Paired-Spacing-Constrained Package

Routing with Net Ordering Optimization

Presenter: Ying-Jie Jiang
Advisor: Shao-Yun Fang

The Electronic Design Automation Laboratory
Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei 106, Taiwan

9 THEEDA LAB
TAIWAN TECH

a Introduction

a Algorithm Flow
— Net Ordering Determination
— Tile and Network Graph Construction
— MCMF-based Global Routing Derivation

Q Experimental Results
a Conclusion

Introduction

Introduction

Q Paired-spacing constraint is one of the most important constraints in advanced
package technology
— A net may require different spacing depending on the nets it is adjacent to
— There can be at most €' spacing rules for n nets

Q It is important to establish different spacing rules for different bump nets
— Ensure signal integrity
— Minimize crosstalk

Example of Pair Spacing

a If we apply post-refinement or a pessimistic spacing rule

— Result in suboptimal solution
.
N
ﬂgtour
(a) (b) (c)

® : Normal Net Bump @ . Critical Net Bump <> : Normal Spacing
® : Ball D . Spacing Violation <« : Critical Spacing

(d)

Design Rules

A Non-crossing Constraint
— Two nets cannot be routed across each other

A Routing Direction Constraint

— Routed in four kinds of orientation
= Vertical, horizontal, 45°, and 135"

a Routing Angle Constraint
_ Reversed 45" turn is not allowed
Q Paired Spacing Constraint

— For normal (non-critical) nets, keep at least a distance §,, from other nets
— For critical nets, keep at least a distance S, from other nets

Problem Formulation

Q Given
— A chip set, a normal bump set, a critical bump set, and a ball grid array (BGA)
— Wire width
— Spacing rules for normal bumps and critical bumps

Q Output

— Connect all bumps to balls
» Minimized wirelength
= Without any design rule violation

Q For better readability and more concise explanations
— Only consider two spacing constraints in our work
» Ciritical spacing rule, normal spacing rule.
— The proposed algorithm can be trivially extended to general problem instances
» Arbitrary spacing value can be set between each pair of adjacent nets.

Algorithm Flow

Algorithm Overview

Q Preprocessing

— Determine the ordering of the nets routed [Input Data J
= Minimize the routing resource demand l
= Better overall routability and wirelength l MCME-based Global
Q Tile and network graph construction Sl Routing Derivation
- Buid a nework graph o B
» Both escape routing and substrate routing
0 MCMF-based global routing derivation I Substrate Rodting
_ Determine the global routing (GR) path 1Lz a’(‘;‘i}r’;‘sei‘r‘*::tri';nerap"‘
» Ball assignment for each bump Bump Demand Setting l
Q Detailed Routing Detailed Routing
— A* search is applied to build the path SV o eey l
[Output Result]

Net Ordering
Determination

Impact of Bump Order

A The order of bumps will result in different requirements of spacing resources

Project e 6
@ & ©
120 120 120 120
o 60— 0O-—©0
Demand : 480
@Reorder
90 120 120 120
o— O 0O-—©0
Demand : 450

@ : Normal Net Bump @ : Critical Net Bump

11

Three Adjacency Types

A Each bump can be reordered with one of its adjacent bumps
— To achieve a good balance between reducing spacing and minimizing detours

A Three adjacency types are defined under this reordering assumption

Movement Arrangement
Index i-1 i i-2 i-1 |
Type
No N
0 Change Chaﬂge @ @ 0
1 Change ChIZ(rzge @ @ 0
N
2 Chaﬁge Change @ 0 @
x 3 Change Change @ 0 @
x gi2)

Displacement > 1 12

Dynamic Programming Algorithm

Q Based on dynamic programming Q Spacing cost for three bumps

— For different type — Maximum of adjacent bumps
= The prior optimal solution differs

Algorithm 1: Net ordering algorithm

input :A sequence of bumps {by, b2...,b,—1} Cost(b;, bj, br) = max(Spacing(bj), Spacing(by))+

1 Initialize d;

2o fori=3ton—-1do {maX(Spacing(bi),Spacing(bj)) ifb; #0
typel d[i][0] = min(d[i — 1][0].d[i - 1][1]) + Cost(0, bi—1.b;) 0, otherwise
type2 dli][1] = d[i - 1][2] + Cost(D, bi-2,b;)
type3 d[i][2] = min(d[i — 2][0] + Cost(bi—2. bi. bi-1),

5 d[i—2][1] + Cost(bj—2, bi, bi—1)),

d[i—2][2] + Cost(bi—3. bi, bi—1))

¢ end

7 totalSpacing « oo ;

8 for j=0to 2do

9 | totalSpacing « min(d[n — 1][]. totalSpacing)
10 end

11 return totalSpacing

13

Dynamic Programming Algorithm (cont’d)

a The example of Type O:
~ d[i][0] = min(d[i — 1][0], d[i — 1][1]) + cost(®, b;_4, bi)
— The optimal solution only comes from type 0 and type 1 at d[i — 1]
= Type 2 at d[i — 1] is Change, it is not feasible

| - 2 -1
Movement : .
Typelndex -1 i Q O : d[l'l][O]
—) 0 No Change| No Change :
1 Change | No Change :
2 No Change Change O : d[l'l][l]

Cost

14

Dynamic Programming Algorithm (cont’d)

a The example of Type 1.
— d[i][1] = d[i — 1][2] + cost(D, b;_5, bi)
— The optimal solution only comes from type 2 at d[i — 1]
= Both type 0 and type 1 at d[i — 1] is No Change, it is not feasible

Movement : _
Typelndex -1 i : d[l-l][Z]
0 No Change| No Change '
—) 1 Change No Change
2 No Change| Change Cost

15

Dynamic Programming Algorithm (cont’d)

a The example of Type 2:

d[l — 2] [O] + COSt(bi_z, bi' bi—l)l
— d[l] [2] = min d[l — 2] [1] + COSt(bi_z, bi, bi—l)'
d[l — 2] [2] + COSt(bi_3, bir bi—l)»

— The optimal solution comes from type 0, type 1 and type 2 at d[i — 2]

d[i-2][0] ‘ 0
d[i-2][1] ‘ Q
d[i-2][2] ‘ Q

Cost 16

| -4 | -2

Movement

Index . .
Type -1 |

0 No Change| No Change

1 Change | No Change
—) 2 No Change| Change

Dynamic Programming Algorithm (cont’d)

Q Compare the three types at d|i — 1] Q Spacing cost for three bumps
— Get optimal solution for bumps ordering — Maximum of adjacent bumps

Algorithm 1: Net ordering algorithm

input :A sequence of bumps {by, b2...,b,—1} Cost(b;. bj, b = max(Spacing(bj), Spacing(by.))+

1 Initialize d; . ' .
2 fori=3ton—1do max(Spacing(b;), Spacing(b;)) if b; # 0
3 d[i][0] = min(d[i — 1][0].d[i — 1][1]) + Cost(D, b;—1, b;) 0, otherwise
1 d|i][1] = d[i— 1][2] + Cost(0, bi—2.b;)

d[i][2] = min(d[i - 2][0] + Cost(bj-2, bi, bi-1),
5 d[l — 2] [l] + COSt(bj_z, b;, bf_l)),
d[i — 2] [2] + COSt(bj_g, b;‘, bj—l))

end

6
7 totalSpacing « oo ;
[8 for j=0to 2do
9 | totalSpacing « min(d[n — 1][]. totalSpacing)
10 end
11 return totalSpacing

17

Tile and Network Graph
Construction

Calculate Bump Demands

Q Before graph construction, we need to calculate bump demands for all bumps

— Each bump demand is decided by the types of adjacent bumps
= 90, 105and 120

. 90 . 120 . 120 l 120 l 120 . 90 .

(a) The spacing demand between bumps

45 | 45 _ 60 | 60 60 | 60 60 | 60 60 60 45 | 45

<—»Q<—-|<—»Q<—»|<—».<—».<—»Q<—-|<—»Q<—-.<—»Q<—».<—»Q<—»

90 105 120 120 120 105 90
(b) Bump demand

® : Normal Net Bump @ : Critical NetBump s, =50 s5.=80 w = 40

n

19

Add Virtual Points to Layout

ooooooooo
0000000000

0000000
00000000

a Add virtual points into the initial layout to facilitate the graph construction
— Distance between virtual points is the same as the distance between balls

(a) Initial layout

..........
.........

‘‘‘‘‘‘‘
..........

..........
CCCCCC

00000000
..........

(b) Add virtual point

® : Normal Net Bump © : Critical NetBump @ :Ball @ : Virtual Point : Chip

20

An Existing Tile Model [Yan and Wong, TCAD’12]

a Correctly model the capacity of a square tile formed by four balls
— It can only account for the uniform spacing constraint

O,qp = #nets that can pass an orthogonal cut
D.ap = #nets that can pass a diagonal cut

D: node capacity = Dcgp - 2 * [Ocyp / 2]

<. capacity = oo

: capacity = (Ocgp) / 2

= capacity = Oc,,
e

. capacity =1

----: diagonal cut

— —: orthogonal cut

@ va

21

Our Tile Model

a Convert the ball distance into the edge capacity
— Based on the model from [Yan and Wong, TCAD12]

C]| : node capacity = Floor((v2 — 1) * Ball Distance)

. capacity = oo

. capacity = (Ball Distance) / 2

—
—
¢ : capacity = Ball Distance
— . capacity =w + s,

[

> ball

Ball Distance

22

Network Graph Construction

Q The four adjacent balls or virtual points form a tile model
— Connect two adjacent tile models with capacity = ball distance

RO M OO RO

Y. 0.9.9.9.9.9.90.9.0.9.0.0.0.0.9 :

000 00 00 00020620050 Mormel et Bume
e A A ol P o A R i . Critical Net Bump

=il —l —
...........
.........
..........

- Ball

N — —) — — =
........

: Virtual Point

= = — = = L=

o o .o. a c' Ch'p

. : Flow Tile ‘

< : Tile to tile edge,

‘eovssse H—H_B_ N8 . capacity = Ball distance

.........

= — b=

P e O Ok R i — : Tile to ball edge,
ﬁﬁﬁﬁﬁﬁﬁﬁ capacity =1

23

Identify Peripheral Bump Tile

Q Identify the tiles whose distances to the nearest bumps are less than 1.5 times
the ball distance.

BEEEEEEEENEEENEENENEN
e e e e e e e e e e e e

FEEEEEE N EEE NN ® : Normal Net Bump
:':':'.':':':':':':':':':'.':':' @ : Critical Net Bump
BB oE(momom e NN ER

‘s s Els s EssEsEEEsEsn @ :Ball

R DO RN B " v o

s s sjssseses :: m(nEsn

B RO R Ey

[I BN BN BE BN BN BN BN N e BB B B . a ez
‘s ales s s's'sa's" * "sla‘n’s" ..FIolele
B R L T TR SR (S ~ : Peripheral Bump Tile
..........................'......

‘a m s EEsEsEEsEsEEEEEERRS

e e e e e e e e e e e e e
B R R

ooooooooooooooooo 24

Connect Bumps to the Network Graph

a Add the bumps to the network with the ordering determined in the pre-processing
stage

? Critical Net Bump

Normal Net Bump

O O O
v
[]]
Virtual Point
O O O

]
" :Flow Tile — : Capacity = Bump Demand

25

MCMF-based Global
Routing Derivation

Apply MCMF

a Add a super source and a super sink to the network graph

— The super source is connected to all bumps
— The super sink is connected to all balls

a Apply MCMF to derive the flow of each edge

a Simplify the MCMF solution to reduce the complexity
— Only keep the cross-tile flow edges

o o o A O
wige o 160
T simplify
—
75 75
Virtual Point
. 75 75 . . .

Bump
(a) MCMF result (b) After simplify 27

MCMF-based Global Routing Derivation

A Global routing consists of two steps
— GR Derivation for Escape Routing
— GR Derivation for Substrate Routing

Escape routing

Substrate routing

ooooooooo
..........

QQQQQQQ
llllllll

28

GR Derivation for Escape Routing

Q Escape routing considers the GR paths from bumps to chip boundaries

r 3

® 180 () @
135 315
< : \
o o~ /% ®
90 / 105
® o
1 2 3 4 5

(e). Find the closest output flow for

Tile B

Tile B,

o ®
~p
90 90 / 105
5 Critical Bump 1 ? 3 4 5

® 180 () ®

(b). Start from bump 1, find the
closest output flow.

® 180 o ®
s (" 225
] «— @
® ® ®
105
® o o
1 2 3 4 S

(f). Extract path for bump 3 and
find the closest output flow of
bump 4.

r 3
@® 130 o ®
225 315
. >
4
o o o
90 90 / 105
e o
1 2 3 4 5
(c). Extract path for bump 1 and
update flow graph.

4.60

® ‘\\\Gl ®

® ® ®
¢ O o o
1 2 3 4 5

(g). Extract path for bump 4 and
find the closest output flow of
bump 5.

F 3
® 13 o
225 315
< <
’\4
o o
90 90 / 105
e ©
1 2 3 4

(d). Find the closest
output flow of bump 2.

4.60

=P L
wwwk
coom

o ®
o ®
o
1 2 3 4
(h). Result.

29

GR Derivation for Substrate Routing

Q Substrate routing extends the paths of escape routing to the balls

o ® o @ o o o o
Vs 90 'Qo 90
B 45 - 30 _
“ ©] «~— [
o . 180 o o o e o
3 225 3
3
3]
v __/3 \3 -
2. 1. ® [o [o [
105
e O o e e o o
1 2 3 4 5 1 2 3 4 5
(b). Route bump 1, 2, 3. (c). Route bump 4.
® o o ® ® o ® “— o o e o ® @ @ o
'VD 30 . Branch path of bump 5 5
]
® o ® ® o o [® o o o @ [® ®
3 4 3 4 3 4
\
o o o o o o o o o e o o o o o
2 1 2 1 2 1
e & o o e o o o e o6 o o :
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
(d). Select shortest path of bump 4. (e). Route bump 5. (f). Select shortest path of bump 5, -

and the final assignment result.

Detailed Routing

Q Adopt a similar approach to that in [Lin et al., ASP-DAC'21]
— The entire area is divided into grids
— The components are mapped onto these grids

— A* search routes the bumps
= updating the grids after routing each bump
= process continues until all bumps are routed

a Reserve the necessary space for all bumps in global routing
— No design rule violations occur at this stage.

31

Experimental Results

a Two sets of benchmarks
— Set 1: bumps are arranged in a single row.

— Set 2: bumps are arranged in two rows.
» #Bump (Number of Bump) #CB (Number of Critical Bump), #Chip (Number of Chips)

Case Name Case Name

#Bump #CB #Chip #Bump #Chip
Casel 268 48 1 Casell 57 20 1
Case2 311 35 1 Casel2 222 75 1
Case3 307 41 2 Casel3 354 108 3
Case4 360 52 2 Casel4 380 129 2
Case5 390 51 2 Caselb 472 150 4
Caseb 396 61 2 Casel6 856 270 4
Case7 352 42 3 Casel7 1528 470 4
CaseS8 476 82 3 Casel8 2392 736 4
Case9 1065 167 7
CaselO 3388 573 7 33

Experimental Results

A Compare the results with the extended [Yan and Wong, TCAD12]
— Routed (Routability), UN (number of Unrouted Net), WL (WireLength), SWL (Scaled WL)

- Routed UN WL SWL Time Routed UN WL Time
Casel 87% 35 >367787 422743 47 100% 0 421530 81
Case2 92% 26 >526177 571931 68 100% 0 560018 137
Case3 91% 29 >331604 364400 24 100% 0 366759 23
Case4 88% 45 >430855 489607 39 100% 0 500110 36
Caseb 90% 38 >441303 490336 43 100% 0 488791 127
Caseb 90% 40 >480585 533983 113 100% 0 514302 81
Case7 82% 64 >496408 605375 111 100% 0 614695 374
Case8 83% 83 >674837 813056 68 100% 0 840909 84
Case9 90% 110 >1144542 1271713 137 100% 0 1265298 177
Casel0 86% 470 >2896512 3368037 546 100% 0 3401829 318

Comp 0.87 - - 1.00 0.85 1.00 - 1.00 1.00

Analysis of DP Ordering

a Analysis of the effectiveness of the proposed DP ordering.
— Routed (Routability), UN (Number of Unrouted Net), SWL (scaled WL)

With Net Ordering Without Net Ordering

Case Name

Routed UN WL Time Routed UN SWL Time
Casell 100% 0 70301 3 98% 1 70598 4
Casel? 100% 0 351002 18 91% 21 407784 49
Casel3 100% 0 412555 26 92% 27 466900 95
Casel4d 100% 0 607515 31 94% 22 593317 78
Casel5 100% 0 573769 35 92% 40 624266 123
Casel6 100% 0 1047083 65 90% 83 1235965 386
Casel7 100% 0 1877131 135 90% 152 2357943 7132
Casel8 100% 0 2944009 254 91% 221 3349184 1028
Comp 1.00 - 1.00 1.00 0.92 - 1.15 4.40

35

Conclusion

Conclusion

Q The proposed algorithm effectively handles the paired-spacing constraint

a Experimental results show that our approach achieves 100% routability in all
cases and outperforms [Yan and Wong, TCAD’12] with a 13% improvement in
routability

Q Experimental results demonstrate the effectiveness of the proposed dynamic
programming-based bump reordering algorithm

37

Q&A

	預設章節
	Slide 1: Paired-Spacing-Constrained Package Routing with Net Ordering Optimization
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Example of Pair Spacing
	Slide 6: Design Rules
	Slide 7: Problem Formulation
	Slide 8: Algorithm Flow
	Slide 9: Algorithm Overview
	Slide 10: Net Ordering Determination
	Slide 11: Impact of Bump Order
	Slide 12: Three Adjacency Types
	Slide 13: Dynamic Programming Algorithm
	Slide 14: Dynamic Programming Algorithm (cont’d)
	Slide 15: Dynamic Programming Algorithm (cont’d)
	Slide 16: Dynamic Programming Algorithm (cont’d)
	Slide 17: Dynamic Programming Algorithm (cont’d)
	Slide 18: Tile and Network Graph Construction
	Slide 19: Calculate Bump Demands
	Slide 20: Add Virtual Points to Layout
	Slide 21: An Existing Tile Model [Yan and Wong, TCAD’12]
	Slide 22: Our Tile Model
	Slide 23: Network Graph Construction
	Slide 24: Identify Peripheral Bump Tile
	Slide 25: Connect Bumps to the Network Graph
	Slide 26: MCMF-based Global Routing Derivation
	Slide 27: Apply MCMF
	Slide 28: MCMF-based Global Routing Derivation
	Slide 29: GR Derivation for Escape Routing
	Slide 30: GR Derivation for Substrate Routing
	Slide 31: Detailed Routing
	Slide 32: Experimental Results
	Slide 33: Benchmark
	Slide 34: Experimental Results
	Slide 35: Analysis of DP Ordering
	Slide 36: Conclusion
	Slide 37: Conclusion
	Slide 38

