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Cell Library Characterization in Modern EDA

▪Cell library characterization 

▪ Determining electrical characteristics of 

standard cells (STCs)

▪ With SPICE simulation: rise and fall delay, 

power consumption 

▪ NLDM (LUT), CCS, Several Format (.lib)

▪ Predefined libraries are processed by the 

various tools in the EDA flow [1]

▪ Synthesis

▪ PnR

▪ Verification

I. Introduction

[1] Synopsys Glossary, “What is Library Characterization?”

SPICE

Simulations

<STCs> <Library Format>
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Previous Works and Limitations

▪How to handle growing complexity in advanced nodes due to

▪ Increasingly expensive in computational costs & engineering effort 

▪ Growing complexity of MOSFET, varied behavior scenarios

▪Previous approaches

▪ Offers advantages in addressing challenges

▪ But mostly targeted gate-level view & only for small, simple STCs

→ Lack of comprehensive studies related to EDA tools and DSO applications

I. Introduction

[2] K. Charafeddine and F. Ouardi, “Fast timing characterization of cells in standard cell library design based on curve fitting,” Proc. WITS, 2017.
[3] L. Yu et al., “Statistical library characterization using belief propagation across multiple technology nodes,” Proc. DATE, 2015.
[4] G. Jacinto et al., “Fast and Low-Error Prediction of Logic Gate Cell Characterization,” Proc. ICECS, 2023.

[5] F. Klemme et al., “Cell Library Characterization using Machine Learning for Design Technology Co-Optimization,” Proc. ICCAD, 2020.
[6] X. Cheng et al., “Heterogeneous Graph Attention Network Based Statistical Timing Library Characterization with Parasitic RC Reduction,” Proc. ASP-DAC, 2024.

Curve Fitting [2] Numerical Analysis [3] Random Forest [4] Linear regression [5] Heterogeneous GNN [6]
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Research Target

▪Our research focus on 

▪ Decreasing the problem complexity of characterization

▪ Expanding the scope to include complex STCs

▪DSO approach → PVT Analysis

▪ Evaluates circuit across various manufacturing process variations (P), 

supply voltage fluctuations (V), and operating temperature ranges (T)

▪ Ensures robustness and reliability under diverse conditions

I. Introduction
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Overall Framework

▪ (a) The training stage and (b) the DSO stage

II. Proposed 
Method

(a) Training Stage (b) DSO Stage
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▪ LIBMixer

▪ ML-based model

▪ Predict library values 

for target PVT 

conditions

▪ Formatter

▪ Construct library file 

formats (.lib) based on 

prediction



Architecture of LIBMixer

▪ Input

▪ PVT & library parameter 

▪ Process, voltage, temperature, index 

of STC set

▪ Reference library table (foundry given)

▪Output

▪ Inferred library table for given PVT

▪ Variation learning from reference

II. Proposed 
Method
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Architecture of LIBMixer – Mixer layer

▪Concept

▪ Apply MLPs across two dimensions in 

an alternating manner [7]

▪Defined dimension for library data

▪ Feature Mixing layer consider 

characteristics in library tables

▪ Channel Mixing layer learns the 

change according to design conditions

▪ Mixing Layers = 

Feature Mixing + Channel Mixing
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[7] O.Tolstikhin et al., “Mlp-mixer: An all-mlp architecture for vision,” Proc. NeurlIPS, 2021.



Ref libRef lib

Key structural modifications

(a) Additional residual connection 

▪ Between the output of the variation 

layer & reference library 

▪ Match input dimension = output 

dimension

(b) Data shape

▪ To manage the various shape of 

library tables, LIBMixer distinguishes 

them based on their dimensions

▪ Dynamic power (2D), leakage power 

(1D), timing (2D), Area (0D)

II. Proposed 
Method
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[8] S. Khandelwal et al., “BSIM-CMG 110.0.0: Multi-gate MOSFET compact model: technical manual,” 2014.
[9] Synopsys Inc, “SiliconSmart ACE 2021,” in Software, 2021.
[10] Synopsys Inc, “Library Compiler 2018,” in Software, 2018.

Experimental Setup

10

▪ Workstation & implementation
▪ CentOS Linux 7.9 with 2.8 GHz AMD EPYC 7402P CPU and 256 GB RAM, along with an 

NVIDIA Titan RTX GPU

▪ The library dataset was generated by employing the BSIM-CMG [8] model and Synopsys 
SiliconSmart [9]

▪ Consider physical and parasitic effects, avoid potential challenges in advanced nodes 
(random dopant fluctuation and the gate fringing capacitance) 

III. Experiments

▪ Physical synthesis 
▪ Generated using the Synopsys Library Compiler 

[10] and Synopsys Design Compiler [11]

▪ Target designs
▪ OpenCores [12] and RocketChip [13]

Designs Technology Clock # Cells Design Time [sec]

ibex

7-nm

2,500 15K 80

des3 1,000 60K 120

swerv 600 61K 400

ldpc 1,000 42k 1000

rocket core 600 700k 9000

The specifications of the circuit designs 

[11] Synopsys Inc, “Design Compiler 2018,” in Software, 2018.
[12] OpenCores: “Open Source IP-Cores,” http://www.opencores.org.
[13] A. Krste et al., “The rocket chip generator,” EECS Department, University of California, Berkeley, Tech., 2016



Dataset & DSO parameters

▪ To ensure wide application to EDA tools, we selected 198 cells of 

the ASAP7 PDK*

▪ Previous methods targeted 31 cells (6.4×) and simple STCs

III. Experiments

Name Ridge [15] Ridge+ Ours

Base Model Ridge 

Regression

Ridge 

Regression

Mixer

Norm. Linear Min-

max

Log Log

Residual No Yes Yes
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▪ Considered PVT corners are to 
cover extreme conditions of the 
selected PDK [14]

▪Models for comparison

▪ Ridge+: Revised ML model to handle system-
level library characterization from Ridge[15] 

Symbol Unit Min Max Step # of 

comb.

Φ𝑔 𝑒𝑉 4.250 4.450 0.005 41

𝑉𝑑𝑑 𝑉 0.55 0.75 0.05 5

𝑇 ℃ [-50, 0, 25, 75, 125] 5

Total number of combinations: 1025

(Train : Validation : Inference = 800 : 180 : 45)

𝛷𝑔: gate work function of finFet, 𝑉𝑑𝑑 : Supply voltage, 𝑇: Temperature

[14] L. Clark et al., “ASAP7: A 7-nm finFET predictive process design kit,” Proc. Microelectronics Journal, 2016.

[15] F. Klemme et al., “Cell Library Characterization using Machine Learning for Design Technology Co-Optimization,” Proc. ICCAD, 2020.



Experiment Steps
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Exp 1. Accuracy of ML-inferred libraries?

▪ Evaluate the performance of LIBMixer in predicting library values

▪ Results

▪ Test error was smallest than other ML-based method

▪ MAE: Ridge (1.0x) > Ridge+ (0.28x) > LIBMixer (0.04x)

▪ MAPE: Ridge (0%) >> Ridge+ (-3.85%) > LIBMixer (-4.52%)

▪ Runtime of library generation was similar

▪ Ridge (27.35s) = Ridge+ (27.71s)= LIBMixer (27.73s)

 << Conventional tool (7200s)

▪ Because of bottleneck in library file writing

▪ Training error was not that different

▪ Ridge(1.0x) > Ridge+(0.90x) > LIBMixer (0.57x)

III. Experiments
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Exp 1a. Ablation Study of LIBMixer  

▪ Regarding structural parameters, including the number of mixer blocks, the size 

of hidden channels, and hidden features, showing performance

▪ Results

▪ In general, each hyperparameter ↑ led to model parameters ↑ , error ↓

▪ Important model characteristic - num blocks

▪ Improvement becomes negligible after 3 blocks due to the residual connection of Mixing-layer

▪ Prevents overfitting and ignores unnecessary operations

III. Experiments

14



Exp 2. Compatibility with conventional EDA tool?

▪ Evaluate PPA similarity using LIBMixer inferred libraries applied to the EDA tool 

(post-synthesis)

▪ Results

▪ Demonstrate the same violation PVT cases as foundry libraries 

▪ For every benchmarks, same PVT violation

▪ Achieving high accuracy in evaluation metrics: Dynamic power, leakage power, area

III. Experiments
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Exp 3. Design Space Optimization

▪ Power-area and power-timing 
Pareto fronts of two designs
▪ (a) ibex core, (b) rocket core

▪ Design results with LIBMixer 
inferred library show close 
Pareto fronts to those of using 
the foundry library

▪ Usages of ML-based library 
characterization in PVT 
analysis and DSO

III. Experiments
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Conclusion

▪We introduce the efficient ML-based framework for accurate library 

characterization named LIBMixer

▪ LIBMixer efficiently generates a wide range of standard cells based on only 

PVT information, covering all essential data including timing and power

▪We demonstrate the compatibility of libraries inferred by LIBMixer 

with conventional EDA tools

▪ We reveal a strong correlation between design outcomes obtained from 

inferred libraries and those from foundry libraries

▪We highlight that the Pareto fronts of synthesis design results using 

LIBMixer-inferred libraries correspond well to those from foundry files

▪ The LIBMixer-inferred library serves as a swift foundation for PVT analysis
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Appendix A. Target STCs
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▪we selected 198 cells of the ASAP7 PDK*



Appendix C. Experiment 1
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▪Comparative analysis with state-of-the-art machine learning-based 

library characterization



Appendix D. Experiment 2
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▪ Logic synthesis results for power, worst slack, and area

The best results are highlighted in bold for each metric. # V stands the number of violated designs.
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