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I. Introduction

▪ Challenges for Analog Circuit Design

▪ Traditionally relies on human expertise
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Expert

Oh my god!

As technology of transistors 

becomes more advanced, sizing 

circuits becomes more difficult.



I. Introduction

▪ Application of Artificial Intelligence (AI)

▪ Application of AI to sizing AMS circuits

▪ Bayesian Optimization (BO) [1]

▪ Reinforcement Learning (RL) [2, 3, 4]

▪ Previous research typically overlooks the optimization of complex analog 

circuits.
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Bayesian Optimization Reinforcement Learning

• WEIBO, TCAS-I, 2018 [1] • AutoCkt, DATE, 2020 [2] • GCN-RL, DAC, 2020 [3] • DNN-Opt, DAC, 2021 [4]

[1] W. Lyu et al., “An efficient bayesian optimization approach for automated optimization of analog circuits”, TCAS-I, 2017.

[2] K. Settaluri et al., “Autockt: Deep reinforcement learning of analog circuit designs”, DATE, 2020.

[3] H. Wang et al., “Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning ”, DAC, 2020.

[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.



I. Introduction

▪ Optimizing complex analog circuits

▪ Applying MADDPG framework [5] handle this issue.

▪ States, actions, and rewards are shared.

▪ DDPG requires extensive simulations, increasing overall optimization time.
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[5] Zhang et al., “Automated design of complex analog circuits with multiagent based reinforcement learning,” DAC, 2023. 

MADDPG framework, DAC, 2023 [5]



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ RL-inspired framework

▪ Partition and conquer strategy

▪ Multi-agent systems

▪ Concentrated sampling method

6

II. Proposed Method



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ RL-inspired framework 

▪ optimizes circuits within a few simulations.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ RL-inspired framework [4, 6, 7]

▪ Pseudo samples are generated for critic training.
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II. Proposed Method

[1] W. Lyu et al., “An efficient bayesian optimization approach for automated optimization of analog circuits”, TCAS-I, 2017.

[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.

[6] A. Budak et al., ”APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP -DAC, 2023.

[7] Y. Choi et al., ”MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ RL-inspired framework [4, 6, 7]

▪ Elite solution set stores the best Nes designs depending on FoM.

▪ Help actor training by applying the elite boundary
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ RL-inspired framework [4, 6, 7]

▪ After prediction, circuit simulation is executed.

▪ Predicted designs are stored.
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II. Proposed Method

[1] W. Lyu et al., “An efficient bayesian optimization approach for automated optimization of analog circuits”, TCAS-I, 2017.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Partition and conquer strategy

▪ Partition complex analog circuits into evaluable circuits 
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Partition and conquer strategy

▪ Partition complex analog circuits into evaluable circuits 
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Partition and conquer strategy

▪ Partitioned sub-circuits are assigned to each sub-process
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (critic)

▪ For sub-processes, critics predict each circuit’s specs.

▪ Global critic predicts the main circuit’s specs.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Each actor is trained by using partial differential training.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (loss function)

▪ For the actor training, the FoM predictions (sub-circuit, main-

circuit) are used.
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (loss function)

▪ Applying the FoM prediction of the main circuit, sub-circuits are 

trained considering the optimizations of the main circuit. 
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (loss function)

▪ Critics (sub-circuit, main circuit) are applied to the FoM predictions.

▪ Global critic is shared with actor training of sub-processes.
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II. Proposed Method

Sub-circuit

Main circuit, shared!



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (training data set)

▪ Applying the best design of the main circuit, xopt
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▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (training data set)

▪ The training data set is applied to the part of the sub-circuit. 
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II. Proposed Method

Partially converted 

design



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (training data set)

▪ The partial change is defined by applying the actor’s prediction.
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II. Proposed Method

Partial change



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Multi-agent systems (actor)

▪ Partial differential training (training data set)

▪ These are utilized to the FoM prediction of the main circuit.
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II. Proposed Method

Partially converted 

design

Partial change



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Concentrated sampling method

▪ Creating balanced dataset for network training is crucial [8, 9].

▪ Devised for efficient critic training.
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[1] W. Lyu et al., “An efficient bayesian optimization approach for automated optimization of analog circuits”, TCAS-I, 2017.

[4] C. Ding et al., “Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks”, DAC, 2021.

[8] J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on  AI in Medicine in Europe: Artificial Intelligence Medicine, pp. 63-66, 2001.

[9] D. Mease 𝑒𝑡 𝑎𝑙., “A multiple resampling method for learning from imbalanced data sets,” Computational Intelligence, vol. 20, pp. 18-36, 2004.



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Concentrated sampling method

▪ Using the entire data in the elite boundary

▪ Not only the elite data but also non-elite data

26

II. Proposed Method



▪ Partition-and-conquest-based optimizer (PC-Opt)

▪ Concentrated sampling method

▪ Providing a compact and non-biased dataset for critic training
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▪ Experimental setup

▪ Intel(R) Xeon(R) Gold 6132 CPUs operation at a clock frequency of 

2.60 GHz

▪ Synopsys HSPICE, Cadence Open Command Environment for 

Analysis (OCEAN)

▪ A commercial 28nm technology for the gain-boost amplifiers

▪ A commercial 180nm technology for the Phase locked loop (PLL)
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▪ Circuits for experiments

▪ Schematics
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III. Experimental Setup and Results

PLLTwo types of gain-boost amplifiers



▪ Circuits for experiments
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III. Experimental Setup and Results

Types of specs and targetsTypes and ranges of design parameters



▪ Experimental Setup

▪ BO [10], DDPG [11], MA-Opt [6, 7] were compared to PC-Opt.

▪ Ablation experiments for the concentrated sampling method was conducted    

(NC-Opt).
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[6] A. Budak et al., ”APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning,” ASP -DAC, 2023.

[7] Y. Choi et al., ”MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors,” TCAS-I, 2023.

[10] F. Nogueira., “Bayesian Optimization: open source constrained global optimization tool for python,” https://github.com/fmfn/BayesianOptimization, 2014.

[11] A. Hill 𝑒𝑡 𝑎𝑙., “Stable Baseline3,” https://github.com/DLR-RM/stable-baselines3, 2023.



▪ Experimental Setup

▪ Each method was executed five to six times to analyze the results 

statistically.

▪ For the gain-boost amplifiers, the execution time of each method was 

restricted based on the time when PC-Opt was terminated. 

▪ For the PLL, the number of simulations was set to 100 for all optimization 

methods.

▪ Circuit simulation time was dominant.
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▪ Experimental Results

▪ For the test circuits, PC-Opt obtained the best average FoM, success rate, 

and minimum target metric.

▪ The effectiveness of the concentrated sampling method was demonstrated. 
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▪ We proposed PC-Opt.

▪ a partition-and-conquest-based 

▪ multi-agent actor-critic framework 

▪ applying the RL-inspired method

▪ We defined the proper roles of the multi-agent actor-critic framework.

▪ Partial differential training

▪ Concentrated sampling method for generating a balanced dataset
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Thank you!

Contact: ycchoi@postech.ac.kr
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Appendix A.
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▪ Reflection of the sub-process for the main circuit optimization

▪ The average and FoMg are changed at the same time

Average: 
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