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Background

◼ Large language models (LLM) based on the Transformer (A. Vaswani et al., 2017) 

are blooming in both CV and NLP.

◼ Furthermore, multimodal large model, such as GPT-4 (J. Achiam et al., 2023) and 

MiniGPT-4 (D. Zhu et al., 2023), performs human-like AI in various applications.
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Background

◼ SRAM-CiM, especially high-density designs, enables the in-memory attention 

mechanism.

◼ However, in short-sequence scenarios such as the edge side, the limited on-chip 

density still results in a serious weight-dumping overhead.
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Background

◼ Recently, a high-density ROM-CiM (G. Yin et al., 2023) has been proposed to 

address the limited density challenges of SRAM-CiM.

◼ By introducing SRAM-CiM as finetuning weights, YOLoC and Hidden-ROM (Y. 

Chen et al., 2022) are proposed to release the bottleneck of flexibility issue.
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Motivation

◼ Beyond RNN and LSTM, Transformer is currently the most dominant architecture 

for NLP and multimodal tasks.

◼ In short-sequence scenarios, the weight access dominates the memory access, 

while the weight-stationary MVM dominates the computing operations.
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Motivation

◼ YOLoC (Y. Chen et al., 2022) demonstrates a new concept of cutting off off-chip 

parameter loading with large-capacity ROM-CiM and finetuning to various tasks.

◼ However, the density of conventional transistor-based ROM-CiM is still limited when 

it comes to even lite LLM, such as MiniGPT-4.
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Contributions

◼How to further improve the density of ROM-CiM?

◼ The key contributions of this work 3D-METRO:

❑Transistor-less 3D-metal-ROM-based CiM with potentially 10x higher density 

than conventional ROM-CiM and 100-200x higher than SRAM-CiM.

❑Local recovering unit for counteracting the inter-column interference due to high-

density arrays.

❑Potential of full deployment of a large language model on a 3cm2 chip of 28nm 

CMOS process with 28x energy efficiency improvement thanks to terminating off-

chip weight loading.
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Proposed Design

◼ Proposed 3D-METRO contains Transistor-Less-Metal-ROM-based CiM Blocks, 

Local Processing Cell, and Adder Tree for computing
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Proposed Design

◼ Conventional transistor-based ROM-CiM cell depends on the connection of the gate 

and the wordline, which does not rely on the transistor.

◼ We propose the Metal-ROM methodology, which uses only metal layers to construct 

the whole ROM array and corresponding differential readout.
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Proposed Design

◼ However, there will be bit errors due to a short connection in special condition of 

transistor-less ROM-CiM.

◼ Capacitive coupling scheme: breaking the “no access controller, no correct read” 

by introducing differential parasitic capacitance C0 and C1.

◼ When only the selected WL is set to high, the data can be read by sensing the 

difference caused by C0 and C1 between the BL and BLB.
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Proposed Design

◼ Two possible implementation: Shower Type and Pillar Type

◼ Shower: Doubling the capacitance of state ‘1’ by halving the distance.

◼ Pillar: Utilizing the sidewall capacitor to enhance the capacitors. 
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Proposed Design

◼ Metal-based 3D stacking on mature CMOS
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Proposed Design

◼ Limitation and Tradeoff: Local Recovering Unit (LRU)

❑ Bit error due to the coupled parasitic capacitors and process variation of SA.

❑ LRU: StrongARM latch structure and related offset compensation units to finetune the fixed offset 

of the SA for recovering the dirty data.

17



Outline

◼Background

◼Motivation

◼ Proposed Design

◼Benchmark

◼Conclusion

18



Benchmark

◼ Experiment Setup

◼Hardware

❑13-metal 28nm CMOS process. SRAM from CACTI. Baseline is based on HBM2.

❑Monte-Carlo simulation for evaluating the bit error rate due to process variation.

◼ Software

❑Model: BERT, and ViT

❑Dataset: SST-2, AG_NEWS, TinyImageNet, and CIFAR-100

◼ System

❑Data transmission for weight data and intermediate result is included.

❑Custom simulator based on the data by fvcore and the macro-level simulation.
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Benchmark

◼ Reliability and Trade-off Analysis

◼ Tradeoff between memory density and bit error rate in variations considering PVT 

corners, Monte-Carlo, and inter-column interference. 
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Benchmark

◼ Accuracy and energy efficiency tradeoff of various tasks

❑ Improve the parasitic capacitors to enhance the task accuracy.

❑ Use a more varied but more energy-efficient design for the low-bit weights to balance energy 

efficiency and accuracy.
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Benchmark

◼ Macro-level Performance Comparison

❑ Breaking through the traditional trade-off.

❑ Achieving ultra-high density by 3D-Metal stacking (> 100x).

❑Making full use of the transistor layers to achieve 5.8x higher area efficiency.
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Benchmark

◼ System-level Metrics Comparison on LLM

❑ The SRAM-CiM is the fine-tuning weights in LoRA.

❑ The SRAM buffer is used to store the intermediate data on-chip completely.
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Discussion

◼ Reliability

❑ Repressed random effects with the proposed recovery scheme by differential capacitor pairs.

◼ Flexibility

❑ Enabled by parameter finetuning technique, such as LoRA.

◼ Heat Dissipation

❑ 3D stacking by metal on mature CMOS process

❑ No multilayer silicon stack with poor heat dissipation

❑ 3D Stack for low power density ROM memory.

◼ Overhead

❑ Peripheral MUXs

❑MUXs could be fully deployed beneath 6 stacked arrays with 16x16 size.
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Conclusion

◼ Proposed 3D-METRO architecture

❑ Ultra-high-density compute-in-memory structure.

❑ Transistor-less 3D-Metal-ROM layers.

◼ Features:

❑ A transistor-less ROM with local computing and 

local recovering units potentially supports 100x-

200x density of SRAM-CiM.

❑ Task evaluation shows 28x system-level energy 

improvement over SRAM-CiM

❑Only 10% area efficiency overhead and <1% 

accuracy loss in BERT and ViT.
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Thank You
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