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Chip Manufacturing

• Mask synthesis: layout to masks

• Lithography: pattern transfer from 
mask to wafer (through exposure to 
light)

• Wafer processing: etch, ion 
implantation, etc

• Packaging
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Computational lithography: 
mathematical and algorithmic 
approaches to improve the 
resolution attainable with lithography



ML for Lithography

• Has been popular since ~2010

– Why: (1) ML provides “higher” modeling 
capability, (2) many applications are “image 
recognition” or “image conversion”

– Some ML solutions are already being provided 
through vendor products (e.g. Synopsys, Mentor, 
Brion)
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Motivations

• ML (for chip design and manufacturing) has its own 
limitations

– Lack of benchmark and common data set

– Difficult to analyze and debug

– Data belongs to users; Model provided by vendors

• This talk

– Which lithography applications are more promising with 
ML?

– When training samples are sparse, do we still use ML?
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ML for Lithography

• Promising applications

– Test pattern classification

– Etch bias model

– OPC and ILT

• ML may not be an ideal solution in

– Optical model

– Hotspot

– Assist features
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Lithography Test Patterns

• Parametric patterns
– Represented by a few geometrical 

parameters (e.g. width, space)

– Easy to build and analyze

– Cannot cover complex patterns

• Actual patterns
– Extracted from sample layouts; can 

cover more complex shapes

– Should be well classified
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Insignificant or covered by the parametric test patterns

Redundant due to multiple capturing: 1-10, 7-12, 13-15, 23-24



Test Pattern Classification

• Representation of sample patterns in 
parameter space → Clustering → 
Selection of representative patterns

• Representation parameters are 
important

– Hanan grid (or Squish pattern)

– Image parameter space (IPS): Imax, Imin, Islp

– ML features
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Etch Bias Model

• Etch bias

– Amount of under-etch (positive bias) or over-etch 
(negative bias)

– Etch bias model is a key for EPC (etch proximity correction) 
or Retargeting
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PR

Substrate



Etch Bias Model

• Current RB- or MB-models are crude and 
inaccurate

– Etch process is difficult and complex to model, 
accurately
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RB model MB model
(e.g.) Etch bias = C0 + C1Den + C2Vis + C3Blo + C4Den2 + …



ML Etch Bias Model

• Even a simple MLP provides pretty good accuracy

– Choice of MLP input parameters (e.g. local pattern 
densities, optical kernel signals) are important

– Choice of regression network (for weak etch process) or 
classification network (for strong etch process) 
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S. Shim and Y. Shin, “Machine learning-guided etch proximity correction,” IEEE Tr. on Semiconductor Manufacturing, Feb. 2017.



Standard (Model-Based) OPC

• Runtime increases year after year

– More masks to process

– More polygons to correct

– Higher resolution requested
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Y. Cao, “Application of machine learning in computational lithography,” SPIE eBeam lunch, 2019.



OPC with ML

• Trained ML model for
“Quick guess of mask bias”

– No iterations, no simulations: extremely fast

– But quality is not high enough

• Practical application: ML output as initial OPC solution,
provided to standard OPC: still quite fast (3 ~ 6 times)

– Challenges
• Choice of ML model (MLP, BRNN,

GCN, CNN)

• Feature engineering (pattern densities,
optical kernel signals)

• ML optimization & training (as usual)
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Mask bias



ML for Lithography

• Promising applications

– Test pattern classification

– Etch bias model

– OPC and ILT

• ML may not be an ideal solution

– Optical model

– Hotspot

– Assist features
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Lithography Simulation

• Uses a compact model to simulate the response of PR to 
exposure and development

• Optical model

– Captures exposure

– Often uses SOCS (sum of coherent systems) approximation: already 
efficient (accuracy and computation time)

• Resist model
– Captures PEB (post-exposure bake) & development
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Hotspot

• Patterns that may cause pinching (critical width), bridging 
(critical spacing), line end shortening, etc
1. Pattern matching (using hotspot library) to choose candidate regions

2. “Lithography simulations” to confirm hotspot patterns through PVB 
(process variation band)
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Hotspot Detection

• Hotspot detection using CNN

– Training is difficult: sample hotspots are sparse, 
augmentation of samples (mirroring, flipping, etc) might 
help

– Detection should be perfect; miss prediction is not allowed
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H. Yang et al, “Imbalance aware lithography hotspot detection: a deep learning approach,” Proc. SPIE Advanced Lithography, 2017.



Assist Features (AF)

• Extra patterns added to the mask, not intended to be printed, 
which help nearby main patterns for better printing through 
constructive light interference
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AF Applications with ML

• CNN to predict AF map for AF insertion

– AF insertion runtime is reduced to 1/7 (in standard OPC 
flow); ILT runtime is reduced by 34%

• MLP for AF printability check

• AFs are “small” features; high accuracy of AF 
applications with ML is not easy

• AFs are becoming integral part of ILT
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S. Wang et al, “Machine learning assisted SRAF placement for full chip,” Proc. SPIE, 2017.

Using CNN
(ASML Tachyon flow)



Motivations

• ML (for chip design and manufacturing) has its own 
limitations

– Lack of benchmark and common data set

– Data belongs to users; Model provided by vendors

– Difficult to analyze and debug

• This talk

– Which lithography applications are more promising with 
ML?

– When training samples are sparse, do we still use ML?
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Example: Re-Fragmentation

• OPC relies on fragmentation

– Simple rules (e.g. nominal segment length) are usually 
applied

• Motivation

– Only a few (critical) segments will cause many OPC 
iterations

– Discover critical segments (with ML model) → they are 
further divided
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Segment

Fragmentation Correction & Simulation



Re-Fragmentation with ML

• ML model: random forest classifier (RFC)

• Actual re-fragmentation
– Each decision tree predicts 0 (non-split) or 1 (split)

– Voting: split segment in half if sum of 1s > threshold

• Assessment

– RB1: nominal length = 30nm → 7k segments

– RB2: nominal length = 15nm → 13.8k segments

– Proposed: RB1 + re-fragmentation → 7k + 93 
segments
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G. Cho, Y. Kwon, T. Kim, and Y. Shin, “Refragmentation through ML classifier for fast and accurate OPC,” Proc. SPIE Advanced Lithography, 2022.



Rule-Based Re-Fragmentation

• Same amount of data (28k 
segments) is used to set up a 
few rules
– 𝜎 for length and 2𝜎 for |initial 

EPE|

• Rule-based is worse (in max EPE) 
than RFC when data volume is 
enough 
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RFC vs Rule-Based (in Small Data Volume)

• Sample segments are reduced: 28k → 1.4k

• RFC model is re-trained; rules are set up again

• Rule-based is better than RFC, this time
– RFC is over fitted

– Rules are less sensitive to the amount of data

– Carefully crafted “complex rules” (with hints from RFC) can be very 
good
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Summary

• ML is not always an ideal solution

• Rule-based (= heuristic) may be better than 
ML in small data volume
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