Hybrid Compact Modeling Strategy: A Fully-Automated and Accurate Compact Model with Physical Consistency

JinYoung Choi, HyunJoon Jeong, Jeong-Taek Kong, and SoYoung Kim

> Sungkyunkwan University Suwon, Republic of Korea

OUTLINE

- Introduction
- Proposed Hybrid Compact Model
 - Bidirectional Physics-based Compact Model Generator - Neural Networks (PMG-NN)
 - Deep Global Correction Neural Networks (DGC-NN)
- Conclusions

Physics-based Compact Model (Physics-CM)

t Ea	asy, fast			
	Compact Models			
	Drift-Diffusion equations			
	Hydrodynamic equations			
	Quantum Monte Carlo methods			
	Green's functions methods			
↓ c	Schrödinger equations	Foundry	Compact Model	IC design
S	low			

- ▲ Hierachy of transport models [1] ▲ Role of the compact model [2]
- There are various transport models used to explain the behavior of semiconductor devices
- Compact model is the simplest and fastest model
- Compact model serves as a bridge between the foundry and IC design

^[1] Vasileska, Dragica, Stephen M. Goodnick, and Gerhard Klimeck. Computational Electronics: semiclassical and quantum device modeling and simulation. CRC press, 2017. [2] Dabhi, Chetan Kumar. Compact Modeling of FinFET and FDSOI FET: GIDL, Noise, RF and Negative Capacitance Effect. Diss. Doctoral dissertation, INDIAN INSTITUTE OF TECHNOLOGY KANPUR, 2021.

Physics-based Compact Model

Detail role of the compact model [2]

- Compact Model = Simple Model for Circuit Sim.
 - A series of closed-form mathematical equations
 - Input: terminal voltages
 - Output: branch currents, terminal charges

Physics-based Compact Model

- Experimental data: I-V and C-V under various process and bias conditions
- Compact model: an equivalent circuit consisting of many model parameters and equations
- Accurate compact model is important for circuit sim.

Issue 1. Developing Closed-form Eq.

Evolution chart of mainstream compact models [3]

 Researchers have difficulty in developing closedform equations of emerging devices (> 2~3 years)

Bottleneck of design technology co-optimization

[3] Li, Xufan, et al. "Overview of emerging semiconductor device model methodologies: From device physics to machine learning engines." *Fundamental Research* (2024).
[4] A. Dasgupta and C. Hu, "BSIM-CMG compact model for IC CAD: From FinFET to gate-all-around FET technology," J. Microelectronic Manuf., vol. 3, Dec. 2020, Art. no. 20030402, doi: 10.33079/jomm.20030402.

Issue 2. Model Parameter Extraction

▲ Extraction flow of BSIM-CMG model parameters [5]

- Recently, there are many sub-models with over 2,000 model parameters
- Extracting these model parameters requires a lot of time and modeling efforts (days to weeks)

ANN-based Compact Model (ANN-CM)

- Deterministic ML model can be represented as closedform equation
- ANN can be converted to compact model using Verilog-A
- Technology independent, accurate, automatic
- Strong candidate for the future compact model

Physics-CM to Hybrid-CM using ML

Μ	odel	Physics-CM	ANN-CM	Hybrid-CM	
Base Equations		Physics-based, Empirical parameters	MLP matrix, Activation function	Physics-based, Empirical parameters	
Available Models		Various models (GIDL, noise, SHE)	I-V, C-V (Under active development)	Various models (GIDL, noise, SHE)	
Modeling	Development	Slow (> 2~3 years.)		Fast (< 2 hours)	
Time	MPE	Slow (a few weeks)	Fast (< 2 hours)	Fast (a few minutes)	
	Accuracy	Low	High	High	
Perf.	Model coverage	Narrow	Wide	Wide	
Interpretability (User-friendly)		High	Low	High	
Application		Foundry, reliability sim.	DTCO, emerging device sim.	Foundry, DTCO	

- We propose Hybrid-CM based on Physics-CM
- Hybrid-CM has various sub-models, interpretability, fast modeling time, high accuracy and wide model coverage 9

OUTLINE

Introduction

- Proposed Hybrid Compact Model
 - Bidirectional Physics-based Compact Model Generator - Neural Networks (PMG-NN)
 - Deep Global Correction Neural Networks (DGC-NN)

Conclusions

Proposed Hybrid-CM Workflow

- Physics-CM generator-NN (PMG-NN) can automate model parameter extraction
- Deep global correction-NN (DGC-NN) can correct model equations

Physics-CM Generator-NN (PMG-NN)

- Significant model parameter extraction time
- PMG-NN automatically extract model parameters

PMG-NN Workflow

- (Training) Train the correlations between BSIM-CMG model parameters and BSIM-CMG I-V and C-V
- (Inference) Automatically extract BSIM-CMG model parameters that fit the TCAD I-V and C-V

Issues of Conventional PMG-NN [6]

- Can't consider I-V and C-V simultaneously for PHIG, EOT
- Series of inefficient training data generation, NN-training, inference steps (Sequential-ANN structure)
- This structure slows down the overall flow significantly

Issues of Conventional PMG-NN [6]

- Multiple sets of model parameters can generate similar I-V and C-V curves (Non-uniqueness)
- Increasing nonlinearity and challenging to achieve training convergence
- Difficult to extract a wide range of training data

Proposed Bidirectional PMG-NN

Single-ANN structure

- Single-ANN structure
 - One-step training data generation and NN training
 - Optimal MPE considering both I-V and C-V

Proposed Bidirectional PMG-NN

Unique input-output relations

- Unique input-output relations
 - > (Training) Significantly improves the training efficiency
 - (Inference) MPE with inverse training

TCAD Simulation Setup

- The NSFETs were designed and simulated using Synopsys TCAD [7]
- We calibrated TCAD model with measurement NSFET [8], achieving an 99% accuracy

PMG-NN Dataset (100,000 BSIM samples)

	Parameter	Min	Мах		Parameter	Min	Max
1	phig	4.18	4.42	9	СІТ	1e-4	1
2	cratio	0.05	0.95	10	vsat	5000	95000
3	eot	3e-11	5.7e-10	11	rdsw	5	95
4	QMFACTOR	-50	50	12	eu	0.2	3.8
5	QMTCENCV	-50	50	13	etamob	0.5	9.5
6	CGSL	1e-15	1e-8	14	u0	8e-4	15.2e-3
7	PCLMCV	0.01	10	15	ua	0.024	0.456
8	CGEOA	0.1	1.9	16	ksativ	0.17	3.23
A C-V rolated parameters				17	pclm	0.01	10
▲ C-V related parameters				18	eta0	0.05	0.95
				19	cdsc	1e-6	1e-1
				20	cdscd	1e-6	1e-1
				21	nsat	0 15	2.85

- ▲ I-V related parameters
- 21 model parameters were selected
- Much wider variation of 90%, compared to previous studies with a 10% variation

Bidirectional PMG-NN Training

BSIM-CMG parameters

phig, cratio, eot, qmfactor, qmtcencv, cgsl, pclmcv, cgeoa, cit, vsat, rdsw, eu, etamob, u0, ua, ksativ, pclm, eta0, cdsc, cdscd, psat

- Train correlations in BSIM-CMG (Training)
 - Input: BSIM-CMG model parameters (21 inputs)
 - Output: BSIM-CMG I-V, C-V curves (total 56 outputs)
 - Training data: 100,000 BSIM-CMG samples (80% train, 20% valid)
 - NN size: (200 200 200 200), Iterations: 100,000

Bidirectional PMG-NN Inference

BSIM-CMG parameters

phig, cratio, eot, qmfactor, qmtcencv, cgsl, pclmcv, cgeoa, cit, vsat, rdsw, eu, etamob, u0, ua, ksativ, pclm, eta0, cdsc, cdscd, psat

- Model parameter extraction (inference)
 - Input: BSIM-CMG model parameters (21 inputs)
 - Output: TCAD I-V and C-V curves (total 56 outputs)
 - Iterations: 1,000

Model Validation of PMG-NN

 Within the trained range and feasible shape, we can generate a BSIM-CMG that satisfies desired I-V and C-V with less than 1% error

Model Validation of PMG-NN

- TCAD data can be fitted with over 94% accuracy
- PMG-NN can reduce modeling time to just a few minutes, compared to the MPE flow which takes days to weeks

Model Mismatches in Global Devices

	Min	Max	Nominal
Lg	12 nm	20 nm	12 nm
T _{NS}	4 nm	6 nm	5 nm
W _{NS}	20 nm	50 nm	25 nm
C_{doping}	1e16	5e16	1e16
10			

▲ Model mismatch caused by variations in process parameters

Our DGC-NN TCAD datasets for 100 global devices

- Hard to generate a compact model for global devices accurately
- For various process and doping variables, the error increased by more than 40%

Deep Global Correction - NN (DGC-NN)

- For now, fully explaining the behavior of nano-scale devices under various process conditions using only physics-CM is impossible
- DGC-NN automatically corrects model equations to address accuracy, model coverage issues

Proposed DGC-NN Training

- Find correction terms (Training)
 - Input: L_g , W_{NS} , T_{NS} , N_{SD} , N_{BODY} , V_{gs} , V_{ds} (7 inputs)
 - Output: Y_{TCAD}/Y_{BSIM} (Y = I_{ds} (I-V), C_{gg} , C_{gd} , C_{gs} (C-V))
 - Training data: 100 TCAD and BSIM-CMG samples (80% train, 20% valid)
 - NN size: (25 20), Iterations: 500,000

Proposed DGC-NN Inference (Verilog-A)

▲ Hybrid compact model w/ global correction terms

- Add correction terms at the final stage of BSIM-CMG to correct the electrical characteristics
- Can be integrated into BSIM-CMG [8] through Verilog-A language

Recap: Hybrid Compact Model

 Proposed hybrid compact model where neural networks and physics equations work together

Model Validation of Hybrid -CM

▲ Fitting results of (a) I_{ds} , (b) C_{gg} , (c) C_{gd} and (d) C_{gs} Hybrid-CM shows much higher fitting accuracy than BSIM-CMG: 98.5% in I-V (vs. 50.1%), 98.8% in C-V (vs. 82.5%)

Model Validation of Hybrid -CM

- Hybrid-CM has the highest prediction accuracy for unseen test devices: 91.3% (vs. 50.5%, 89.8%)
- It can maintain physical consistency even under unseen operation conditions ($V_{gs} < 0 V$) using GIDL sub-model

Conclusions

- Bidirectional PMG-NN can reduce a few weeks of modeling time to just a few minutes
- DGC-NN enables global device modeling with over 98.5% accuracy, previously unachievable with only physics-CM
- The proposed Hybrid-CM brings fitting capability and automation to the physics-CM
- The Hybrid-CM can play a crucial role in both DTCO and the foundry business

Thank you for your attention

wlsdjddl@gmail.com