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Compact Models

Drift-Diffusion equations

Hydrodynamic equations

Quantum Monte Carlo methods

Green's functions methods

Schrödinger equations

Physics-based Compact Model (Physics-CM)

• There are various transport models used to explain the 

behavior of semiconductor devices

• Compact model is the simplest and fastest model

• Compact model serves as a bridge between the foundry 

and IC design

▲ Hierachy of transport models [1]

Easy, fast

Complex, 

Slow
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▲ Role of the compact model [2]

Compact Model

[1] Vasileska, Dragica, Stephen M. Goodnick, and Gerhard Klimeck. Computational Electronics: semiclassical and quantum device modeling and simulation. CRC press, 2017.

[2] Dabhi, Chetan Kumar. Compact Modeling of FinFET and FDSOI FET: GIDL, Noise, RF and Negative Capacitance Effect. Diss. Doctoral dissertation, INDIAN INSTITUTE OF 

TECHNOLOGY KANPUR, 2021.

Foundry IC design



Physics-based Compact Model 

• Compact Model = Simple Model for Circuit Sim.

- A series of closed-form mathematical equations

- Input: terminal voltages

- Output: branch currents, terminal charges
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▲ Detail role of the compact model [2]

SPICE: 

Matrix Solver

Experimental

Data

I-V Model Equation

+

C-V Model Equation

+ 

Model Parameters
𝑽𝒈𝒔, 𝑽𝒅𝒔

𝑰 [𝑸]

Compact ModelFoundry IC design



Physics-based Compact Model 

• Experimental data: I-V and C-V under various process 

and bias conditions

• Compact model: an equivalent circuit consisting of many 

model parameters and equations

• Accurate compact model is important for circuit sim. 5

Process, Device

𝑰𝒅𝒔 = 𝐾𝑃
𝑊

𝐿
〮 𝑉𝑔𝑠 − 𝑉𝑡ℎ0 −

𝐹𝐵(𝑹𝒅, 𝑹𝒔)

2
𝑉𝑑𝑠 〮𝑉𝑑𝑠

module FinFET(G,D,S,B);

parameter   real    KP;
parameter   real    Vth0;
parameter   real    FB;

I(ds) <+ KP *W/L*(Ve)*Vds;

Model

Parameters

Equations

Verilog-A language

Compact Model = Model Parameters + Equations

Analytical EquationEquivalent Circuit



Issue 1. Developing Closed-form Eq.

• Researchers have difficulty in developing closed-

form equations of emerging devices (> 2~3 years)

• Bottleneck of design technology co-optimization

▲ BSIM-CMG compact model [4]▲ Evolution chart of mainstream 

compact models [3]

[3] Li, Xufan, et al. "Overview of emerging semiconductor device model methodologies: From device physics to machine learning engines." Fundamental Research (2024).

[4] A. Dasgupta and C. Hu, “BSIM-CMG compact model for IC CAD: From FinFET to gate-all-around FET technology,” J. Microelectronic Manuf., vol. 3, Dec. 2020, Art. no. 20030402, doi: 

10.33079/jomm.20030402.
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Issue 2. Model Parameter Extraction 

• Recently, there are many sub-models with over 

2,000 model parameters

• Extracting these model parameters requires a lot 

of time and modeling efforts (days to weeks)

▲ Extraction flow of BSIM-CMG model parameters [5]

Start 𝝁, 𝑹𝒔𝒆𝒓𝒊𝒆𝒔 𝑽𝒕 & 𝑺𝑺 𝒗𝒔𝒂𝒕 𝑫𝑰𝑩𝑳

𝑮𝒐𝒖𝒕, 𝑮𝑰𝑫𝑳, 
Smoothing

Temperature

& SHE

Gate / 

Junction 

leakage

NQS, 

Noise, 

R-G, etc

[5] BSIM-CMG110.0.0Technical Manual. Accessed: Jan. 01, 2016. [Online]. Available: https://bsim.berkeley.edu/models/bsimcmg/ 7



ANN-based Compact Model (ANN-CM)

• Deterministic ML model can be represented as closed-

form equation 

• ANN can be converted to compact model using Verilog-A 

• Technology independent, accurate, automatic

• Strong candidate for the future compact model

𝑰𝑿𝒀 = 𝑰𝟎 × 𝟏𝟎(𝒀𝑿𝒀) × 𝑽𝒅𝒔 (DC)

𝑰𝒙 = −
𝒅𝑸𝒙

𝒅𝒕
(Transient)

𝑸𝑿 = 𝑸𝟎 ∗ 𝒀𝑸𝑿

▲ ANN-based compact model
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Physics-CM to Hybrid-CM using ML

• We propose Hybrid-CM based on Physics-CM 

• Hybrid-CM has various sub-models, interpretability, fast 

modeling time, high accuracy and wide model coverage 9

Model Physics-CM ANN-CM Hybrid-CM

Base Equations
Physics-based, 

Empirical parameters

MLP matrix, 

Activation function

Physics-based, 

Empirical parameters

Available Models
Various models

(GIDL, noise, SHE...)

I-V, C-V 

(Under active 

development)

Various models

(GIDL, noise, SHE...)

Modeling 

Time

Development Slow (> 2~3 years.)
Fast (< 2 hours)

Fast (< 2 hours)

MPE Slow (a few weeks) Fast (a few minutes) 

Perf.

Accuracy Low High High

Model 

coverage
Narrow Wide Wide

Interpretability 

(User-friendly)
High Low High

Application
Foundry, reliability 

sim.

DTCO, emerging 

device sim.
Foundry, DTCO 
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Proposed Hybrid-CM Workflow

• Physics-CM generator-NN (PMG-NN) can 

automate model parameter extraction

• Deep global correction-NN (DGC-NN) can 

correct model equations

TCAD 

Single 

Device

BSIM-CMG

for 

Single Device

TCAD

Global 

Devices

Hybrid

Compact Model

PMG-NN
DGC-NN
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Physics-CM Generator-NN (PMG-NN)

• Significant model parameter extraction time

• PMG-NN automatically extract model parameters 
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Process, Device

𝑰𝒅𝒔 = 𝐾𝑃
𝑊

𝐿
〮 𝑉𝑔𝑠 − 𝑉𝑡ℎ0 −

𝐹𝐵(𝑹𝒅, 𝑹𝒔)

2
𝑉𝑑𝑠 〮𝑉𝑑𝑠

module FinFET(G,D,S,B);

parameter   real    KP;
parameter   real    Vth0;
parameter   real    FB;

I(ds) <+ KP *W/L*(Ve)*Vds;

Model

Parameters

Equations

Verilog-A language

Compact Model = Equations + Model Parameters

Analytical EquationEquivalent Circuit



PMG-NN Workflow

TCAD

I-V, C-V

BSIM-CMG

Model

Parameters
Parameter

Extraction

(Inference)

BSIM-CMG

I-V, C-VTrain

BSIM-CMG 

Correlations 

(Training)

• (Training) Train the correlations between BSIM-CMG 

model parameters and BSIM-CMG I-V and C-V

• (Inference) Automatically extract BSIM-CMG model 

parameters that fit the TCAD I-V and C-V
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Issues of Conventional PMG-NN [6]

• Can't consider I-V and C-V simultaneously for PHIG, EOT

• Series of inefficient training data generation, NN-training, 

inference steps (Sequential-ANN structure)

➢ This structure slows down the overall flow significantly

14

6 layers w/ 

100 neurons

𝑪 − 𝑽
curves

C-V related

parameters

6 layers w/ 

300 neurons
𝑰 − 𝑽

curves

I-V related

parameters

CFS

TOXP

CGSL

PHIG

EOT

...

CIT

U0

UA

EU

ETA0

VSAT

...

Issue 1. Sequential-ANN structure 

[6] Kao, Ming-Yen, et al. "Deep learning-based BSIM-CMG parameter extraction for 10-nm FinFET." IEEE Transactions on Electron Devices 69.8 (2022): 4765-4768.



Issues of Conventional PMG-NN [6]

• Multiple sets of model parameters can generate similar I-V 

and C-V curves (Non-uniqueness)

➢ Increasing nonlinearity and challenging to achieve training 

convergence

➢ Difficult to extract a wide range of training data
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Issue 2. Non-uniqueness 

6 layers w/ 

100 neurons

𝑪 − 𝑽
curves

C-V related

parameters

6 layers w/ 

300 neurons
𝑰 − 𝑽

curves

I-V related

parameters

CFS

TOXP

CGSL

PHIG

EOT

...

CIT

U0

UA

EU

ETA0

VSAT

...

[6] Kao, Ming-Yen, et al. "Deep learning-based BSIM-CMG parameter extraction for 10-nm FinFET." IEEE Transactions on Electron Devices 69.8 (2022): 4765-4768.



Proposed Bidirectional PMG-NN

• Single-ANN structure

➢ One-step training data generation and NN training

➢ Optimal MPE considering both I-V and C-V 

CIT

U0

UA

EU

ETA0

VSAT

PHIG

EOT

4 layers 

w/ 200 

neurons 𝑪 − 𝑽
curves

C-V related

parameters

𝑰 − 𝑽
curves

I-V related

parameters

CFS

TOXP

CGSL

Common 

parameters

Training

(w/ BSIM)

Inverse 

Training

w/ TCAD

Single-ANN structure 
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Proposed Bidirectional PMG-NN

• Unique input-output relations

➢ (Training) Significantly improves the training efficiency

➢ (Inference) MPE with inverse training 17

Unique input-output relations

CIT

U0

UA

EU

ETA0

VSAT

PHIG

EOT

4 layers 

w/ 200 

neurons 𝑪 − 𝑽
curves

C-V related

parameters

𝑰 − 𝑽
curves

I-V related

parameters

CFS

TOXP

CGSL

Common 

parameters

Training

(w/ BSIM)

Inverse 

Training

w/ TCAD



TCAD Simulation Setup

• The NSFETs were designed and simulated using 

Synopsys TCAD [7]

• We calibrated TCAD model with measurement NSFET [8], 

achieving an 99% accuracy

18
[7] Sentaurus Device User Guide, Version P-2019.03, Synopsys, Mar. 2019

[8] N. Loubet et al., “Stacked nanosheet gate-all-around transistor to enable scal ing beyond FinFET,” in Proc. VLSI Symp. Dig., Jun. 2017, pp. T230-T231, doi: 

10.23919/VLSIT.2017.7998183.



PMG-NN Dataset (100,000 BSIM samples)

• 21 model parameters were selected

• Much wider variation of 90%, compared to 

previous studies with a 10% variation

Parameter Min Max Parameter Min Max

1 phig 4.18 4.42 9 CIT 1e-4 1

2 cratio 0.05 0.95 10 vsat 5000 95000

3 eot 3e-11 5.7e-10 11 rdsw 5 95

4 QMFACTOR -50 50 12 eu 0.2 3.8

5 QMTCENCV -50 50 13 etamob 0.5 9.5

6 CGSL 1e-15 1e-8 14 u0 8e-4 15.2e-3

7 PCLMCV 0.01 10 15 ua 0.024 0.456

8 CGEOA 0.1 1.9 16 ksativ 0.17 3.23

17 pclm 0.01 10

18 eta0 0.05 0.95

19 cdsc 1e-6 1e-1

20 cdscd 1e-6 1e-1

21 psat 0.15 2.85

▲ C-V related parameters

▲ I-V related parameters
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Bidirectional PMG-NN Training

• Train correlations in BSIM-CMG (Training)
- Input: BSIM-CMG model parameters (21 inputs)

- Output: BSIM-CMG I-V, C-V curves (total 56 outputs)

- Training data: 100,000 BSIM-CMG samples

(80% train, 20% valid)

- NN size: (200 - 200 - 200 - 200), Iterations: 100,000

BSIM-CMG 

I-V, C-V
BSIM-CMG 

parameters
phig, cratio, eot, 

qmfactor, qmtcencv, cgsl, 

pclmcv, cgeoa, cit, vsat, 

rdsw, eu, etamob, u0, ua, 

ksativ, pclm, eta0, cdsc, 

cdscd, psat
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Bidirectional PMG-NN Inference

• Model parameter extraction (inference)
- Input: BSIM-CMG model parameters (21 inputs)

- Output: TCAD I-V and C-V curves (total 56 outputs)

- Iterations: 1,000

TCAD

I-V, C-V
BSIM-CMG 

parameters
phig, cratio, eot, 

qmfactor, qmtcencv, cgsl, 

pclmcv, cgeoa, cit, vsat, 

rdsw, eu, etamob, u0, ua, 

ksativ, pclm, eta0, cdsc, 

cdscd, psat
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• Within the trained range and feasible shape, we can 

generate a BSIM-CMG that satisfies desired I-V and C-V 

with less than 1% error

Model Validation of PMG-NN

22

Training 

Results



• TCAD data can be fitted with over 94% accuracy 

• PMG-NN can reduce modeling time to just a few minutes, 

compared to the MPE flow which takes days to weeks

Inference 

Results

Model Validation of PMG-NN
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Model Mismatches in Global Devices

▲ Model mismatch caused by 

variations in process parameters

• Hard to generate a compact model for global 

devices accurately

• For various process and doping variables, the 

error increased by more than 40%

Min Max Nominal

𝑳𝒈 12 nm 20 nm 12 nm

𝑻𝑵𝑺 4 nm 6 nm 5 nm

𝑾𝑵𝑺 20 nm 50 nm 25 nm

𝑪𝒅𝒐𝒑𝒊𝒏𝒈 1e16 5e16 1e16

𝑺𝑫𝒅𝒐𝒑𝒊𝒏𝒈 1e20 5e20 4e20

▲ Our DGC-NN TCAD datasets 

for 100 global devices

Global

Variation

𝜺 ≤ 𝟔%

𝜺 ≥ 𝟒𝟎%
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Deep Global Correction - NN (DGC-NN)

• For now, fully explaining the behavior of nano-scale 

devices under various process conditions using only 

physics-CM is impossible

• DGC-NN automatically corrects model equations to 

address accuracy, model coverage issues 25

Process, Device

𝑰𝒅𝒔 = 𝐾𝑃
𝑊

𝐿
〮 𝑉𝑔𝑠 − 𝑉𝑡ℎ0 −

𝐹𝐵(𝑹𝒅, 𝑹𝒔)

2
𝑉𝑑𝑠 〮𝑉𝑑𝑠

module FinFET(G,D,S,B);

parameter   real    KP;
parameter   real    Vth0;
parameter   real    FB;

I(ds) <+ KP *W/L*(Ve)*Vds;

Model

Parameters

Equations

Verilog-A language

Compact Model = Equations + Model Parameters

Analytical EquationEquivalent Circuit



Proposed DGC-NN Training

• Find correction terms (Training)

- Input: 𝑳𝒈, 𝑾𝑵𝑺, 𝑻𝑵𝑺, 𝑵𝑺𝑫, 𝑵𝑩𝑶𝑫𝒀, 𝑽𝒈𝒔, 𝑽𝒅𝒔 (7 inputs)

- Output: 𝒀𝑻𝑪𝑨𝑫/𝒀𝑩𝑺𝑰𝑴 (𝒀 = 𝑰𝒅𝒔 (I-V), 𝑪𝒈𝒈, 𝑪𝒈𝒅, 𝑪𝒈𝒔(C-V))

- Training data: 100 TCAD and BSIM-CMG samples

(80% train, 20% valid)

- NN size: (25 - 20),  Iterations: 500,000

𝑳𝒐𝒔𝒔 =
𝟏

𝑵
෍ 𝜺 𝑿 ∗ 𝒀𝑩𝑺𝑰𝑴 𝑿 − 𝒀𝑻𝑪𝑨𝑫 𝑿

𝟐

𝒀𝐓𝐂𝐀𝐃

𝒀𝐁𝐒𝐈𝐌
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Proposed DGC-NN Inference (Verilog-A)

• Add correction terms at the final stage of BSIM-

CMG to correct the electrical characteristics 

• Can be integrated into BSIM-CMG [8] through 

Verilog-A language

▲ Hybrid compact model w/ global correction terms

27



Recap: Hybrid Compact Model

28

TCAD 

Single 

Device

BSIM-CMG

for 

Single Device

TCAD

Global 

Devices

Hybrid

Compact Model

PMG-NN
DGC-NN

• Proposed hybrid compact model where neural 

networks and physics equations work together



Model Validation of Hybrid -CM

▲ Fitting results of (a) 𝐈𝐝𝐬, (b) 𝑪𝒈𝒈, (c) 𝑪𝒈𝒅 and (d) 𝑪𝒈𝒔

• Hybrid-CM shows much higher fitting accuracy than 

BSIM-CMG: 98.5% in I-V (vs. 50.1%), 98.8% in C-V (vs. 

82.5%)
29

(a) (b)

(c) (d)

𝑴𝑨𝑷𝑬𝑯𝒚𝒃𝒓𝒊𝒅 = 𝟏. 𝟓%

𝑴𝑨𝑷𝑬𝐁𝐒𝐈𝐌 = 𝟒𝟖. 𝟗% 𝑴𝑨𝑷𝑬𝐁𝐒𝐈𝐌 = 𝟏𝟔. 𝟕%

𝑴𝑨𝑷𝑬𝑯𝒚𝒃𝒓𝒊𝒅 = 𝟏. 𝟎%

𝑴𝑨𝑷𝑬𝑯𝒚𝒃𝒓𝒊𝒅 = 𝟏. 𝟐% 𝑴𝑨𝑷𝑬𝑯𝒚𝒃𝒓𝒊𝒅 = 𝟏. 𝟒%

𝑴𝑨𝑷𝑬𝐁𝐒𝐈𝐌 = 𝟐𝟏. 𝟗%
𝑴𝑨𝑷𝑬𝐁𝐒𝐈𝐌 = 𝟏𝟒. 𝟎%



Model Validation of Hybrid -CM

• Hybrid-CM has the highest prediction accuracy for 

unseen test devices: 91.3% (vs. 50.5%, 89.8%)

• It can maintain physical consistency even under unseen 

operation conditions (𝑽𝒈𝒔 < 𝟎 𝑽) using GIDL sub-model
30

▲ I-V Fitting results of unseen 

operation conditions

Trained

▲ I-V Fitting results of 

unseen process conditions

𝑴𝑨𝑷𝑬𝐁𝐒𝐈𝐌 = 𝟒𝟗. 𝟓%

𝑴𝑨𝑷𝑬𝑯𝒚𝒃𝒓𝒊𝒅 = 𝟖. 𝟕%
𝑴𝑨𝑷𝑬𝑨𝑵𝑵 = 𝟏𝟎. 𝟐%



Conclusions

• Bidirectional PMG-NN can reduce a few weeks of 

modeling time to just a few minutes

• DGC-NN enables global device modeling with 

over 98.5% accuracy, previously unachievable 

with only physics-CM

• The proposed Hybrid-CM brings fitting capability 

and automation to the physics-CM 

• The Hybrid-CM can play a crucial role in both 

DTCO and the foundry business
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