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• AI/ML techniques have been applied to many IC physical 
design challenges, e.g.:
• Hyperparameter autotuning for better PPA tool settings

• ML Predictions of routing hotspots, doomed runs, and PPA

• Routing blockage creation to improve routability and PPA

• But: practical challenges are seen in ML deployment

➔ Why have so many efforts fallen short?

• This talk:
• Issues surrounding data for ML

• High-level principles for deployment

• Basic “checklists” for data, models, and use cases

• Context for MLOps and LLM-based application development

Motivation
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Agenda

• Data
• Data Outside vs. Inside IC Design

• Challenges and Ongoing Efforts (Academia and Industry)

• ML Deployment
• Key Performance Indicators (KPIs) and Checklists

• Machine Learning Operations (MLOps) and Commoditization

• Challenges for LLM Deployment
• LLM ꓫ EDA: Software Engineering Issues

• Challenges from EDA Flows
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• Data is a core concern in ML for IC design

Data in PD: Scope, Modalities, Challenges 

Example Challenges

• Diverse IC data types
• Formal specs

• HDL

• Graphs

• Hierarchies

• Tabular data

• Images

• Hard for GenAI to 
interpret  

Generalization 

across modalities

• IC design data is 

costly to produce

• Huge scale, as well !

• High-quality public 

data is scarce

• Unshareable due to 

proprietary rights

• PDK data

• Commercial libraries

• Soft IP data

• EDA vendor data

Scarce and 

proprietary data 
Data quality

• Larger datasets do 

not guarantee better 

ML models 

• Common problems:

• Outdated, stale data

• Incomplete coverage

• Risks such as data 

poisoning
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Many initiatives, contributions to mitigate data scarcity

• Artificial netlist generators (ANG+), proxy PDKs (ASAP7+)

• Open-source toolchains (OpenROAD, iEDA, Yosys etc.)

• Continuous updates to public, reproducible baseline results, benchmarks

• IEEE CEDA DATC

• ML EDA formats, datasets + proxy design enablements

• The SLICE project

• Enabling a sharable ML infrastructure

• MLCAD24: Reproducibility initiatives  

• NSF “ImageNets for EDA” Workshop

• …

Academic Efforts
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Contributions to ML infrastructure and shared datasets

• GT-NVIDIA contest 

• Enable LLM-assisted design automation

• Si2’s AI/ML Schema Open Standards Working Group 

• Developing standardized schema specification to support AI/ML methods

• Goal: enable academia-industry collaboration 

• Google open-source (“N7”) Ariane RISC-V core 

• → New PD benchmark reflecting sub-10nm process technology

• + Scaled 2x, 4x variants

Industry Efforts
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• AI flywheel

• Frictionless reproducibility (FR)  [Donoho, 2024]

AI Flywheel and Frictionless Reproducibility

More users More data Better AI

Better product

• Reflect real-world scenarios

• Ensure model accuracy and 

robustness

• Drive progress with meaningful 

comparisons

Benchmark requirements

• Periodically update and diversify

• Prioritize representative datasets

• Use consensus evaluation metrics

• Apply standardized testing protocols

Impact goals

Data sharing Code sharing Competitive challenges

Benchmarking
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• Focus on optimizing existing design processes
• Make measurable improvements while building trust in ML 

integration

• Examples:

• Cadence Cerebrus

• Synopsys DSO.ai

• Aim for incremental improvements
• Less risk (minimum project cost)

• Simpler rollbacks if necessary

• Treat data as a first-class, up-front concern
• Robust data is the foundation for ML success

• Data quality determines model performance                         
→ effective data management is essential

ML Deployment: 3 Basic Strategy Elements
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• Progress Tracking fuels success ← KPIs !

• Assessment of progress toward expected outcomes

• Feedback for timeline adjustment

• Common KPIs for ML projects

• Operational efficiency KPIs:  how ML improves business processes

• Customer satisfaction KPIs: how ML enhances user engagement 
and satisfaction

• Revenue growth KPIs: how ML improves sales and marketing

• KPIs for ML deployment in IC physical design

• Improvements in license utilization or efficiency of license usage

• Number of RTL or P&R iterations per week

• Ratio of (automated vs. human) explorations of floorplan or timing 
closure recipes

• … 

Key Performance Indicators (KPIs)
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• Does the output actually follow from all the input data?
• Without implicit (silent, unspoken) assumptions and human intuition

• Without magically solving NP-hard problems, PDEs, etc.

• Is there enough training data to fully capture the functionality?
• Isolated corner cases can be a problem

• Does a given ML method work well with a given data type?
• LLMs X numerical data, graphs, etc.

• Deep Learning X big structured data, multiscale data

Checklists: Data and ML Methods

Data

• Is there enough training data to train a given ML model?
• Data-hungry: GenAI and Deep Reinforcement Learning

• Less data-hungry: Gradient-Boosted Decision Trees (XGBoost)

• Data-frugal: Bayesian methods

• Is there too much data for a given ML model?
• May need to use RAG and/or a Mixture of Experts

• Are the model training speed and cost consistent with 

updates to data?
• Can model freshness (relevance) be maintained?

• New tool versions, design ECOs, library models, … 
ML Methods

Acknowledgments and thanks: Dr. Igor Markov, Synopsys
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• What are the comparisons to existing baselines?

• Pitfall:  lack of strong baselines, benchmarks

• How do output errors scale with size?

• Must output errors be found?

• How are output errors tolerated?

• Verify and fail?  

• Verify and retry? 

• Hot-patching (e.g., hallucinations, statistics)?

More Checklists: ML Model Outputs

Outputs consumed by People:

• Is output size limited?

• Is correctness obvious?

• Are fixes obvious?

• Do ML outputs save or waste time?

Outputs consumed by Tools:

• Are there too many errors (at scale)?

• Is there a fast verifier and corrector?

• Do ML outputs improve final QoR?

Acknowledgments and thanks: Dr. Igor Markov, Synopsys
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• Wikipedia definition: “[A]n engineering 
practice that leverages three contributing 
disciplines: machine learning, software 
engineering (especially DevOps), and data 
engineering”

What About “MLOps”?

MLOps

DevOps
Data 

Engineering

Machine Learning

Engage with MLOps NOW !

Checklists for MLOps
• How will data be archived from runs?

• E.g., streaming vs. batch

• What elements of run data? 

• E.g., logs, scripts, reports, collaterals, …

• How to manage the lifecycle of design 
data, or the model store?

• Who creates VectorDBs (for RAG) and 
fine-tuned models – and when should 
these be updated?

• Where is the compute? 

• E.g., volume, cost of data movement

LLMOps

+ LLM APIs

+ Commoditization

https://en.wikipedia.org/wiki/MLOps
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• LLM-only applications often call for a simpler MLOps subset !

• Work with API for a model, not the model itself

• Much lower costs due to no training/serving, only API calls

• Monitoring/observability is in effect most of it

LLMOps: The New Paradigm



15

• VC funded startups can enter

• As can traditional monitoring companies  e.g., Datadog

• Easier LLM monetization lowers cost of MLOps

• “Via Osmosis”: lower subset’s cost → then entire cost

LLMOps: Commoditization “Via Osmosis”

No MLOps LLMOps Full MLOps
$

$$$$

$
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• Very trendy, already 3 young unicorns

• Cognition,  Magic,  Cursor/Anysphere

• No sign of slowing down

• Revenue: $100M+ for Cursor alone

• Newcomers keep coming: Aider, Zed, ...

• Next: an EDA copilot?
• “When you put the resulting netlist into P&R, make sure to fence this region with 

top-side ports folded onto two layers, and turn on higher-effort congestion 

mitigation with the following set of path groups …”

LLMs for Software Engineering

No.
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Many criteria “must” be met !

• Length of execution chain before a tangible result

• Open-source monorepo in a popular language

• Low, ideally zero important third-party dependencies

• In-line, sufficient documentation for codebase

• Low bar for domain knowledge

• Little need for integration of non-text based information

• Small compute requirement to test a small change

• Integration with tools, e.g., browser-based UI render

Many standard codebases already satisfy these !

LLMs Excel at Particular Codebases

For a self-driving car: 

“Clear Weather”
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EDA lacks a lot of this…

• SOTA EDA and open-source EDA are ~disjoint

• Extensive domain knowledge is a must

• Feedback on changes can take days or even weeks

• Mixture of Verilog, C++, Python for ORFS

• Endless sea of self-contained tools: Yosys, ABC, …

• Lack of in-line comments and lots of documentation

• Reliance on platform kits that are third-party imports

• Copyright/IP rights + LLM leaks = nightmare scenario

• … (… --- …)

On the Other Hand … EDA ?

For a self-driving car: 

“Snowstorm”
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• React with Devin (compare this with OpenROAD-flow-scripts …)

• Easily broken-down subtasks
• Predictable timeline of human feedback
• Browser window/terminal responds to changes 
• Self-contained, modular changes

Open Source (alone) Isn’t the Answer
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• Trinity of roadblocks: Data, Integration, Modularity

• Large nested EDA structures (netlists, 5-box data model, etc.)

• Third-party black boxes: Yosys, ABC, etc.

• EDA “chains” tools together to make a flow 

• Versus self-sufficient APIs that respond quickly

Roadblocks and Culture Clashes  

24 hrs = Fantastic for EDA !!!

24 hrs = Awful for an iterating 
LLM-based agent !!!

And: Frictionless Reproducibility vs. Proprietary Outputs / No Benchmarking  
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• Roadblocks and culture clashes notwithstanding:                 

LLMs + EDA is receiving very active VC funding and attention !  

And Yet …

Test/Debug

Verilog Copilot

General agents for chip design

Y Combinator CEO soliciting LLMs 

for chip design companies
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• Data for AI/ML is still fraught, still top of mind

• Make Frictionless Reproducibility and the AI flywheel real !

• “Competitive Challenges” = baselines, benchmarks, culture change ! 

• Deployment of AI/ML in physical design

• High-level precepts

• KPIs

• Checklists for data, models, outputs, …

• LLM + EDA

• Trinity of roadblocks: Data, Integration, Modularity

• Deep culture clashes

• And Yet …

• Many exciting possibilities and challenges (opportunities)

• Industry and investors are eager to see successes!

Summary



Thank You


