
RTLMarker: Protecting LLM-Generated RTL Copyright
via a Hardware Watermarking Framework

Kun Wang, Kaiyan Chang, Mengdi Wang, Xingqi Zou, Haobo Xu,
Yinhe Han, Ying Wang*

Outline

① Introduction

② Background

③ RTLMarker

④ Evaluation

⑤ Conclusion

Large Language Model

Translation Code Generation Chat

Summary Search Reasoning

Large Language Model

RTL
Code

Logic
synthesis Netlist

Expert-
written

High-level
code

specific
ation

RTL
Code

Logic
synthesis Netlist

specific
ation

Large Language Model

Nature language

 Electronic Design Automation(EDA) flow

 LLM for hardware design

Risks of LLMs

• Fake news

• Malicious/Vulnerable code

• Sensitive content

• Private data leaks

• Fraud

• …
Security vulnerability

We need to embed watermarks to RTL code generated by LLM！

Outline

① Introduction

② Background

③ RTLMarker

④ Evaluation

⑤ Conclusion

LLM Watermark

• Text Watermark: WLLM
• Code Watermark: SWEET

WLLM[1] SWEET[2]

[1] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, andTom Goldstein. 2023. A watermark for large
language models. In InternationalConference on Machine Learning. PMLR, 17061–17084.
[2] Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong, Hwaran Lee, Sangdoo Yun,Jamin Shin, and Gunhee Kim. 2023. Who
wrote this code? watermarking for code generation. arXiv preprint arXiv:2305.15060 (2023).

LLM Watermark

Effectiveness

Robustness

Transparencywatermark

Trade-off

The watermarks should be effectively embedded and
detectable.

The watermark should preserve the code quality and remain
inconspicuous.

The watermark should be resilient to common attack
methods, such as string replacement attacks.

LLM Watermark

• Embedding watermarks to LLM-generated RTL code presents
the following challenges:

• Existing methods cannot guarantee the correctness of the watermarked
RTL code.

• There is a tradeoff between the transparency and effectiveness
of watermarks.

• Watermarks at the Register Transfer Level(RTL) are difficult to further
embed into the synthesized netlist.

Outline

① Introduction

② Background

③ RTLMarker

④ Evaluation

⑤ Conclusion

RTLMarker

• Rule-Based Verilog Code Transformations
• Transformations can be split into Token level and statement level.
• 15 code transformations are implemented by Pyverilog.

RTLMarker Framework

Watermarking Embedding

• Learning-Based Watermark Embedding
• The Embedding network outputs the selected Transformation Set

based on the LLM-generated code.
• An AST-based approach is used to apply the corresponding

transformations, generating the watermarked code.

Transformation Set
Token-level

R1:State Variables Encoding
R2: Parameterized Module

Statement-level
R8:State Transition Path
R9: Combinational Logic Operation

... ...

Encoder

Encoder

Encoder

Encoder

Embedding Network

Encoder

Encoder

MLP

MLP

AST-based
transformations
（Pyverilog）

LLM-generated Code (x) Watermarked Code (xw)
parameter S_IDLE = 2'b00;
parameter S_1 = 2'b01;
…
always @(posedge CLK or
posedge RST)
 begin

if(!rst_nc) begin
count <= 2'b0;
acc_data <= 10'b0;

parameter [3:0] S_IDLE = 4’b0001;
parameter [3:0] S_1 = 4’b0010;
…
always @(posedge clk_nc , posedge
rst_nc) begin

if(!rst_nc) begin
acc_data <= 10'b00000_00000;
count <= 2'b0;

R1 R5 R6 R12

Selected Transformation Set (T)

Watermarking Embedding

• Embedding watermark into netlist

RTL code
Logic

synthesis
(yosys)

Netlist
High-level semantic
information will be lost

1

2

3 4

5 6 7

Feature Representation

• Input:
• LLM-generated Code(𝑥𝑥) && Selected transformation set(𝑇𝑇)

• Output
• Transformed code(𝑥𝑥𝑎𝑎)

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Encode information

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Feature Representation Network

Transformated Code (xa)

...

parameter [3:0] S_IDLE = 4’b0001;
parameter [3:0] S_1 = 4’b0010;
…
always @(posedge clk_nc , posedge
rst_nc) begin

if(!rst_nc) begin
acdc_dada <= 10'b00000_00000;
count <= 2'b0;

R1 R5 R6 R12

Selected Transformation Set (T)

LLM-generated Code (x)
parameter S_IDLE = 2'b00;
parameter S_1 = 2'b01;
…
always @(posedge CLK or posedge
RST)
 begin

if(!rst_nc) begin
count <= 2'b0;
acc_data <= 10'b0;

Watermark Detection

• Watermark Detection at the Register Transfer Level (RTL)

• Watermark Detection at Netlist Level
• Employ synthesis tools yosys to synthesize code into netlist
• Parse out the embedded watermark from netlist

Transformated Code (xa)

...

parameter [3:0] S_IDLE = 4’b0001;
parameter [3:0] S_1 = 4’b0010;
…
always @(posedge clk_nc , posedge
rst_nc) begin

if(!rst_nc) begin
acdc_dada <= 10'b00000_00000;
count <= 2'b0;

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

MLP

MLP

Detection Network

Watermark
Confidence P (e.g., 0.79)

Outline

① Introduction

② Background

③ RTLMarker

④ Evaluation

⑤ Conlusion

Experiment Setup

• Benchmark
• RTLLM: 30 Verilog problems with varying levels of complexity.
• VerilogEval: 156 verilog problems sourced from the Hdlbits website.

• Target Model
• RTLCoder、GPT4、ChipGPT-FT

• Baseline
• WLLM && SWEET

• Metrics
• ACC: (TP + TN)/(TP + TN + FP +FN)
• TPR: TP/(TP+FN)
• FPR: FP/(FP+TN)

TP: True Positives
TN: True Negatives
FP: False Positives
FN: False Negatives

Evaluation

• Effectiveness
• RTLMarker achieves an accuracy of

over 95% on the RTLLM benchmark,
while SWEET and WLLM only achieve
71.67% and 83.33%, respectively.

• RTLMarker achieves an accuracy of
over 92% on VerilogEval benchmark,
while SWEET and WLLM only achieve
58.33% and 63.14%, respectively.

• Compared to the VerilogEval
benchmark, the accuracy of watermark
embedding and detection is higher on
the RTLLM benchmark.

Evaluation

• Robustness
• Variable name replacement attack. We considered renaming 25%, 50%,

75% and 100% of the variables in the watermarked code.
• RTLMarker is only slightly affected by variable name replacement

attacks.

Evaluation

• Transparency
• We use the number of code transformations to measure the

transparency of the watermark.

The average number of applicable code
transformations in the RTLLM benchmark is
6.42, while the number of code transformations
that RTLMarker utilizes is 4.25, effectively
enhancing the transparency of the watermark

Outline

① Introduction

② Background

③ RTLMarker

④ Evaluation

⑤ Conclusion

Conclusion

• To our knowledge, this research is the pioneering effort to introduce a
practical and efficient watermarking framework designed to safeguard the
copyright of RTL generated by large language models.

• We propose a comprehensive suite of Verilog-centric code transformations
and concurrently create a state-of-the-art tool powered by Pyverilog to
facilitate these transformations.

• Our study introduces an advanced framework for embedding and
identifying hardware watermarks, functional at both the Register Transfer
Level (RTL) and the logic netlist level.

THANKS

	RTLMarker: Protecting LLM-Generated RTL Copyright via a Hardware Watermarking Framework
	Outline
	Large Language Model
	Large Language Model
	Risks of LLMs
	Outline
	LLM Watermark
	LLM Watermark
	LLM Watermark
	Outline
	RTLMarker
	RTLMarker Framework
	Watermarking Embedding
	Watermarking Embedding
	Feature Representation
	Watermark Detection
	Outline
	Experiment Setup
	Evaluation
	Evaluation
	Evaluation
	Outline
	Conclusion
	幻灯片编号 24

