
HCiM: ADC-Less Hybrid Analog-Digital 
Compute in Memory Accelerator for Deep 
Learning Workloads
Shubham Negi, Utkarsh Saxena, Deepika Sharma and Kaushik Roy

22nd January 2025



➢ Introduction and Background

➢ Challenges

➢ Proposed Hardware Algorithm Co-design Approach
➢ Two Stage Quantization 

➢ Hybrid Analog-Digital CiM Accelerator

➢ Results

➢ Conclusion

2

1



Background Challenges HCiM Results ConclusionIntroduction

2

Bring 

compute to 

the edge

So, what is stopping us?
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DNN Dataflows
Source: Sze V et al, Proceedings of IEEE, 2017

Source: IBM

Breakdown of operation type across ML workloads

Exploding computational complexity of 

Deep Learning models

Source: OurWorldInData.org/artificial-intelligence  

Source : Magnet, ICCAD 2019

Potential Solution: 

Compute in Memory
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Bitwise NAND/NOR Output

Digital Compute In Memory

➢ Digital CiM

➢ Bitwise multiplication operation followed by an accumulation in the peripherals

➢ Vector Matrix multiplication followed by reduction in adder tree
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MUX

ADC

Bitwise MVM Output

Analog Compute In Memory

Adder Tree

1 2 3

Chih et al. ISSCC 2021

➢ Analog CiM

➢ Reduction performed in analog domain

➢ Multiple wordlines are turned on to perform bitwise MVM operation in Analog domain
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Source: Ankit A et al, ASPLOS, 2019

PUMA: CiM Accelerator
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➢ Hardware efficiency bottlenecked by ADCs

➢ CiM macro area heavily dominated by ADCs

➢ Sharing ADCs across multiple memory array columns affect hardware 
throughput
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Source: S. Huang et al, ASP-DAC, 2021
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➢Reduce ADC precision to reduce overhead posed by the ADCs. 

➢Reducing ADC precision reduces ADC area, power, energy, latency.

➢Reduced ADC area allows more ADCs in a single CiM macro improving throughput. 

➢Reducing ADC precision quantizes the partial sum.  
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Quantizing partial sum reduces 

DNN accuracy.
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➢Train the DNN Model with partial-sum quantization in the training loop

➢When partial-sum is quantized to binary → ADC-Less CiM

➢When partial-sum is quantized to ternary → Near ADC-Less CiM
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𝑝𝑠𝑏 = 𝑠 ∗ ቊ
+1, 𝑝𝑠𝑖𝑗 > 0
−1, 𝑝𝑠𝑖𝑗 < 0
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Source: Saxena U Partial-Sum Quantization for Near ADC-Less Compute-In-Memory Accelerators, ISLPED, 2023
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➢ Scale factor granularity plays a big role in the final accuracy achieved 

➢ Reducing number of scale factors results in accuracy drop
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N : Number of Xbars ||  K: Output channel dimension || sa : Number of activation bit-slices  ||  sw : Number of weight bit-slices
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➢ Partial sum quantization algorithm uses floating point scale factors

➢ Quantized partial sums need to be dequantized before accumulating partial sums from 
crossbars

➢ This dequantization requires floating point arithmetic units
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➢Overheads:

➢Need power hungry floating point multipliers to dequantize the partial sums before adding them 
from different crossbars

➢Scale factors requires very high data movement energy

➢Opportunities:

➢Quantized values ∈ {+1,-1,0} therefore we only need adders/subtractors instead of multipliers

➢Computation corresponding to quantized value 0 in case of ternary quantization can be skipped
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➢Partial sum quantized to binary and ternary precision

➢To improve area and energy efficiency, we introduce two-level 
quantization scheme for analog CiM hardware

➢Scale factors corresponding to scale factor quantization merged 
with batch normalization layer
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❑ Two Stage Quantization

Analog CiM 
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➢ Process scale factors inside the memory array itself (A𝑃𝑆𝑖 = σ(𝑝𝑖𝑗 ∗ 𝒔𝒊𝑗))

➢ Accumulated partial sums and scale factors are stored in staggered fashion [1]

➢ The digital CiM macro needs to support addition, subtraction and no operation 
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❑ HCiM:  Hybrid Analog-Digital CiM Macro
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[1] Agrawal A, et al. IMPULSE, IEEE Solid-State Circuits Letters. 2021 Jun 28;4:137-40.
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D = A⊕B⊕Bin
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➢ Difference bit (D) is same as the sum bit of a full adder

➢ Subtraction is a non-commutative operation 
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❑ Read one of the inputs in next cycle❑ Store 2’s complement of scale factors
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❑ Read one of the inputs in next cycle❑ Store 2’s complement of scale factors
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➢ Read scale factor value from the write bit line for the columns that require a subtraction operation

➢ Column peripherals reconfigured as adder/subtractor depending on p ∈ {+1,-1,0}

➢We can process multiple columns of analog CiM crossbars in parallel

➢ Inherent sparsity in quantized values (p) helps to reduce energy consumption
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❑ HCiM:  Hybrid Analog-Digital CiM Macro
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➢For accuracy evaluation we use a functional simulator that models CiM accelerator 
architectural details such as tiling, bit-slice and bit-stream

➢Our two-level quantization approach results in minimal drop in accuracy (~1.5%)
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❑ Accuracy Results (CIFAR-10)

Model (Xbar Size) ADC Precision (bits)

7 6 4 2 1.5 1

ResNet-20(128) 92.26 91.27 90.20 82.40 88.80 86.30

ResNet-20(64) - 91.93 91.00 83.00 89.80 88.20

Wide ResNet-20(128) 93.80 93.70 92.90 88.30 92.03 91.90

Wide ResNet-20(128) - 93.91 93.10 89.40 92.24 91.89
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➢ The DCiM array is designed in 65 nm technology

➢ The performance results are based on schematic-level simulations 

➢Energy to process all the columns of analog CiM crossbar reduces with increase in 
sparsity of ternary quantized values (p)
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➢We used the cycle accurate simulator PUMA to get the energy and latency for our 
system level results

➢ The energy, latency and area for ADCs are estimated from the ADC survey

➢Mapping neural networks to HCiM results in 3-28x lower energy consumption 
compared to baselines and 3-12x lower latency compared to 6-7 bit ADCs
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❑ Performance Results (128x128)

[1] Boris Murmann. [n. d.]. ADC Performance Survey 1997-2023. [Online]. Available: https://github.com/bmurmann/ADC-survey

[2] Ankit A et al, PUMA ASPLOS, 2019
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➢ Quarry (1-bit) uses per crossbar scale factor and digital 
multiplier to dequantize crossbar outputs

➢ BitSplitNet uses independent paths to process each input and 
weight bits

➢ Compared to Quarry with 1-bit ADC, HCiM achieves 2.5% 
higher accuracy with 3.8x lower EDAP (energy-delay-area 
product)

➢ Compared to BitSplitNet, HCiM has 4.2% higher accuracy with 
4.2x lower EDAP
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❑ Comparison of ResNet-18 mapped to HCiM with related works on ImageNet dataset
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➢ The performance of neural network deployed on analog CiM accelerator is limited by ADCs

➢ Partial sum quantization introduces floating point scale factors

➢ We propose a two-stage quantization (TSQ) algorithm to eliminate the need for ADCs in 
analog CiM accelerators

➢ We introduced a hybrid analog digital compute in memory macro (HCiM) to deploy TSQ 
trained DNN

➢ Our system-level evaluation using a cycle-accurate simulator shows up to 28x and 12x
reduction in energy compared to the baseline that uses 7-bit and 4-bit ADCs
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