
Paired-Spacing-Constrained Package

Routing with Net Ordering Optimization

Presenter: Ying-Jie Jiang

Advisor: Shao-Yun Fang

1

2

Outline

❑ Introduction

❑ Algorithm Flow

― Net Ordering Determination

― Tile and Network Graph Construction

― MCMF-based Global Routing Derivation

❑ Experimental Results

❑ Conclusion

3

Introduction

4

Introduction

❑ Paired-spacing constraint is one of the most important constraints in advanced

package technology

― A net may require different spacing depending on the nets it is adjacent to

― There can be at most 𝐶2
𝑛 spacing rules for 𝑛 nets

❑ It is important to establish different spacing rules for different bump nets

― Ensure signal integrity

― Minimize crosstalk

5

Example of Pair Spacing

❑ If we apply post-refinement or a pessimistic spacing rule

― Result in suboptimal solution

: Normal Net Bump

: Critical Spacing

: Normal Spacing: Critical Net Bump

: Ball : Spacing Violation

(a) (b) (c) (d)

6

Design Rules

❑ Non-crossing Constraint

― Two nets cannot be routed across each other

❑ Routing Direction Constraint

― Routed in four kinds of orientation

◼ Vertical, horizontal, 45°, and 135°

❑ Routing Angle Constraint

― Reversed 45° turn is not allowed

❑ Paired Spacing Constraint

― For normal (non-critical) nets, keep at least a distance 𝑆𝑛 from other nets

― For critical nets, keep at least a distance 𝑆𝑐 from other nets

7

Problem Formulation

❑ Given

― A chip set, a normal bump set, a critical bump set, and a ball grid array (BGA)

― Wire width

― Spacing rules for normal bumps and critical bumps

❑ Output

― Connect all bumps to balls

◼ Minimized wirelength

◼ Without any design rule violation

❑ For better readability and more concise explanations

― Only consider two spacing constraints in our work

◼ Critical spacing rule, normal spacing rule.

― The proposed algorithm can be trivially extended to general problem instances

◼ Arbitrary spacing value can be set between each pair of adjacent nets.

8

Algorithm Flow

9

Algorithm Overview

❑ Preprocessing

― Determine the ordering of the nets routed

◼ Minimize the routing resource demand

◼ Better overall routability and wirelength

❑ Tile and network graph construction

― Build a network graph

◼ Both escape routing and substrate routing

❑ MCMF-based global routing derivation

― Determine the global routing (GR) path

◼ Ball assignment for each bump

❑ Detailed Routing

― A* search is applied to build the path

10

Net Ordering

Determination

11

Impact of Bump Order

❑ The order of bumps will result in different requirements of spacing resources

42 3 51

Project

120 120 120 120

Demand : 480

Reorder

43 2 51

90 120 120 120

Demand : 450

3 51

42

: Normal Net Bump : Critical Net Bump

12

Three Adjacency Types

❑ Each bump can be reordered with one of its adjacent bumps

― To achieve a good balance between reducing spacing and minimizing detours

❑ Three adjacency types are defined under this reordering assumption

Type

Index

Movement Arrangement

i - 1 i i - 2 i - 1 i

0

1

2

3

No

Change

Change

No

Change

Change

No

Change

No

Change

Change

Change

i-2 i-1 i

i-1 i-2 i

i-2 i i-1

i-1 i i-2

i-2

Displacement > 1

13

Dynamic Programming Algorithm

❑ Based on dynamic programming

― For different type

◼ The prior optimal solution differs

❑ Spacing cost for three bumps

― Maximum of adjacent bumps

type1

type2

type3

14

Dynamic Programming Algorithm (cont’d)

❑ The example of Type 0:

― 𝑑 𝑖 0 = min 𝑑 𝑖 − 1 0 , 𝑑 𝑖 − 1 1 + 𝑐𝑜𝑠𝑡(∅, 𝑏𝑖−1, 𝑏𝑖)

― The optimal solution only comes from type 0 and type 1 at 𝑑 𝑖 − 1

◼ Type 2 at 𝑑 𝑖 − 1 is Change, it is not feasible

i - 1 ii - 2i - 3i - 4

i - 1 ii - 3i - 2i - 4

d[i-1][0]

d[i-1][1]

ii - 1i - 2i - 3i - 4

Cost

15

Dynamic Programming Algorithm (cont’d)

❑ The example of Type 1:

― 𝑑 𝑖 1 = 𝑑 𝑖 − 1 [2] + 𝑐𝑜𝑠𝑡(∅, 𝑏𝑖−2, 𝑏𝑖)

― The optimal solution only comes from type 2 at 𝑑 𝑖 − 1

◼ Both type 0 and type 1 at 𝑑 𝑖 − 1 is No Change, it is not feasible

i - 1 ii - 2i - 3i - 4 d[i-1][2]

ii - 1i - 2i - 3i - 4

Cost

16

Dynamic Programming Algorithm (cont’d)

❑ The example of Type 2:

𝑑 𝑖 2 = min

𝑑 𝑖 − 2 0 + 𝑐𝑜𝑠𝑡 𝑏𝑖−2, 𝑏𝑖, 𝑏𝑖−1 ,

𝑑 𝑖 − 2 1 + 𝑐𝑜𝑠𝑡 𝑏𝑖−2, 𝑏𝑖, 𝑏𝑖−1 ,

𝑑 𝑖 − 2 2 + 𝑐𝑜𝑠𝑡 𝑏𝑖−3, 𝑏𝑖, 𝑏𝑖−1 ,

― The optimal solution comes from type 0, type 1 and type 2 at 𝑑 𝑖 − 2

i - 2

i - 1i

ii - 1i - 2i - 3i - 4

i - 2i - 3i - 4

i - 1ii - 3 i - 4

d[i-2][0]

d[i-2][1]

i - 1ii - 3i - 2i - 4 d[i-2][2]

Cost

17

Dynamic Programming Algorithm (cont’d)

❑ Compare the three types at 𝑑 𝑖 − 1
― Get optimal solution for bumps ordering

❑ Spacing cost for three bumps

― Maximum of adjacent bumps

18

Tile and Network Graph

Construction

19

Calculate Bump Demands

❑ Before graph construction, we need to calculate bump demands for all bumps

― Each bump demand is decided by the types of adjacent bumps

◼ 90, 105 and 120

90

: Normal Net Bump : Critical Net Bump 𝑠𝑛 = 50 sc = 80

90120 120 120 120

90

(b) Bump demand

45 45 60 60 60 60 60 60 60 60 45 4545 45

105 120 120 120 105 90

w = 40

(a) The spacing demand between bumps

20

Add Virtual Points to Layout

❑ Add virtual points into the initial layout to facilitate the graph construction

― Distance between virtual points is the same as the distance between balls

: Normal Net Bump : Critical Net Bump : Ball : Chip: Virtual Point

(a) Initial layout (b) Add virtual point

21

An Existing Tile Model [Yan and Wong, TCAD’12]

❑ Correctly model the capacity of a square tile formed by four balls

― It can only account for the uniform spacing constraint

C : node capacity = DCap - 2 * [OCap / 2]

: capacity = ∞

: capacity = (OCap) / 2

: capacity = OCap

Ocap = #nets that can pass an orthogonal cut

: capacity = 1

: diagonal cut

: orthogonal cut

: ball

Dcap = #nets that can pass a diagonal cut

22

Our Tile Model

❑ Convert the ball distance into the edge capacity

― Based on the model from [Yan and Wong, TCAD’12]

C : node capacity = Floor((2 − 1) * Ball Distance)

: capacity = ∞

: capacity = (Ball Distance) / 2

: capacity = Ball Distance

: capacity = 𝑤 + 𝑠𝑛

: ball

Ball Distance

23

Network Graph Construction

❑ The four adjacent balls or virtual points form a tile model

― Connect two adjacent tile models with capacity = ball distance

: Normal Net Bump

: Critical Net Bump

: Ball

: Chip

: Virtual Point

: Flow Tile

: Tile to tile edge,

 capacity = Ball distance

: Tile to ball edge,

 capacity = 1

C

S

N

EW

24

Identify Peripheral Bump Tile

❑ Identify the tiles whose distances to the nearest bumps are less than 1.5 times

the ball distance.

: Peripheral Bump Tile

: Normal Net Bump

: Critical Net Bump

: Ball

: Chip

: Virtual Point

: Flow Tile
C

S

N

EW

25

Connect Bumps to the Network Graph

❑ Add the bumps to the network with the ordering determined in the pre-processing

stage

C

S

N

EW: Flow Tile

3 51

42

Virtual Point

: Capacity = Bump Demand

Critical Net Bump

Normal Net Bump

26

MCMF-based Global

Routing Derivation

27

Apply MCMF

❑ Add a super source and a super sink to the network graph

― The super source is connected to all bumps

― The super sink is connected to all balls

❑ Apply MCMF to derive the flow of each edge

❑ Simplify the MCMF solution to reduce the complexity

― Only keep the cross-tile flow edges

28

MCMF-based Global Routing Derivation

❑ Global routing consists of two steps

― GR Derivation for Escape Routing

― GR Derivation for Substrate Routing

Escape routing
Substrate routing

29

GR Derivation for Escape Routing

❑ Escape routing considers the GR paths from bumps to chip boundaries

30

GR Derivation for Substrate Routing

❑ Substrate routing extends the paths of escape routing to the balls

31

Detailed Routing

❑ Adopt a similar approach to that in [Lin et al., ASP-DAC’21]

― The entire area is divided into grids

― The components are mapped onto these grids

― A* search routes the bumps

◼ updating the grids after routing each bump

◼ process continues until all bumps are routed

❑ Reserve the necessary space for all bumps in global routing

― No design rule violations occur at this stage.

32

Experimental Results

33

Benchmark

❑ Two sets of benchmarks

― Set 1: bumps are arranged in a single row.

― Set 2: bumps are arranged in two rows.

◼ #Bump (Number of Bump), #CB (Number of Critical Bump), #Chip (Number of Chips)

Case Name
Set 2

#Bump #CB #Chip

Case11 57 20 1

Case12 222 75 1

Case13 354 108 3

Case14 380 129 2

Case15 472 150 4

Case16 856 270 4

Case17 1528 470 4

Case18 2392 736 4

Case Name
Set 1

#Bump #CB #Chip

Case1 268 48 1

Case2 311 35 1

Case3 307 41 2

Case4 360 52 2

Case5 390 51 2

Case6 396 61 2

Case7 352 42 3

Case8 476 82 3

Case9 1065 167 7

Case10 3388 573 7

34

Experimental Results

❑ Compare the results with the extended [Yan and Wong, TCAD’12]

― Routed (Routability), UN (number of Unrouted Net), WL (WireLength), SWL (Scaled WL)

[Yan and Wong, TCAD’12] Our Model

Routed UN WL SWL Time Routed UN WL Time

Case1 87% 35 >367787 422743 47 100% 0 421530 81

Case2 92% 26 >526177 571931 68 100% 0 560018 137

Case3 91% 29 >331604 364400 24 100% 0 366759 23

Case4 88% 45 >430855 489607 39 100% 0 500110 36

Case5 90% 38 >441303 490336 43 100% 0 488791 127

Case6 90% 40 >480585 533983 113 100% 0 514302 81

Case7 82% 64 >496408 605375 111 100% 0 614695 374

Case8 83% 83 >674837 813056 68 100% 0 840909 84

Case9 90% 110 >1144542 1271713 137 100% 0 1265298 177

Case10 86% 470 >2896512 3368037 546 100% 0 3401829 318

Comp 0.87 - - 1.00 0.85 1.00 - 1.00 1.00

35

Analysis of DP Ordering

❑ Analysis of the effectiveness of the proposed DP ordering.

― Routed (Routability), UN (Number of Unrouted Net), SWL (scaled WL)

Case Name
With Net Ordering Without Net Ordering

Routed UN WL Time Routed UN SWL Time

Case11 100% 0 70301 3 98% 1 70598 4

Case12 100% 0 351002 18 91% 21 407784 49

Case13 100% 0 412555 26 92% 27 466900 95

Case14 100% 0 607515 31 94% 22 593317 78

Case15 100% 0 573769 35 92% 40 624266 123

Case16 100% 0 1047083 65 90% 83 1235965 386

Case17 100% 0 1877131 135 90% 152 2357943 732

Case18 100% 0 2944009 254 91% 221 3349184 1028

Comp 1.00 - 1.00 1.00 0.92 - 1.15 4.40

36

Conclusion

37

Conclusion

❑ The proposed algorithm effectively handles the paired-spacing constraint

❑ Experimental results show that our approach achieves 100% routability in all

cases and outperforms [Yan and Wong, TCAD’12] with a 13% improvement in

routability

❑ Experimental results demonstrate the effectiveness of the proposed dynamic

programming-based bump reordering algorithm

38

Q&A

	預設章節
	Slide 1: Paired-Spacing-Constrained Package Routing with Net Ordering Optimization
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Example of Pair Spacing
	Slide 6: Design Rules
	Slide 7: Problem Formulation
	Slide 8: Algorithm Flow
	Slide 9: Algorithm Overview
	Slide 10: Net Ordering Determination
	Slide 11: Impact of Bump Order
	Slide 12: Three Adjacency Types
	Slide 13: Dynamic Programming Algorithm
	Slide 14: Dynamic Programming Algorithm (cont’d)
	Slide 15: Dynamic Programming Algorithm (cont’d)
	Slide 16: Dynamic Programming Algorithm (cont’d)
	Slide 17: Dynamic Programming Algorithm (cont’d)
	Slide 18: Tile and Network Graph Construction
	Slide 19: Calculate Bump Demands
	Slide 20: Add Virtual Points to Layout
	Slide 21: An Existing Tile Model [Yan and Wong, TCAD’12]
	Slide 22: Our Tile Model
	Slide 23: Network Graph Construction
	Slide 24: Identify Peripheral Bump Tile
	Slide 25: Connect Bumps to the Network Graph
	Slide 26: MCMF-based Global Routing Derivation
	Slide 27: Apply MCMF
	Slide 28: MCMF-based Global Routing Derivation
	Slide 29: GR Derivation for Escape Routing
	Slide 30: GR Derivation for Substrate Routing
	Slide 31: Detailed Routing
	Slide 32: Experimental Results
	Slide 33: Benchmark
	Slide 34: Experimental Results
	Slide 35: Analysis of DP Ordering
	Slide 36: Conclusion
	Slide 37: Conclusion
	Slide 38

