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|. Introduction

» Challenges for Analog Circuit Design
» Traditionally relies on human expertise
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|. Introduction

» Application of Artificial Intelligence (Al)

= Application of Al to sizing AMS circuits
= Bayesian Optimization (BO) [1]
* Reinforcement Learning (RL) [2, 3, 4]
* Previous research typically overlooks the optimization of complex analog
circuits.
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[1] W. Lyu et al., “An efficient bayesian optimization approach for automated optimization of analog circuits”, TCAS-I, 2017.

]
[2] K. Settaluri et al., “Autockt: Deep reinforcement learning of analog circuit designs”, DATE, 2020.
[3] H. Wang et al., “Gen-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning”, DAC, 2020. 4
|

[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.




|. Introduction

» Optimizing complex analog circuits
= Applying MADDPG framework [5] handle this issue.

= States, actions, and rewards are shared.
» DDPG requires extensive simulations, increasing overall optimization time.

- ' _ MADDPG framework, DAC, 2023 [5] ~
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[5] Zhang et al., “Automated design of complex analog circuits with multiagent based reinforcement learning,” DAC, 2023.



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-Iinspired framework
» Partition and conquer strategy
* Multi-agent systems
» Concentrated sampling method
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-Iinspired framework
= optimizes circuits within a few simulations.



Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-inspired framework [4, 6, 7]
» Pseudo samples are generated for critic training.
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[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.
[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023.
[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)

» RL-Inspired framework [4, 6, 7]
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[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.
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[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023.

[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.




Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-inspired framework [4, 6, 7]
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[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.
[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023. 10
[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-Iinspired framework [4, 6, 7]
= Elite solution set stores the best N designs depending on FoM.
» Help actor training by applying the elite boundary
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[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.
[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023.
[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* RL-inspired framework [4, 6, 7]
= After prediction, circuit simulation Is executed.

* Predicted designs are stored.
—

sorted
S ey C e

critic ac{a{‘
Generate p.s. training training
X tot M2
F—'"—‘n
N
(% Ax) o netlist, tech.
plicate circuit info.

E:actnr m: critic m design set m: simulation : elite

[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.
[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023. 12
[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Partition and conquer strategy
» Partition complex analog circuits into evaluable circuits
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Partition and conquer strategy
= Partition complex analog circuits into evaluable circuits

OUTN

OUTP vDD

CP&LPF VCO

— N2 — N2

Veer | owillBv1 = — 7 vl [ wa
K] a0y, | | «° K]
S BV5

ouTP

X100

14



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Partition and conquer strategy
= Partitioned sub-circuits are assigned to each sub-process
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (critic)

» For sub-processes, critics predict each circuit’s specs.

» Global critic predicts the main circuit’s specs.
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)
= Each actor Is trained by using partial differential training.
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

= Partial differential training (loss function)

* For the actor training, the FoM predictions (sub-circuit, main-
circuit) are used.
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

= Partial differential training (loss function)

* Applying the FoM prediction of the main circuit, sub-circuits are
trained considering the optimizations of the main circuit.

. 1 . |
Lo (67) A > [FoM; (xik, pi(xi x| 0°7))

o k=1

+ || A * Vi(xik)||2 + FoM g (Xopt,i ks AXopt,i k)]
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)
= Partial differential training (loss function)
= Critics (sub-circuit, main circuit) are applied to the FoM predictions.
= Global critic is shared with actor training of sub-processes.

Sub-circuit
FoM, (x4, AXg) = gg[Qq(xg, AxXg)]
FoM; (Xik, pi(xik | 6"7)) = gi[Qi (i k, pi(xik | 6°))]
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

» Partial differential training (training data set)
= Applying the best design of the main circuit, X
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

» Partial differential training (training data set)
* The training data set is applied to the part of the sub-circuit.

I : actor Training Data set
E : C riti C , T kt.h_ SR _,I
l ~ Xopt, i, k - Np
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

» Partial differential training (training data set)
» The partial change is defined by applying the actor’s prediction.

I : actor Training Data set
E : C riti C , T kt.h_ SR _,I
l ~ Xopt, i, k - Np
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
* Multi-agent systems (actor)

» Partial differential training (training data set)
* These are utilized to the FoM prediction of the main circuit.
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Concentrated sampling method

» Creating balanced dataset for network training is crucial [8, 9].
» Devised for efficient critic training.
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[8] J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on Al in Medicine in Europe: Atrtificial Intelligence Medicine, pp. 63-66, 2001. 25
[9] D. Mease et al., “A multiple resampling method for learning from imbalanced data sets,” Computational Intelligence, vol. 20, pp. 18-36, 2004.



Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Concentrated sampling method

= Using the entire data in the elite boundary
* Not only the elite data but also non-elite data

2) Update 4) Update
3) Set boundary .
— 5) Design set
Design 1 | Design 1 N
1) : n : b
Design 2 Design 2 . 1 . :
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Il. Proposed Method

» Partition-and-conquest-based optimizer (PC-Opt)
» Concentrated sampling method
* Providing a compact and non-biased dataset for critic training

2) Update 4) Update
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IIl. Experimental Setup and Results

» Experimental setup

" Intel(R) Xeon(R) Gold 6132 CPUs operation at a clock frequency of
2.60 GHz

» Synopsys HSPICE, Cadence Open Command Environment for
Analysis (OCEAN)

= A commercial 28nm technology for the gain-boost amplifiers
= A commercial 180nm technology for the Phase locked loop (PLL)



. Experimental Setup and Results

* Circuits for experiments
» Schematics

Two types of gain-boost amplifiers PLL
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Ill. Experimental Setup and Results

* Circuits for experiments

Types and ranges of design parameters Types of specs and targets

(a) Gain Boost Amplifier 1 (a) Gain Boost Amplifier 1 (b) Gain Boost Amplifier 2

Types of parameters Unit | Ranges Types of specs Targets Types of specs Targets
Wily,...,WTy, Wls,...,WT7g, and Wlg,...,WT3| um |[[0.08, 40] Unity gain freq., | > 100 MHz Unity gain freq., | > 100 MHz
L1y,...,L7y, L1y,...,L75, and L1y,..., L7 pm | [0.03, 1] Phase margin, > 60° Phase margin, > 60°
N1y,...,N4;, Nlg,..., N4y, and N13,..., N33 [integer| [1, 10] DC gain > 60 dB DC gain, > 60 dB
Cf1, Cfa, and C fs fE |[30, 3000] CMRR > 90 dB CMRR, > 90 dB
The notation p;, represents the parameter p of the i‘g“ sub-circuit. PSB‘RS . > 90 dB PSBR-'-‘ _ > 90 dB
' ’ Unity gain freq. g | > 100 MHz Unity gain Freq.g > 50 MHz
(b) Gain Boost Amplifier 2 Phase margin > 60° Phase margin_ > 60°
Types of parameters Unit | Ranges gsﬂg;lng i ?gﬂddBB gl’(\:dl%;ng z gg gg
Wll,...,WTJ_, ng,,..,W7Q, and Wl;;,,,.,W53 pm [008, 40] PSRR g > 120 dB PSRR e > 150 dB
Ll],.,.,LT],le,.,.,L?g,and Ll:;,...,L53 pm [003, 1] 9 — g S
N1i,..., N4y, Nlg, ..., Ndo, and N3g,...,N3; |integer| [1, 10] Power,, Power, Minimize Power,, Power, Minimize
Cf1, Cfa, Cfs, and Cmna FE {130, 3000] r':‘::e;?:rzl];)n ss and s, represent the spec s of the sub-circuits and the main circuit,
Rj K2 |[0.1, 100] ’
The notation p;, represents the parameter p of the i:" sub-circuit. (c) Phase Locked Loop
Types of specs Targets Types of specs Targets
() Phase Locked Loop Minimum freq., | < 100 MHz Lock time | Minimize
Types of parameters Unit | Ranges Maximum fre?l..l < 300 MHz Current diff.3 Min%m%ze
Wily,..., W4y, Wls,..., W4y, and Wlg,...,W4s| pm | [0.22, 5] ! Power; Minimize
L1y,...,L4,, L1, ...,L45, and Ll3, ..., L43 pm | [0.18, 1] DC gain, > 60 dB Lock timeg Minimize
N1y,...,N4y, Nlg,...,N4g, and N13,...,N33 [integer| [l, 10] CMRR2 > 90 dB Zitterg Minimize
C1lsz and C23 fE |[30, 3000] PSRR> > 90 dB Phase diff. 4 Minimize
R3 KQ | [1, 100] Powers Minimize Powery Minimize
The notation p,, represents the parameter p of the i:“ sub-circuit. The notation s;, and s, represent the spec s of the i;" sub-circuit and the main

circuit, respectively.
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Ill. Experimental Setup and Results

» Experimental Setup
= BO [10], DDPG [11], MA-Opt [6, 7] were compared to PC-Opt.

» Ablation experiments for the concentrated sampling method was conducted
(NC-Opt).

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP-DAC, 2023.

[71Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.

[10] F. Nogueira., “Bayesian Optimization: open source constrained global optimization tool for python,” https://github.com/fmfn/BayesianOptimization, 2014. 31
[11] A. Hill et al., “Stable Baseline3,” https://github.com/DLR-RM/stable-baselines3, 2023.



Ill. Experimental Setup and Results

» Experimental Setup

» Each method was executed five to six times to analyze the results
statistically.

* For the gain-boost amplifiers, the execution time of each method was
restricted based on the time when PC-Opt was terminated.

* For the PLL, the number of simulations was set to 100 for all optimization
methods.

= Circuit simulation time was dominant.
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Ill. Experimental Setup and Results

» Experimental Results
* For the test circuits, PC-Opt obtained the best average FoM, success rate,
and minimum target metric.
* The effectiveness of the concentrated sampling method was demonstrated.

(a) Gain Boost Amplifier 1 (b) Gain Boost Amplifier 2 (c) Phase Locked Loop
Algorithm BO DDPG | MA-Opt | NC-Opt | PC-Opt Algorithm BO DDPG | MA-Opt | NC-Opt | PC-Opt Algorithm BO DDPG | MA-Opt | NC-Opt | PC-Opt
Success rate 0/6 1/6 0/6 3/6 6/6 Success rate 3/6 6/6 2/6 2/6 6/6 Success rate 0/5 0/5 0/5 1/5 4/5
Min. power (pW) - 883.0 - 178.5 121.0 Min. power (W) 132.8 131.0 112.0 112.5 93.8 Min. FoM - - - 0.67 0.46
Avg. logio(FoM) —0.683 —0.585 —0.832 —-1.717 —3.808 Avg. logio(FoM) —1.434 —3.492 —1.282 —1.125 —-3.914 Avg. logip(FoM) 1.308 1.564 1.303 1.191 0.697
Total runtime (h) 483 2740 557 2.1 2.17 Total runtime (h) 1200 2350 600 2.25 2.33 FoM: 1e6 X Lock timeg [s] + 1¢5 X Zitterg [s] + 1e9 X Phase diff.g [s] + le2 X Powerg [W]
*: The number of simulations conducted within the execution time when PC-Opt was per- *: The number of simulations conducted within the execution time when PC-Opt was per-
formed 200 times. formed 200 times.
(a) 1 - Gain Boost Amplifier 1 (b) 1 Gain Boost Amplifier 2 (C) 2 Phase Locked Loop
V-
0 fv--s 0
= Selerkadyulpulyuiys e = S15 kA —Q—~" """ TTTT~TTTTT~T~=~=—~
o -1 | el e o -1 ¢
N w LT e e e
s o~ |V L Trssrsacassssasasrarssssnnany o = e R e P TR
o> 2 > 2 L D 1 |
o Le] --BO -- DDPG i ie] --BO -~ DDPG
-3 MA-Opt ---- NC-Opt -3 | --MA-Opt -—- NC-Opt ! MA-Opt ---- NC-Opt
— PC-Opt — PC-Opt e [ — PC-Opt
4 -4 05
0 50 100 150 200 0 50 100 150 200 0 25 50 75 100
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V. Conclusion

* We proposed PC-Opt.
= a partition-and-conquest-based
* multi-agent actor-critic framework
= applying the RL-inspired method

» We defined the proper roles of the multi-agent actor-critic framework.
» Partial differential training

» Concentrated sampling method for generating a balanced dataset
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Appendix A.

» Reflection of the sub-process for the main circuit optimization
= The average and FoM, are changed at the same time

(a) 1 0

ain Boost Amplifier 1 — Average N, N g
: — PC-Opt 1 - 1 ~
A Average: 7 Q2 (FoMi+ FoMy)= 5 (g:lfi(x)])
= | TE =
% 2L
L e
Reflected E’
-3
o L it H -4
0 50 100 150 200
nurmber of simulations
(b) 2 Gain Boost Amplifier 2 — Average U
— PC-Opt
i -1
é)Reﬂected %
L 2
- g
3
0 HE i :—E -4
0 50 100 150 200

number of simulations 36
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