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CiM Accelerators : Types
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Analog CiM Accelerator

~ B(4bit) Convert the analog signals at
Tile 1 A (4 bit) 5 6 7 8 the COIUW%@%' signals
— ‘°“"ﬁf g “"re#* [1 2 3 4]x|9 1 2 3| ,cing ADCAnd.then aerform
S ee = les g 5 6 ; shift apg l?f‘ﬂ, over@ slices
AL |[Register ile| || AL | |Register it Bit Stream , Bit Slices |
0110 B[1:0] R > B[3:2] ReRAM
. TeMemoy | _ .
| 01\ 10% 11X 10% o1\, 01, of¥ 107~ SRAM
Network-on-Chip (NoC) 000 1 000 1 FeFET
S — 01 0110 11 10% 004/ 00 00
HE e EHE 0000 0000
AL R S0 el O 3 3 00 o1y 10 11% 01 013 01 Ot
MVMU1 MVMU X MVMU1 MVMU X 000 1 0001
L T eI NN RN NN PN N N
. TeMemoy | I A A R M A N A
PUMA: CiM Accelerator . ADC | l; =3 V,G; . ADC |

MVMU MVMU

4
Introduction Background Challenges Future Work



Challenge : Analog to Digital Converter Overhead
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» Hardware efficiency bottlenecked by ADCs
» CIM macro area heavily dominated by ADCs

» Sharing ADCs across multiple memory array columns affect hardware
throughput

Challenges




Reducing ADC Overhead

»Reduce ADC precision to reduce overhead posed by the ADCs.
»Reducing ADC precision reduces ADC area, power, energy, latency.
»Reduced ADC area allows more ADCs in a single CiM macro improving throughput.

»Reducing ADC precision quantizes the partial sum.

5 6
ADC Precision

Quantizing partial sum reduces
DNN accuracy.
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Quantization aware Training

»Train the DNN Model with partial-sum quantization in the training loop
»When partial-sum is quantized to binary =2 ADC-Less CiM
»When partial-sum is quantized to ternary = Near ADC-Less CiM

ResNet-20 on CIFAR-10

ADC Precision
® No Retraining m Retraining

ADC-Less CiM Near ADC-Less CiM

7
Introduction Background Challenges




Accuracy vs Scale Factor Granularity

> Scale factor granularity plays a big role in the final accuracy achieved

» Reducing number of scale factors results in accuracy drop
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Scale factors are crucial for ultra-

low precision quantization

N : Number of Xbars || K: Output channel dimension || s, : Number of activation bit-slices || s, : Number of weight bit-slices
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Deploying on ADC-Less CiM Accelerator
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» Partial sum quantization algorithm uses floating point scale factors

» Quantized partial sums need to be dequantized before accumulating partial sums from
crossbars

» This dequantization requires floating point arithmetic units
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Scale Factor Overhead
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» Overheads:

»Need power hungry floating point multipliers to dequantize the partial sums before adding them
from different crossbars

»Scale factors requires very high data movement energy Is it possible to process these

scale factors efficiently?

»Opportunities:
»Quantized values € {+1,-1,0} therefore we only need adders/subtractors instead of multipliers
»Computation corresponding to quantized value 0 in case of ternary quantization can be skipped
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Our Approach: Hardware-Software Co-Design

0 Two Stage Quantization
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»Scale factors corresponding to scale factor quantization merged
with batch normalization layer
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Our Approach: Hardware-Software Co-Design

O HCiM: Hybrid Analog-Digital CiM Macro
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> Process scale factors inside the memory array itself (APS; = Y.(pij * Si;))
» Accumulated partial sums and scale factors are stored in staggered fashion [1]
» The digital CiM macro needs to support addition, subtraction and no operation




Full Subtractor
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subtraction?

» Difference bit (D) is same as the sum bit of a full adder

» Subtraction is a non-commutative operation

» When A=B, B_,=Bin, for other case Bout depends on inputs
» Borrow bit cannot be realized using bitwise AND, NOR
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Possible Approaches

L Store 2’s complement of scale factors

[ ] [odd] [even] [odd] [even]
PE Scale ]

' = Factors
00 B e =] (I

| [odd] [even] [oddT] [even]

| g complement
| " of scale factors

I_I_I_I_I

Bl E Accumulated O _

[T 0 [ Jeven  Ppartial Sums =ven

RBLB RB RBLB

Need 2x memory

14
Introduction Background Challenges

L Read one of the inputs in next cycle
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Possible Approaches

 Store 2's complement of scale factors J Read one of the inputs in next cycle
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Our Approach: Hardware-Software Co-Design

O HCiM: Hybrid Analog-Digital CiM Macro
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> Read scale factor value from the write bit line for the columns that require a subtraction operation
» Column peripherals reconfigured as adder/subtractor depending on p € {+1,-1,0}

» We can process multiple columns of analog CiM crossbars in parallel

» Inherent sparsity in quantized values (p) helps to reduce energy consumption




Evaluation

L Accuracy Results (CIFAR-10)

Model (Xbar Size) ADC Precision (bits)

7 6 4 2 1.5 1
ResNet-20(128) 92.26 91.27 90.20 8240 88.80 86.30

ResNet-20(64) - 91.93 91.00 83.00 89.80 88.20
Wide ResNet-20(128) 93.80 93.70 9290 88.30 92.03 91.90

Wide ResNet-20(128) - 93.91 9310 8940 9224 91.89

»For accuracy evaluation we use a functional simulator that models CiM accelerator
architectural details such as tiling, bit-slice and bit-stream

»Our two-level quantization approach results in minimal drop in accuracy (~1.5%)




Evaluation

L Experimental Setup
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Energy to process all the columns of analog CiM
crossbar with ternary quantization

» The DCiM array is designed in 65 nm technology
» The performance results are based on schematic-level simulations

»Energy to process all the columns of analog CiM crossbar reduces with increase in
sparsity of ternary quantized values (p)
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Evaluation

Q0 Performance Results (128x128)
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» We used the cycle accurate simulator PUMA to get the energy and latency for our
system level results

» The energy, latency and area for ADCs are estimated from the ADC survey

» Mapping neural networks to HCiM results in 3-28x lower energy consumption
compared to baselines and 3-12x lower latency compared to 6-7 bit ADCs

Ankit A et al, PUMA ASPLOS, 2019
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Evaluation

0 Comparison of ResNet-18 mapped to HCiM with related works on ImageNet dataset

» Quarry (1-bit) uses per crossbar scale factor and digital 72
multiplier to dequantize crossbar outputs ResNet18 on ImageNet
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Summary

» The performance of neural network deployed on analog CiM accelerator is limited by ADCs
» Partial sum guantization introduces floating point scale factors

» We propose a two-stage quantization (TSQ) algorithm to eliminate the need for ADCs In
analog CiM accelerators

» We introduced a hybrid analog digital compute in memory macro (HCiM) to deploy TSQ
trained DNN

» Our system-level evaluation using a cycle-accurate simulator shows up to 28x and 12x
reduction in energy compared to the baseline that uses 7-bit and 4-bit ADCs

Conclusion
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