

ASIA SOUTH PACIFIC DESIGN AUTOMATED CONFERENCE 2025

LIBMixer: An all-MLP Architecture for Cell Library Characterization towards Design Space Optimization

2025.01.20

Jaeseung Lee, Sunggyu Jang, Jakang Lee, and Seokhyeong Kang

CONTACT Pohang University of Science and Technology Department of Electrical Engineering CAD and SoC Design Lab. Tel. +82-54-279-2883 Web. http://csdl.postech.ac.kr

Outline

I. Introduction

- **II. Proposed Method**
- **III. Experimental Setup and Results**

IV. Conclusion

* Appendix.

Cell Library Characterization in Modern EDA

Cell library characterization

- Determining electrical characteristics of standard cells (STCs)
 - With SPICE simulation: rise and fall delay, power consumption
- NLDM (LUT), CCS, Several Format (.lib)
- Predefined libraries are processed by the various tools in the EDA flow [1]
 - Synthesis
 - PnR
 - Verification

I. Introduction

Previous Works and Limitations

- How to handle growing complexity in advanced nodes due to
 - Increasingly expensive in computational costs & engineering effort
 - Growing complexity of MOSFET, varied behavior scenarios
- Previous approaches
 - Offers advantages in addressing challenges
 - But mostly targeted gate-level view & only for small, simple STCs
- → Lack of comprehensive studies related to EDA tools and DSO applications

Curve Fitting [2]

Numerical Analysis [3]

Random Forest [4] Linear regression [5] Heterogeneous GNN [6]

- [2] K. Charafeddine and F. Ouardi, "Fast timing characterization of cells in standard cell library design based on curve fitting," Proc. WITS, 2017.
- [3] L. Yu et al., "Statistical library characterization using belief propagation across multiple technology nodes," Proc. DATE, 2015.
- Jacinto et al., "Fast and Low-Error Prediction of Logic Gate Cell Characterization," Proc. ICECS, 2023. [4] G.
- [5] F. Klemme et al., "Cell Library Characterization using Machine Learning for Design Technology Co-Optimization," Proc. ICCAD, 2020.
- [6] X. Cheng et al., "Heterogeneous Graph Attention Network Based Statistical Timing Library Characterization with Parasitic RC Reduction," Proc. ASP-DAC, 2024.

Research Target

Our research focus on

- Decreasing the problem complexity of characterization
- Expanding the scope to include complex STCs

■ DSO approach → PVT Analysis

- Evaluates circuit across various manufacturing process variations (P), supply voltage fluctuations (V), and operating temperature ranges (T)
- Ensures robustness and reliability under diverse conditions

Overall Framework

II. Proposed Method

• (a) The training stage and (b) the DSO stage

LIBMixer

- ML-based model
- Predict library values for target PVT conditions
- Formatter
 - Construct library file formats (.lib) based on prediction

Architecture of LIBMixer

Input

- PVT & library parameter
 - Process, voltage, temperature, index of STC set
- Reference library table (foundry given)

Output

- Inferred library table for given PVT
 - Variation learning from reference

Architecture of LIBMixer – Mixer layer

Concept

 Apply MLPs across two dimensions in an alternating manner [7]

Defined dimension for library data

- Feature Mixing layer consider characteristics in library tables
- Channel Mixing layer learns the change according to design conditions
- Mixing Layers =

Feature Mixing + Channel Mixing

Key structural modifications

Ref lib PVT (a) LIBMixer Repeat **Dimensional** Projection **Feature Mixing Feature Mixing** num blocks **Mixing Layers** FC Variation Learning **Final Prediction**

(a) Additional residual connection

- Between the output of the variation layer & reference library
- Match input dimension = output dimension

(b) Data shape

- To manage the various shape of library tables, LIBMixer distinguishes them based on their dimensions
 - Dynamic power (2D), leakage power (1D), timing (2D), Area (0D)

II. Proposed

Method

120

400

1000

9000

Experimental Setup

Workstation & implementation

- CentOS Linux 7.9 with 2.8 GHz AMD EPYC 7402P CPU and 256 GB RAM, along with an NVIDIA Titan RTX GPU
- The library dataset was generated by employing the BSIM-CMG [8] model and Synopsys SiliconSmart [9]
 - Consider physical and parasitic effects, avoid potential challenges in advanced nodes (random dopant fluctuation and the gate fringing capacitance)

swerv Idpc

rocket core

Physical synthesis

Generated using the Synopsys Library Compiler [10] and Synopsys Design Compiler [11]
 ibex ibex ibex

Target designs

OpenCores [12] and RocketChip [13]

TechnologyClock# CellsDesign Time [sec]2.50015K80

60K

61K

42k

700k

The specifications of the circuit designs

600

1.000

600

7-nm

Dataset & DSO parameters

- To ensure wide application to EDA tools, we selected 198 cells of the ASAP7 PDK*
 - Previous methods targeted 31 cells (6.4×) and simple STCs
- Considered PVT corners are to cover extreme conditions of the selected PDK [14]

Mode	els fo	r com	parison

 Ridge+: Revised ML model to handle systemlevel library characterization from Ridge[15]

Symbol	Unit	Min	Max	Step	# of comb.						
Φ_g	eV	4.250	4.450	0.005	41						
V _{dd}	V	0.55	0.75	0.05	5						
Т	<i>T</i> °C [-50, 0, 25, 75, 125] 5										
Total number of combinations: 1025											

(Train : Validation : Inference = 800 : 180 : 45)

 Φ_g : gate work function of finFet, V_{dd} : Supply voltage, T: Temperature

Name	Ridge [15]	Ridge+	Ours
Base Model	Ridge Regression	Ridge Regression	Mixer
Norm.	Linear Min- max	Log	Log
Residual	No	Yes	Yes

[14] L. Clark et al., "ASAP7: A 7-nm finFET predictive process design kit," Proc. Microelectronics Journal, 2016.
 [15] F. Klemme et al., "Cell Library Characterization using Machine Learning for Design Technology Co-Optimization," Proc. ICCAD, 2020.

Experiment Steps

Exp 1. Accuracy of ML-inferred libraries?

Evaluate the performance of LIBMixer in predicting library values

Results

- Test error was smallest than other ML-based method
 - MAE: Ridge (1.0x) > Ridge+ (0.28x) > LIBMixer (0.04x)
 - MAPE: Ridge (0%) >> Ridge+ (-3.85%) > LIBMixer (-4.52%)
- Runtime of library generation was similar
 - Ridge (27.35s) = Ridge+ (27.71s)= LIBMixer (27.73s)
 << Conventional tool (7200s)
 - Because of bottleneck in library file writing
- Training error was not that different
 - Ridge(1.0x) > Ridge+(0.90x) > LIBMixer (0.57x)

III. Experiments

Exp 1a. Ablation Study of LIBMixer

 Regarding structural parameters, including the number of mixer blocks, the size of hidden channels, and hidden features, showing performance

Results

- In general, each hyperparameter \uparrow led to model parameters \uparrow , error \downarrow
- Important model characteristic num blocks
 - Improvement becomes negligible after 3 blocks due to the residual connection of Mixing-layer
 - Prevents overfitting and ignores unnecessary operations

Exp 2. Compatibility with conventional EDA tool?

- Evaluate PPA similarity using LIBMixer inferred libraries applied to the EDA tool (post-synthesis)
- Results
 - Demonstrate the same violation PVT cases as foundry libraries
 - For every benchmarks, same PVT violation
 - Achieving high accuracy in evaluation metrics: Dynamic power, leakage power, area

Ratio of PPA outcomes. Every golden value of each benchmark and each metric is set 1.0 # of violated corners are highlighted in N

III. Experiments

Exp 3. Design Space Optimization

- Power-area and power-timing Pareto fronts of two designs
 - (a) ibex core, (b) rocket core
- Design results with LIBMixer inferred library show close
 Pareto fronts to those of using the foundry library
- Usages of ML-based library characterization in PVT analysis and DSO

Conclusion

- We introduce the efficient ML-based framework for accurate library characterization named LIBMixer
 - LIBMixer efficiently generates a wide range of standard cells based on only PVT information, covering all essential data including timing and power
- We demonstrate the compatibility of libraries inferred by LIBMixer with conventional EDA tools
 - We reveal a strong correlation between design outcomes obtained from inferred libraries and those from foundry libraries
- We highlight that the Pareto fronts of synthesis design results using LIBMixer-inferred libraries correspond well to those from foundry files
 - The LIBMixer-inferred library serves as a swift foundation for PVT analysis

Appendix A. Target STCs

we selected 198 cells of the ASAP7 PDK*

Types	# of Cells	Prefix	Sizes					
		AO2	1x1/2, 11x2, 2x1/2, 21x1/2, 22x2					
		AO3	1x2, 2x1/2, 22x2, 3x2, 31x1/2, 32x1/2, 33x1/2					
AO	42	AOI2	1x1/xp33/xp5, 11x1/xp5, 2xp5/33, 21x1/xp5, 22xp33/x1					
		AOI3	1/11/2/21/22/3/31/32/33xp33, 1xp67					
		Others	A2O1A1lxp33 A2O1A1O1lxp25					
		BUF	x2/3/4/4f/5/6f/8/10/12/12f/16f/24 / HB1/2/3/4xp67					
Types AO INVBUF OA SEQ SIMPLE Total	37	CKINVDC	x5p33/6p67/8/9p33/10/11/12/14/16/20					
		INV	x1/2/3/4/5/6/8/11/p33/p67					
		OA2	1x2, 11x2, 2x2, 21x2, 22x2					
		OA3	1x2, 3x2, 31x1/2, 32x1/2, 33x1/2					
OA	34	OAI2	1x1/p5/p33, 11xp5, 2x1/p5/p33, 21xp5, 22xp33					
		OAI3	1/11/2/21/22/3/31/32/33xp33, 1xp67					
		Others	O2A1O1lxp33/p5					
		D F/F	DFFASRHQNx1, DFFHQNx1/2/3/4 DFFLQNx1/2/3/4					
SEO	22	D Latch	DHLx1/2/3 DLLx1/2/3					
SLQ	55	ICG	x1/2/2p67DC/3/4/4DC/5/5p33DC/6p67DC/8DC					
		Scan D F/F	SDFHx1/2/3/4 SDFLx1/2/3/4					
		AND	2x2/4/6, 3x1/2/4, 4x1/2, 5x1/2					
		NAND	2x1/1p5/2/p33/p5/p67, 3x1/2/p33, 4xp25/p75, 5xp2					
SIMPLE	52	NOR	2x1/1p5/2/p33/p67, 3x1/2/p25/p33/p75, 5xp2					
		OR	2x2/4/6, 3x1/2/4, 4x1/2, 5x1/2					
		Others	XNOR2x1/2/5 MAJIx2/3/p5 XOR2x1/2/p5					
Total			198					

Table 2: Target standard cells

Appendix C. Experiment 1

Comparative analysis with state-of-the-art machine learning-based library characterization

Metric	Golden	Passive Power [nW]			Leakage [<i>nW</i>]			Timing [ns]			Power [nW]			
		Ridge [6]	Ridge+	Ours	Ridge [6]	Ridge+	Ours	Ridge [6]	Ridge+	Ours	Ridge [6]	Ridge+	Ours	
Train MSE	0.00E+00	3.20E-04	3.13E-04	2.27E-04	2.33E-03	2.25E-03	2.04E-03	31.0E-04	14.7E-04	7.40E-04	3.70E-03	4.40E-03	1.69E-03	
MAE	0.00E+00	7.54E+00	8.03E-02	3.39E-02	3.11E+04	1.89E+04	8.76E+02	5.77E+01	2.07E+01	3.25E+00	1.06E+00	1.71E-01	6.75E-02	
MAPE [%]	0.00	7.05	1.19	0.69	1.14	1.33	0.05	1.77	0.24	0.11	10.39	2.18	1.42	
R2	1.000	0.0449	0.9945	0.9989	-4.180	-10.704	0.9980	0.3870	0.8516	0.9967	-0.078	0.6465	0.9253	
Runtime	$3,500 \pm 1,000$	27.346	27.313	27.645	27.736	27.713	27.682	27.363	27.761	27.824	27.359	27.723	27.784	

Table 5: Comparative analysis with state-of-the-art machine learning-based library characterization

The best results are highlighted in **bold** for each metric.

Appendix D. Experiment 2

Logic synthesis results for power, worst slack, and area

Bonch	Matria	Dynamic Power $[\mu W]$			Leakage Power [µW]			Area [μm^2]				Matria	Worst Slack [ns]					
Dentin	Metric	Golden	Ridge [6]	Ridge+	Ours	Golden	Ridge [6]	Ridge+	Ours	Golden	Ridge [6]	Ridge+	Ours	Wiethe	Golden	Ridge [6]	Ridge+	Ours
	Mean	927.63	169003.26	1031.60	928.77	148.53	831.53	50.81	149.59	1783.68	3085.92	1785.85	1780.65	Mean	-87.08	-6707.31	-19.59	-92.98
ibex	MAE	-	168075.63	928.77	21.12	-	683.00	149.59	2.90	-	1302.24	1780.65	9.79	MAE	-	6620.23	92.99	8.96
core	SE	-	2132.80	36.07	2.86	-	99.38	65.39	1.45	-	60.26	4.55	1.29	SE	-	240.34	47.05	3.16
	MAPE [%]	-	19200.75	24.54	2.41	-	6764624.63	40562.65	3.00	-	73.06	1.32	0.54	# V	6	44	3	6
des3	Mean	17897.06	1751695.45	15827.31	17293.59	625.12	3619.58	174.39	653.33	6409.15	10446.89	6579.95	6410.06	Mean	60.44	-2233.24	39.87	63.47
	MAE	-	1733798.40	17293.59	1873.02	-	2994.46	653.33	29.05	-	4037.74	6410.06	22.33	MAE	-	2293.68	63.47	64.42
	SE	-	32682.81	1086.28	215.12	-	432.40	288.00	16.50	-	97.06	4.90	3.54	SE	-	80.31	12.15	10.89
	MAPE [%]	-	10299.34	18.87	11.59	-	2395032.52	30837.54	5.51	-	63.00	3.87	0.35	# V	0	44	0	0
	Mean	2482.21	601281.04	2557.43	2490.78	1025.84	4298.87	320.84	1045.04	12069.23	20684.03	12065.36	12047.40	Mean	446.6	411.8	441.9	446.7
04-10721	MAE	-	598798.83	2490.78	168.44	-	3290.91	1045.04	28.13	-	8614.80	12047.40	32.78	MAE	-	49.85	446.68	7.02
SWEIV	SE	-	7927.94	130.68	26.82	-	508.11	459.57	14.89	-	607.79	2.98	3.98	SE	-	4.69	3.43	1.49
	MAPE [%]	-	25845.50	8.38	6.66	-	380102.68	18730.34	2.70	-	71.35	0.26	0.27	# V	0	0	0	0
	Mean	8240.45	429495.68	7718.25	8233.07	611.29	1281.80	189.33	613.09	5687.79	7252.59	5390.50	5731.26	Mean	-8.99	-2005.18	1.64	-10.39
Idea	MAE	-	421255.22	1008.72	820.08	-	964.44	423.53	11.14	-	1601.17	339.82	91.38	MAE	-	1996.19	11.59	3.78
mpt	SE	-	7577.89	132.52	158.01	-	145.17	189.48	4.96	-	173.69	34.36	18.81	SE	-	93.44	6.14	1.56
	MAPE [%]	-	5643.57	15.28	9.95	-	328164.90	23076.28	4.43	-	28.51	5.91	1.60	# V	3	44	0	3
	Mean	32518.45	4364300.00	31529.97	32438.07	10538.28	25188.10	3100.36	10470.62	105738.26	143488.95	104766.97	105678.41	Mean	101.49	-104.95	157.09	142.02
rocket	MAE	-	4331781.55	11680.01	1215.61	-	18789.08	7479.72	255.81	-	37750.69	1577.32	816.01	MAE	-	206.44	108.53	62.61
core	SE	-	55333.70	1738.80	203.59	-	2656.14	3411.89	104.60	-	2196.57	214.71	85.82	SE	-	22.76	14.66	8.75
	MAPE [%]	-	16602.46	39.49	4.09	-	2910.60	88.61	4.43	-	35.71	1.49	0.77	# V	0	25	0	0

The best results are highlighted in bold for each metric. # V stands the number of violated designs.