

On Awareness of Offset-Via and Teardrop in Advanced Packaging Interconnect Synthesis

Author: Hao-Ju Chang, Yu-Hung Chen, Hao-Wei Huang, Yihua Yeh, Hung-Ming Chen, Chien-Nan Jimmy Liu

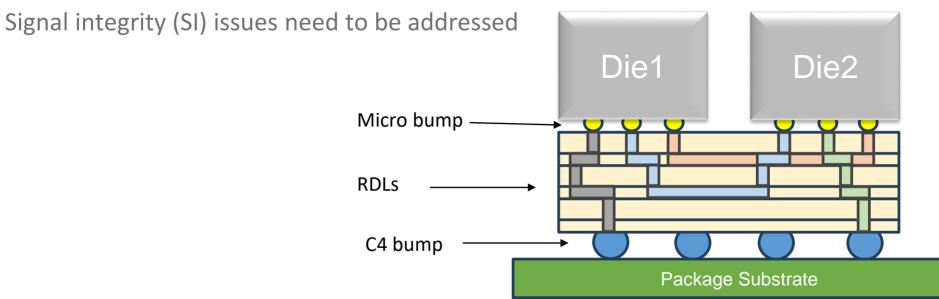
National Yang Ming Chiao Tung University

Speaker: Hao-Ju Chang

Outline

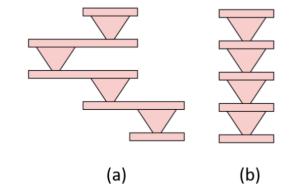
• Introduction

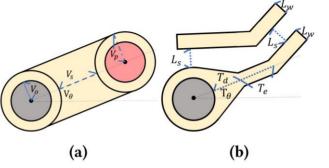
- Optimizing Offset-via Assignment
- S-route Guided A* Search
- Experimental Result
- Conclusion


Introduction

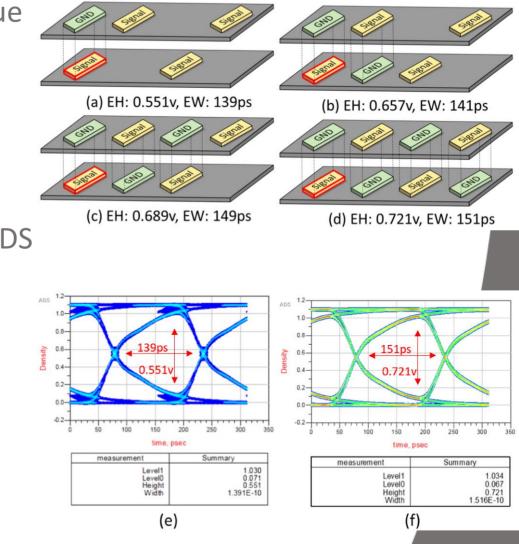
Background and Motivation

- The area of single chips has continuously increased
- While this has boosted performance, it has also led to a decrease in manufacturing yield
- Chiplet technology has become mainstream
- Connect different chiplets through fine-pitch Redistribution Layer (RDL) connections

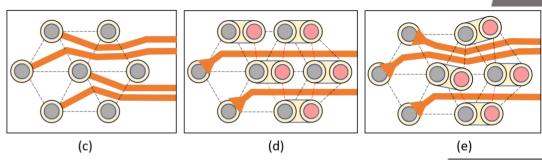

• Challenges of Advance Package


• Offset-vias and teardrops enhance reliability and manufacturability

Offset-Via and Teardrop


- Traditional stack-via suffers more line strain
 - Especially when the number of RDL layers is increased
- Offset-Via improves the reliability
 - Two adjacent layers cannot have vias in the same position
- Teardrop
 - Connecting wires directly to vias can also lead to high stress and cracks
 - Employing metal shrinkage from the via to the wire can alleviate stress
- Incorporating offset-via and teardrop structures in die-to-die routing [1]
 - Helps reliability
 - Significantly reduces the routing resources

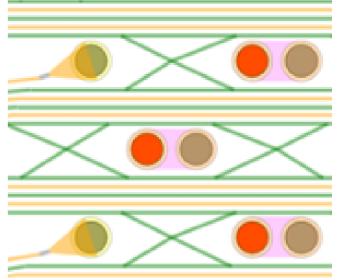
Signal Integrity

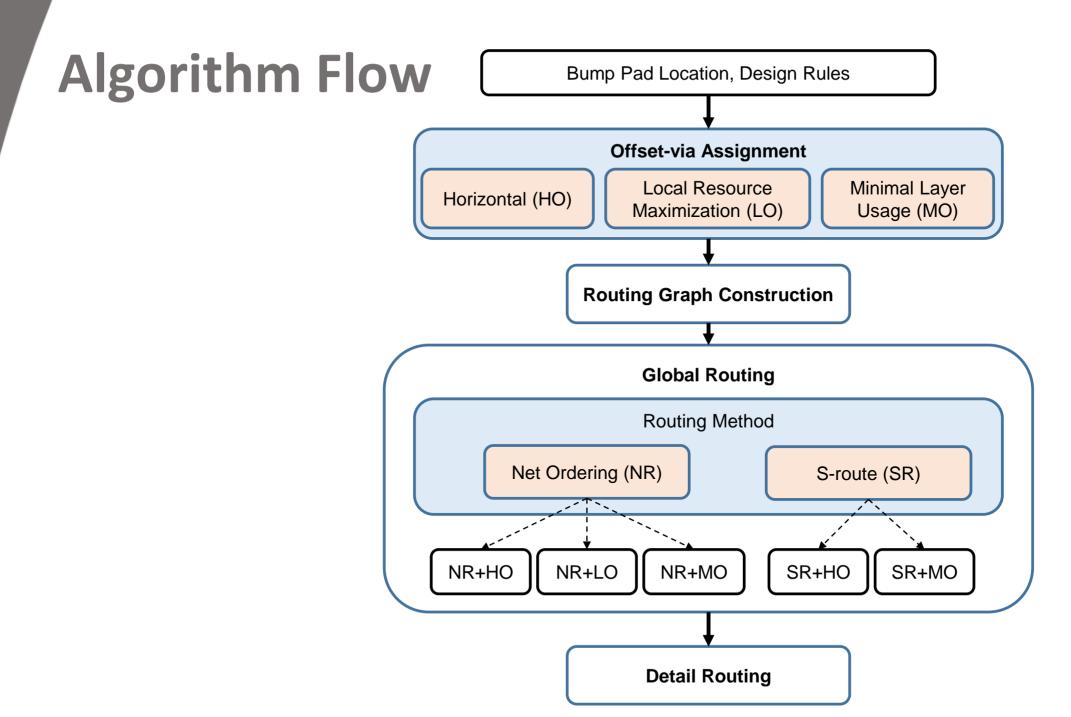

- Signal integrity (SI) becomes a more serious issue
- Eye Diagram is a typical way to evaluate SI
 - Eye Width (EW) increase:
 - Lowering the likelihood of timing errors
 - Larger Eye Height (EH)
 - Reducing the possibility of functional errors
- Analyze the SI performance by using Keysight ADS
 - Different ground shielding structures
- Fully shielding is often required for high performance packages
 - Increase the requirement for routing resource
 - Very challenge in high density packages

[3] Y. Chiang, S. Tai, W. Wu, J. Yeh, C. Wang, and C. Douglas, "Info_os (integrated fan-outon substrate) technology for advanced chiplet integration," in 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), pp. 130–135, IEEE, 2021.

Related Works

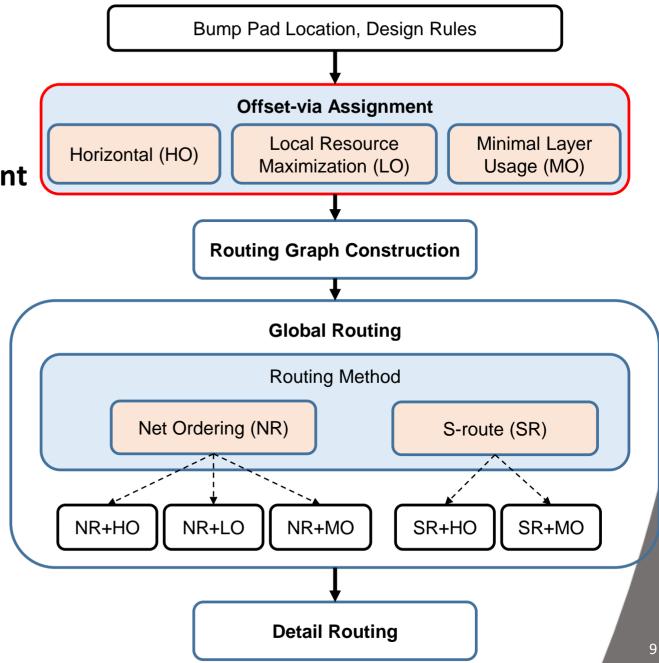
- [2] proposed the first any-angle RDL router in the literature
- [4] proposed a crossing-aware A* search algorithm
 - Using the chord-based tile model
 - Create the Voronoi Diagram to accommodate irregular vias
- [5] proposed the Access Point Determination algorithm to minimize wire length
- Previous work
 - Allowed the via in each layer to be placed anywhere
 - The routing region is much bigger than the via size
- Apply offset-via structure and the density bump pattern
 - The routing resource will be significantly reduced

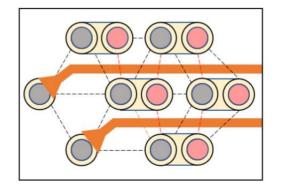


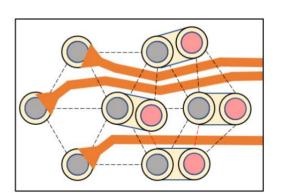

[2] M.-H.Chung, J.-W.Chuang, and Y.-W.Chang, "Any-angle routing for redistribution layers in 2.5 d ic packages," in 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2023
 [4] Y.-J. Cai, Y. Hsu, and Y.-W. Chang, "Simultaneous pre-and free-assignment routing for multiple redistribution layers with irregular vias," in 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2023
 [4] Y.-J. Cai, Y. Hsu, and Y.-W. Chang, "Simultaneous pre-and free-assignment routing for multiple redistribution layers with irregular vias," in 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 1147–1152, IEEE, 2021.

[5] H.-T. Wen, Y.-J. Cai, Y. Hsu, and Y.-W. Chang, "Via-based redistribution layer routing for info packages with irregular pad structures," IEEE Transactions on Computer-Aided Design of Integ

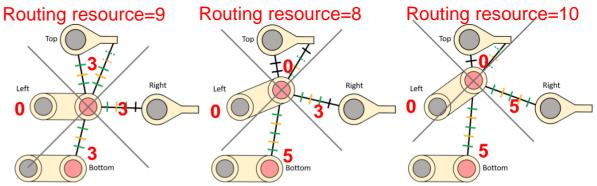
Contribution


- First work based on offset-via, teardrop and fully shielding consideration to solve Die-to-Die routing
- Propose a Minimal Layer Usage Offset-Via Assignment
 - Allow any-angle rotation of offset-via and teardrop
 - Increase routing resource utilization
- Propose an S-route method
 - Reduce net detour for more speedup
 - Keep the length matching
- The experimental results on HBM3 chips show that
 - The wire length is reduced by 7% and 50%
 - The RDL layer usage is reduced by 50%
 - Do not route on the first layer to keep better resource usage and length matched for subsequent layers

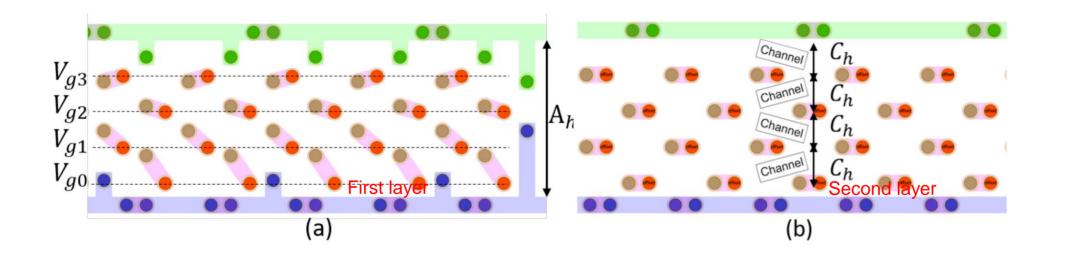

Outline


- Introduction
- Optimizing Offset-via Assignment
- S-route Guided A* Search
- Experimental Result
- Conclusion

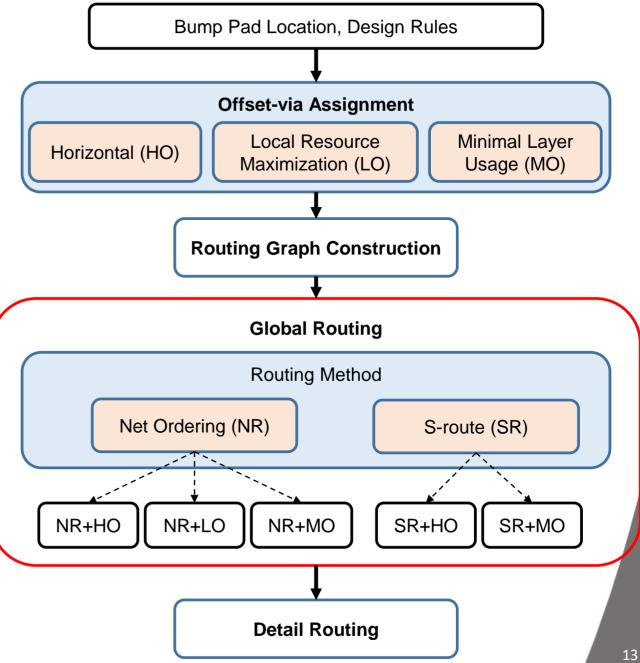
Optimizing Offset-via Assignment


- Input
 - The bumps in two dies
 - The pseudo point in the outline
 - Escape point
 - Construct the Delaunay triangulation graph
- Output
 - The rotation of each offset-via
- Goal
 - Determine the maximum total capacity after applying the offset-via
- Limitation
 - Minimum line width/spacing
 - Fully shielding constraint

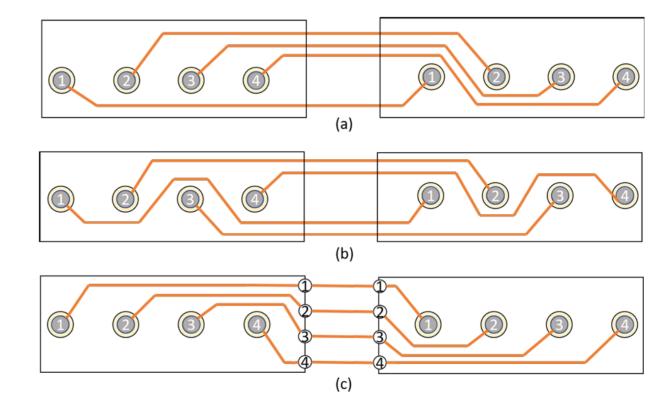
Local Resource Maximization Assignment


- Optimize routing resources on each layer individually
- Iteratively evaluating the routing resources around the via and choosing the angle that yields the largest sum of routing resource
- Assumption
 - Split the space near the offset-via into four routing regions
 - Each edge should follow fully shielding constraint
 - Each routing region passes the same number of net
 - The number of net is an odd number

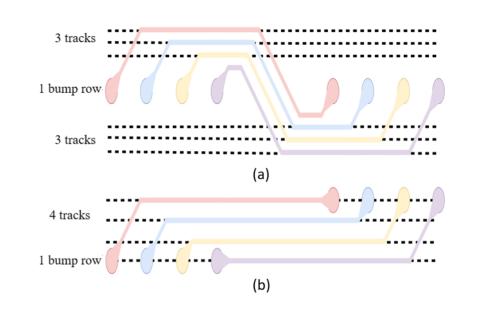
(a) Horizontal offset-(b) Rotate the offset-(c) Rotate the offsetvia and teardrop via with 30 degree via with 60 degree

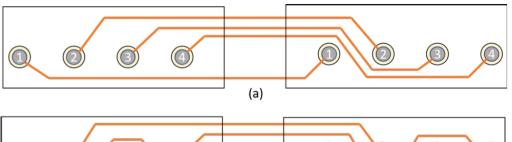

Minimal Layer Usage Assignment

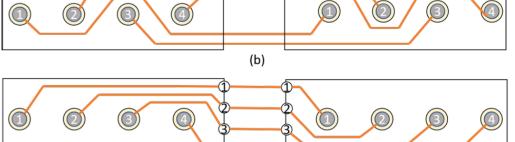
- Maximize the routing resources of the entire RDL layer
- The first layer is used to **determine the offset-via positions**
- Distributes routing resources **evenly across each row**, creating channels
- Channel height: $C_h = \frac{A_h V_p L_s}{N_{vg}}$
- Via group y-coordinate: $v_{gi} = V_p + L_s + i * C_h$, $0 \le i \le N_{vg} 1$


Outline

- Introduction
- Optimizing Offset-via Assignment
- S-route Guided A* Search
- Experimental Result
- Conclusion


Traditional A* Search


- Normal A* Search follows minimum wire length strategy
- Net ordering issues significantly affect routing performance
- Modifying the net order by ripping up and rerouting
 - Achieve a better routing outcome
 - Time-consuming



S-Route Pattern

- Apply escape point to create S-Route pattern
- Decrease rip-up and reroute
- Drawback
 - Occupy more tracks
 - Redundant routing space
- Shifting the offset-via by Minimal Layer Usage Assignment
 - Reduce routing track needed
 - Decrease detour
 - Decrease wire length

(c)

S-route Net Order

- Follow middle-to-side routing order
- Net far from the escape point route first
 - Make other net detours
- Bumps closer to the escape point are prioritized in the routing order
 - Detour decrease
 - Reduce the wire length

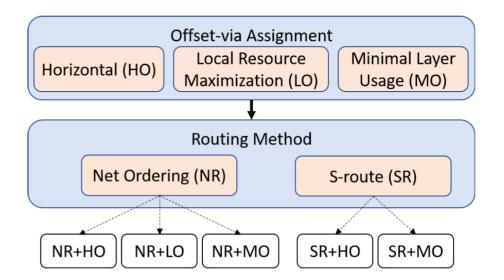
S-route Guided A* Search

- Lines 3-10
 - Organize all via groups
 - Calculate escape point position
- Lines 11-12
 - Determine net priority
- Lines 13-15
 - Construct a routing graph
 - Calculate capacity
- Lines 16-17
 - g(n): distance already traveled
 - h(n): estimate distance to candidate point
 - a(n): accumulate y-axis shift

Algorithm 1 S-route guided A* Search

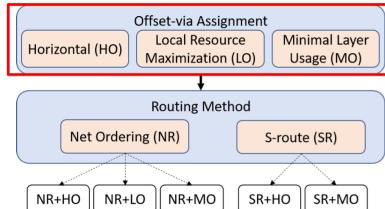
- 1: Input: VDD, VSS, Bump, Offset-via
- 2: **Output:** Routing result
- 3: Generate escape point
- 4: $Sort(V_g, y)$
- 5: for all V_{qi} in V_g do
- 6: $B \in V_{qi}$
- 7: Sort(B, x)
- 8: Net $\bigcup B_i, B_i \in B$
- 9: end for
- 10: $E_{i.y} = A_h V_p i * (2 * L_s + 2 * L_w), 0 \le i \le |Net| 1$
- 11: Apply initial S-route net order
- 12: Net priority = $d(B_i, E_i)$
- 13: Routing Graph Construction
- 14: E = DT(node)
- 15: $C_i = \lfloor (E_i 4 * L_s 4 * L_w) / (3 * L_s + 3 * L_w) \rfloor, E_i \in E$
- 16: A* Search for Final Detail Routes
- 17: f(n) = g(n) + h(n) + a(n)

Outline


- Introduction
- Optimizing Offset-via Assignment
- S-route Guided A* Search
- Experimental Result
- Conclusion

Experimental Result

- Environment
 - Intel Xeon CPU E3-1230 v6 @ 3.50GHz processor
 - Implement in C++14 using g++ version 10
 - Employing version 5.5.1 of the CGAL library [6] to construct Delaunay triangulations routing graph
- The Benchmarks of four test cases


Designs	#Layers	#Rows	#Columns	#Nets
Circuit 1	5	6	16	48
Circuit 2	5	6	12	36
Circuit 3	5	4	24	48
Circuit 4	5	4	18	36

• Experimental setting with offset-via assignment and routing method

Routing Resource Analysis

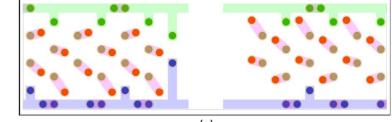
- The routing resource comparison of different offset-via assignments
- Horizontal Offset-Via
 - Baseline
- Local Resource Maximization Offset-via Assignment
 - Iterative rotates the offset-via angle to reduce the unused capacity in each layer
 - Enhancing the routing resource by approximately 6%
- Minimal Layer Usage Offset-via Assignment
 - Maximize the routing resources of the entire RDL layer
 - Significantly increase the routing resource in the following layers by 50%

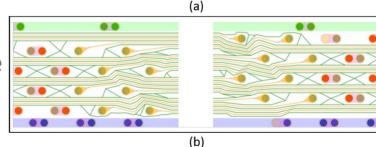
	Circuit1	Circuit2	Circuit3	Circuit4	
Horizontal Offset-Via	2560	1867	2833	1942	1
Local Resource Maximization Offset-via Assignment	2730	1967	2992	2059	1.06
Minimal Layer Usage Offset-Via Assignment	4085	3497	3231	3059	1.51

Routing Algorithm Comparison

- Comparison of routing algorithms with horizontal offset-via assignment
- NR+HO
 - Uses the net order approach proposed by [2]
 - [2] do not incorporate the offset-via technique, we use horizontal offset-via to preserve routing resources
 - NR needs to change the routing order iteratively, making the run time longer than S-route
- SR+HO
 - S-route can design the direction and guide each net onto its designated channel
 - Reduce at least one RDL for the first two circuits

Offset-via Assignment		Method	Circuit 1	Circuit 2	Circuit 3	Circuit 4	
Horizontal (HO) Maximization (LO) Usage (MO)	Average Wire	NR+HO[2]*	1071.8	870.2	1651.4	1166.9	1.02
	Length(um)	SR+HO	1054.9	845.5	1613.7	1162.4	1
Routing Method	# Layers	NR+HO[2]*	5	5	6	5	1.17
Net Ordering (NR) S-route (SR)	# Layers	SR+HO	4	3	6	5	1
	Run Time (s)	NR+HO[2]*	37.6	30.9	239.1	30.6	845.6
	Kun Time (S)	SR+HO	< 0.1	< 0.1	< 0.1	< 0.1	1
NR+HO NR+LO NR+MO SR+HO SR+MO							


Offset-Via Structure Comparison


- Comparison of different offset-via assignments with the same routing method
- NR+LO
 - Reduce one RDL layer in Circuit 2
 - Optimized the routing resource by rotating the offset-via
 - LO makes the routing net take a longer path around the offset-via
- NR+MO
 - Carefully assigned channel, we can achieve a shorter net wire length
 - Easier to cross other channels using the NR method
 - The number of layers remains the same as in NR+LO

		Method	Circuit 1	Circuit 2	Circuit 3	Circuit 4	
Offset-via Assignment	Average	Wire NR+HO[2]*	1071.8	870.2	1651.4	1166.9	1.03
Horizontal (HO) Local Resource Maximization (LO) Minimal Usage (1144.1	942.9	1641.6	1199.1	1.07
Maximization (LO) Usage (NR+MO	1057.9	830.3	1575	1153.1	1
•		NR+HO[2]*	5	5	6	5	1.05
Routing Method	#Laye	rs NR+LO	5	4	6	5	1
Net Ordering (NR) S-route (SR)	S-route (SR)	NR+MO	5	4	6	5	1
		NR+HO[2]*	37.6	30.9	239.1	30.6	3.34
	SR+HO SR+MO Run Time (s)	ne (s) NR+LO	90.1	35.6	218.1	54.8	3.93
NR+HO NR+LO NR+MO SR+HO SR+		NR+MO	35.51	4.74	55.47	5.59	1

Final Result Comparison

- Comparison of final results that integrate all approaches we propose
- Figure a shows part of MO result in the first layer
 - Find a suitable position for offset-via on the first layer
 - increase the routing resources for the remaining layers
- Figure b shows part of the SR result in the second layer
 - Guide the nets route on their designated channel
 - Benefit from average wire length, number of layers, and run time
- SR+MO method

• Can reduce 7% wire length and 50% RDL layer usage

		Method	Circuit 1	Circuit 2	Circuit 3	Circuit 4		
Offset-via Assignment	Average Wire Length (um)	NR+HO[2]*	1071.8	870.2	1651.4	1166.9	1.07	
Horizontal (HO) Local Resource Maximization (LO) Minimal Layer Usage (MO)		NR+LO	1144.1	942.9	1641.6	1199.1	1.1	
Maximization (LO) Usage (MO)		SR+MO	1014.4	815.2	1523.7	1111.4	1	
	# Layers	NR+HO[2]*	5	5	6	5	1.5	
Routing Method		NR+LO	5	4	6	5	1.43	
Net Ordering (NR) S-route (SR)		SR+MO	3	3	4	4	1	j
		NR+HO[2]*	37.64	30.9	239.1	30.6	845.6	
	Run Time (s)	NR+LO	90.1	35.6	218.1	54.8	996.5	23
NR+HO NR+LO NR+MO SR+HO SR+MO		SR+MO	< 0.1	< 0.1	< 0.1	< 0.1	1	

Routing Result in SI Effectiveness

- Comparison of signal integrity results in circuit 3
- NR+LO
 - The Eye Height/Width has improved by 4.7% and 1.3% in the method
 - More detours in the routing, which makes the routed signal discrete
 - The spacing between signal and ground nets will not be preserved as 2um
- SR+MO
 - Better utilize the routing region and reduce two routing layers
 - Making the nets more dense in each layer
 - The Eye Height/Width has a slight decrease with 0.2% and 0.13%
- SR+MO without shielding
 - The Eye Height/Width significantly reduced by 9.8% and 2.6%

	Ideal 2um spacing Fully Shielding	NR+LO	SR+MO	SR+MO Without Shielding
Average	0.721	0.755	0.719	0.65
Eye Width (v)		(+4.7%)	(-0.2%)	(-9.8%)
Average	151	152.95	150.8	147.04
Eye Height (ps)		(+1.3%)	(-0.13%)	(-2.6%)

Minimal Layer Usage Offset-Via Discussion

- Routing in first layer
 - The wire length in the first layer is approximately 10% longer than the average wire length
 - Reduces the layer count in circuit 4
- We observe the trade-off in the result with/without having routes in the first layer

	Layer	Roy	uted nets (A	verage leng	th)	Layer Usage
	Layer	1	2	3	4	(Average length)
W/o route	Circuit 1	Х	24 (1018.0)	24 (1010.7)	-	3(1014.4)
on layer-1	Circuit 2	Х	24 (817.5)	12 (810.5)	-	3 (815.2)
	Circuit 3	Х	16 (1523.4)	16 (1523.4)	16 (1523.4)	4 (1523 7)
	Circuit 4	X	16 (1111.5)	16 (1111.2)	4 (1112.0)	4 (1111.4)
W/ route	Circuit 1	6 (1132.9) (+10.1%)	24 (1018.7)	18 (1008.2)	-	3 (1028.7)
on layer-1	Circuit 2	6 (903.9) (+9.1%)	24 (814.5)	6 (810.8)	-	3 (828.8)
	Circuit 3	4 (1679.9) (+9.4%)	16 (1522.9)	16 (1523.1)	12 (1522.7)	4 (1536.0)
	Circuit 4	4 (1287.5) (+13.8%)	16 (1111.2)	16 (1111.6)	-	3 (1131.0)

Conclusion

- Serious routing resource issue in die-to-die routing problem
 - Apply offset-via and teardrop
 - Consider signal integrity with fully shielding
- Minimal Layer Usage offset-via assignment
 - Maximize the routing resources of the entire RDL layer
- S-route Pattern
 - Reduce routing track, detour, wire length
- According to the experimental results
 - S-route Pattern only:

Already get an improvement in the average wire length

• With Minimal Layer Usage offset-via assignment: Significantly reduce the number of RDL layers used

Thanks for Listening