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Motivation

General Purpose – High Perf. – Power-Hungry Specialized – High Perf. Per Watt

MFLOPs                              GFLOPs                              TFLOPs              per inference

Source: [13, 14, 15]
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Systolic ArrayGPUCPU

MLP CNN Transformer

General Purpose – High Perf. – Power-Hungry Specialized – High Perf. Per Watt

MFLOPs                              GFLOPs                              TFLOPs              per inference

MAPPING:
determines the workload’s 
execution on the hardware

GOAL:
to minimize the enegy and 

latency of running AI kernels

Source: [13, 14, 15]
1.1
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Contributions

Many mapping techniques.

No current mapping tool 

focuses on GEMMs.

SoA Analysis

FactorFlow finds 1-161x better mappings in up to

205x less time than four SoA tools.

Mapping Tools Comparison

Three novel robust heuristics to map GEMMs.

New Mapping Tool: FactorFlow

Mathematical formulation     

of the mapping problem.

Mapping Formalization

Map-space size analysis.
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General Matrix Multiplication (GEMM)

• Each operand is orthogonal to a loop ⇒ data reuse

• Regular data dependencies ⇒ parallelism opportunities

• Loop order is arbitrary, a loop can be split in multiple copies.

Multiply and 

Accumulate (MAC)
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Spatial Architectures (SAs)

Components:

• Array of Processing Elements (PEs)

• Memory hierarchy

• Interconnects

Modeled as a hierarchy of levels:

• Memory level

• Spatial fanout level

• Compute level
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Performance and Data Reuse

Memory hierarchy and 
interconnects ⇒ exploit data reuse!

Multiple PEs ⇒ exploit parallelism!

Energy and latency of memory 
accesses dominate those of compute.

Performance metrics:

• Energy

• Latency

• Energy-Delay Product (EDP)

Source: [11]

Several orders of computation
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Performance and Data Reuse

Performance metrics:

⇒ A mapping exploits data 
reuse and parallelism!

• Many types of reuse 

• Arbitrary data allocation

• Flexible data movement

• Several orders of computation
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The Mapping Problem

Mapping decisions:

1. Tiling

2. Parallelism strategy

3. Loop ordering

Source: [5, 6]

WITH MINIMAL ENERGY AND LATENCY
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The Mapping Problem

Source: [5,  6]

How: by distributing prime factors
of total loop iterations to SA levels.

WITH MINIMAL ENERGY 
AND LATENCY
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Tiling

Fits operands on memory levels by tiling them.

Modeled by allocating GEMM iterations to each memory level.
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Parallelism Strategy
Unfold some iterations in parallel over the PEs array.

Modeled by replicating GEMM’s loops on each spatial fanout level.

Let “pfor” indicate spatial iterations.
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Loop Ordering
The order of each loop triplet dictates a dataflow.

The operand orthogonal to the innermost loop is reused.
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Map-Space Sizes

The mapping problem 
is complex because: 
map-spaces are huge!

Map-space: set of all 
mappings for a 
GEMM-SA pair.

Major size contributor: 
factor allocations!

tiling
parallelism strat.
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Map-Space Sizes

Near-optimal mappings are rare!

The mapping problem 

Major size contributor: 
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Mapper and Model Paradigm

Source: [5]

Objective: Minimize the EDP
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SoA Mapping Tools

Limitations:

• Focused on convolutions
(GEMMs as a byproduct)

• Lack of comparison with 
each other

Mapping Tool Approach Flexible

Timeloop [5] random search yes

GAMMA [6] genetic algorithm no

FLASH [7] exhaustive no

LOMA [8] exhaustive pruned yes

SALSA [9] simulated annealing yes

CoSA [10] mixed integer programming yes
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Our Appoach: FactorFlow

• Specialized for GEMMs

• Comprises a mapper 
and a model

• Implements three 
novel heuristics
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Analytical Model

• Fully flexible, can model most SAs

• Functionally equivalent to Timeloop [5]

• Three passes over the SA hierarchy

• Max measured execution time: 1 ms
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Step 1: Iterate Permutations
Total permutations: 6#𝑙𝑒𝑣𝑒𝑙𝑠

Target decision:

loop orderingExhaustively try loop permutations.

15

of loops with >1 iteration, same EDP.



Step 1: Iterate Permutations
Exhaustively try loop permutations.

Equi-dataflow: same relative order  
of loops with >1 iteration, same EDP.

Adaptive programming: speedup 
exploration of equi-dataflow 
permutations by restarting from a 
past solution’s factors allocation.

Must buffer past solutions.

Equi-dataflow matches are likely,    
as are loops with 1 iteration.

Total permutations: 6#𝑙𝑒𝑣𝑒𝑙𝑠
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Step 2: Fanout Maximization
Higher utilization increases reuse and parallelism.

Try all mappings saturating instances with different spatial dimensions.

Target decision: 

parallelism strategy
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Step 3: Greedy Descent Factors Allocation
Target decision:tiling

Adjacency: two mappings differing by a single moved prime factor.

Starting point: all unused prime factors on the first level.

Local search between adjacent mappings, reach local optimality.
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Step 3: Greedy Descent Factors Allocation
Local search between adjacent mappings, reach local optimality.
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Step 3: Greedy Descent Factors Allocation
Local search between adjacent mappings, reach local optimality.

17.2

Empirically, local optimality often 
leads to global optimality as well.

Fast and effective handling of the 
most complex part of the map-space.

Intuition: where to find optimal mappings.
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Step 3: Greedy Descent Factors Allocation
Intuition: where to find optimal mappings.



Experimental Setup

⇒ 40 diverse map-spaces

Eyeriss [1] Gemmini [2] Simba [3] TPUv1 [4]

4 SoA Spatial Architectures

10 GEMMs

GEMM
BERT Transformer [12] Scientific Applications [7]

I II III IV V VI VII VIII IX X

M 3072 4096 64 4096 8192 1024 8 8 8192 512

K 1024 64 4096 1024 8192 8192 8192 1024 1024 256

N 4096 4096 4096 4096 8192 1024 8 8192 8 256
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Experimental Setup

10 GEMMs

⇒ 40 diverse map-spaces

GEMM
BERT Transformer [12] Scientific Applications [7]

I II III IV V VI VII VIII IX X

M 3072 4096 64 4096 8192 1024 8 8 8192 512

K 1024 64 4096 1024 8192 8192 8192 1024 1024 256

N 4096 4096 4096 4096 8192 1024 8 8192 8 256

Eyeriss [1] Gemmini [2] Simba [3] TPUv1 [4]

4 SoA Spatial Architectures
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Comparison Results: EDP
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Comparison Results: EDP
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Comparison Results: Execution Time
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Comparison Results: Execution Time
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Comparison Results: Global Optima

⇒ 36/40 global optima found.
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Conclusions

FactorFlow consistently finds equal or better mappings for GEMMs.

FactorFlow’s heuristics are considerably faster than previous techniques.
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Future Developments

FactorFlow is open-source, find it on GitHub:

https://github.com/EMJzero/FactorFlow

FactorFlow redesign to target convolutions (mostly done).

Extension to accelerators based on in-memory computing.
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Thank You for Your Attention!
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