
20.0%

0.15% 0.15% 1.02% 0.15%
0.0%

21

Experimental Results

* Can generate SVAs with high quality on the other designs

SVA Eva_tluation
Desien AssertLLM GPT-40
& Total Total Total Total
Correctness | Coverage || Correctness | Coverage
65/65/56 75/27/8
[2C 100%/86% % 36%/11% 32%
22/22/20 11/7/0
ECG 99% 0%
100%/91% 64%/0%
.. 15/15/14 12/8/1
Pairing || 1 009/93% 100% 67%/8% 0%
Average 100%/90% 97% 56%/6% 27%

22

Conclusion

* AssertLLM: generating assertions from complete design specifications
Utilize multi-step strategies and LLMs to generate SVAs

Rely on golden reference specification, rather than DUT

Can generate SVAs from waveform diagram

Quantitative evaluation method based on golden RTL

23

& THE HONG KONG

e Thank You!

(GUANGZHOU)

Cone of Influence (COIl) Coverage

* COIl coverage measures the percentage of design logic that is structurally connected to
the assertions.

A
—i| B b - —=(anb)
C

25

