ASP-DAC 2025

FactorFlow: Mapping GEMMs on Spatial Architectures through Adaptive Programming and Greedy Optimization

Marco Ronzani Speaker – PhD Student – marco.ronzani@polimi.it

Speaker – FID Student – marco.ronzani@pointi.it

Cristina Silvano

Full Professor – cristina.silvano@polimi.it

POLITECNICO MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

Motivation

Source: [13, 14, 15]

MLP

MFLOPs

GOAL: to minimize the enegy and latency of running AI kernels

Systolic Array Processing Elements Mesh Specialized – High Perf. Per Watt

Source: [13, 14, 15]

Contributions

SoA Analysis

Many mapping techniques.

No current mapping tool focuses on GEMMs.

Mathematic Mathematic

Three no

FactorFlow finds **1-161x better map 205x less time** than four SoA tools.

Mapping Formalization							
atical formulation apping problem. Map-space size analysis							
New Mapping Tool: FactorFlow							
ovel robust heuristics to map GEMMs.							
Mapping Tools Comparison							
ow finds 1-161x better mappings in up to							

General Matrix Multiplication (GEMM)

- Each operand is orthogonal to a loop \Rightarrow data reuse
- Regular data dependencies \Rightarrow parallelism opportunities
- Loop order is arbitrary, a loop can be split in multiple copies.

Definition:

- $Out = W \cdot In + Bias$ $In \in \mathbb{M}_{\mathrm{K} imes \mathrm{N}}$
 - $W \in \mathbb{M}_{M imes K}$
 - *Out*, $Bias \in M_{M \times N}$

Nested Loop Form:

Out = Biasfor m in [0,M): for k in [0,K): for n in [0,N): Out[m,n] += W[m,k]·In[k,n]

Multiply and Accumulate (MAC)

Spatial Architectures (SAs)

Components:

- Array of Processing Elements (PEs)
- Memory hierarchy
- Interconnects

Modeled as a **hierarchy of levels**:

- Memory level
- Spatial fanout level
- Compute level

Performance metrics:

- Energy
- Latency
- Energy-Delay Product (EDP)

Energy and **latency** of **memory** accesses dominate those of compute.

Memory hierarchy and interconnects \Rightarrow exploit **data reuse!** Multiple PEs \Rightarrow exploit **parallelism!**

Performance and Data Reuse

- Many types of reuse
- Arbitrary data allocation
- Flexible data movement
- Several orders of computation

 \Rightarrow A mapping exploits data reuse and parallelism!

Performance and Data Reuse

The Mapping Problem

- 1. Tiling

WITH MINIMAL ENERGY AND LATENCY

Mapping decisions:

2. Parallelism strategy

3. Loop ordering

The Mapping Problem

for m in [0, M): for k in [0, K): for n in [0, N): <<MAC>>

WITH MINIMAL ENERGY AND LATENCY

How: by distributing prime factors of total loop iterations to SA levels.

Source: [5, 6]

Fits operands on memory levels by tiling them.

Modeled by allocating GEMM iterations to each **memory level**.

Tiling

Parallelism Strategy

Unfold some iterations in parallel over the PEs array.

Modeled by replicating GEMM's loops on each **spatial fanout level**.

Let "**pfor**" indicate spatial iterations.

Loop Ordering

The order of each loop triplet dictates a **dataflow**.

The operand orthogonal to the innermost loop is reused.

Input Stationary

for m in $[0, M \neq 1)$

Output Stationary for k in [0, $K \neq 1$)

Map-space: set of all mappings for a GEMM-SA pair.

The mapping problem is complex because: map-spaces are huge!

Major size contributor: factor allocations!

> → tiling parallelism strat.

Map-Space Sizes

10

Map-Space Sizes

Simba - GEMM I Simba - GEMM II Simba - GEMM III Simba - GEMM IV

EDP Distribution for 100k Random Mappings

Near-optimal mappings are rare!

Mapper and Model Paradigm

Objective: Minimize the EDP

11

SoA Mapping Tools

Limitations:

- Focused on convolutions (GEMMs as a byproduct)
- Lack of comparison with each other

Mapping Tool	Approach	Flexible		
Timeloop [5]	random search	yes		
GAMMA [6]	genetic algorithm	no		
FLASH [7]	exhaustive	no		
LOMA [8]	exhaustive pruned	yes		
SALSA [9]	simulated annealing	yes		
CoSA [10]	mixed integer programming	yes		

Our Appoach: FactorFlow

- Specialized for GEMMs
- Comprises a mapper and a model
- Implements three novel heuristics

Analytical Model

- Fully flexible, can model most SAs
- Functionally equivalent to Timeloop [5] Max measured execution time: 1 ms

• Three passes over the SA hierarchy

14

Step 1: Iterate Permutations

Exhaustively try loop permutations.

Total permutations: 6^{#levels}

Target decision: loop ordering

Step 1: Iterate Permutations

Exhaustively try loop permutations.

Equi-dataflow: same relative order of loops with >1 iteration, same EDP.

Adaptive programming: speedup exploration of equi-dataflow permutations by restarting from a past solution's factors allocation.

Must buffer past solutions.

Equi-dataflow matches are likely, as are loops with 1 iteration.

Total permutations: 6^{#levels}

Step 2: Fanout Maximization

Higher utilization increases reuse and parallelism.

Try all mappings saturating instances with different spatial dimensions.

Target decision: parallelism strategy

Local search between adjacent mappings, reach local optimality.

Adjacency: two mappings differing by a single moved prime factor.

Starting point: all unused prime factors on the first level.

Factors Allocation

EDPoU: 16

for m_0 in [0, 16)for k_0 in [0, 48)for n_0 in [0, 8)pfor m_1 in [0, 4)pfor k_1 in [0, 1)pfor n_1 in [0, 1)for m_2 in [0, 1)for k_2 in [0, 1)for n_2 in [0, 1) **Target decision:tiling**

EDPoU: 14

17

Local search between adjacent mappings, reach local optimality.

17.1

Local search between adjacent mappings, reach local optimality.

Empirically, local optimality often leads to global optimality as well.

Fast and effective handling of the most complex part of the map-space.

Intuition: where to find optimal mappings.

 \Rightarrow one lattice point, one mapping. \Rightarrow remaining iterations are on l_0 .

17.3

Experimental Setup

4 SoA Spatial Architectures

Gemmini [2]

GEMM	BERT Transformer [12]				Scientific Applications [7]						
			III	IV	V	VI	VII	VIII	IX	X	
Μ	3072	4096	64	4096	8192	1024	8	8	8192	512	
K	1024	64	4096	1024	8192	8192	8192	1024	1024	256	
Ν	4096	4096	4096	4096	8192	1024	8	8192	8	256	

\Rightarrow 40 diverse map-spaces

Eyeriss [1]

10 GEMMs

Experimental Setup

4 SoA Spatial Architectures

<Memory Level>

<Memory Level> 108 KiB

<Sp. Fanout Level>

<Sp. Fanout Level>

<Memory Level> 24 B

<Memory Level> 384 B

<Memory Level> 128 B

<Compute Level>

Eyeriss [1]

DRAM

Buffer

14-MK

12-M

In Regs.

W Regs.

Out Regs.

1 MAC

inf

Gemmini [2]

GEMM	BERT Transformer [12]				Scientific Applications [7]						
	I		III	IV	V	VI	VII	VIII	IX	X	
Μ	3072	4096	64	4096	8192	1024	8	8	8192	512	
K	1024	64	4096	1024	8192	8192	8192	1024	1024	256	
Ν	4096	4096	4096	4096	8192	1024	8	8192	8	256	

\Rightarrow 40 diverse map-spaces

Simba [3]

TPUv1 [4]

10 GEMMs

Comparison Results: EDP

Comparison Results: EDP

Comparison Results: Execution Time

Comparison Results: Execution Time

Architecture: Gemmini

Comparison Results: Global Optima

Gemmini	OPT	OPT	OPT	OPT	ΟΡΤ	OPT	OPT	OPT	OPT	OPT
Eyeriss	OPT	OPT	OPT	OPT	2.67%	OPT	OPT	OPT	OPT	OPT
Simba	OPT	OPT	OPT	OPT	1.93%	2.28%	OPT	OPT	OPT	OPT
TPUv1	0.94%	OPT	OPT	OPT	ΟΡΤ	OPT	OPT	ΟΡΤ	ΟΡΤ	OPT
				IV	V	VI	VII	VIII	IX	Х

FactorFlow EDP difference w.r.t. Global Optima

 \Rightarrow 36/40 global optima found.

Conclusions

FactorFlow consistently finds equal or better mappings for GEMMs.

FactorFlow redesign to target **convolutions** (mostly done).

Extension to accelerators based on in-memory computing.

FactorFlow is open-source, find it on GitHub: <u>https://github.com/EMJzero/FactorFlow</u>

- FactorFlow's heuristics are considerably **faster** than previous techniques.
 - Future Developments

References

- Symposium on Computer Architecture (ISCA), pages 367–379, 2016.
- Conference (DAC), 2021.
- Microarchitecture, MICRO '52, page 14–27, New York, NY, USA, 2019.
- 4. N. P. Jouppi, et al. In-datacenter performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News, 45(2):1–12, jun 2017.
- Computer Aided Design (ICCAD), pages 1–9, 2020.
- 7. G. E. Moon, H. Kwon, G. Jeong, P. Chatarasi, S. Rajamanickam, and T. Krishna. Evaluating spatial accelerator architectures with tiled matrix-matrix multiplication, 2021.
- Intelligence Circuits and Systems (AICAS), pages 1–4, 2021.
- Artificial Intelligence Circuits and Systems (AICAS), pages 1–5, 2023.
- spatial accelerators. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages 554–566, 2021.
- three generations shaped google's tpuv4i. In Proceedings of the 48th Annual International Symposium on Computer Architecture, ISCA '21, page 1–14. IEEE Press, 2021.
- 12. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.
- Amir Gholami. Full stack optimization of transformer inference: a survey, 2023.
- 14. Cristina Silvano, et al. A survey on deep learning hardware accelerators for heterogeneous hpc platforms, 2023.
- 15. Fabrizio Ferrandi, at al. A survey on design methodologies for accelerating deep learning on heterogeneous architectures, 2023.

1. Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. In 2016 ACM/IEEE 43rd Annual International

2. Hasan Genc, Yakun Sophia Shao, et al. Gemmini: Enabling systematic deep-learning architecture evaluation via full-stack integration. In Proceedings of the 58th Annual Design Automation

3. Y. S. Shao, J. Clemons, et al. Simba: Scaling deep-learning inference with multi-chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

5. Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel Emer. Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pages 304–315, 2019.

6. Sheng-Chun Kao and Tushar Krishna. Gamma: Automating the hw mapping of dnn models on accelerators via genetic algorithm. In 2020 IEEE/ACM International Conference On

8. A. Symons, L. Mei, and M. Verhelst. Loma: Fast auto-scheduling on dnn accelerators through loop-order-based memory allocation. In 2021 IEEE 3rd International Conference on Artificial

9. V. J. Jung, A. Symons, L. Mei, M. Verhelst, and L. Benini. Salsa: Simulated annealing based loop-ordering scheduler for dnn accelerators. In 2023 IEEE 5th International Conference on

10. Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James Demmel, John Wawrzynek, and Yakun Sophia Shao. Cosa: Scheduling by constrained optimization for

11. N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou, and D. Patterson. Ten lessons from

13. Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc, Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W. Mahoney, Yakun Sophia Shao, and

23

Thank You for Your Attention!