

ASIA SOUTH PACIFIC DESIGN AUTOMATED CONFERENCE 2025

PC-Opt: Partition and Conquestbased Optimizer using Multi-Agents for Complex Analog Circuits

2025.01.22

Youngchang Choi, Sejin Park, Ho-Jin Lee, Kyongsu Lee, Jae-Yoon Sim, and Seokhyong Kang

CONTACT

Pohang University of Science and Technology Department of Electrical Engineering CAD and SoC Design Lab. Tel. +82-54-279-2883 Web. http://csdl.postech.ac.kr

Outline

I. Introduction

- **II.** Proposed Method
- **III. Experimental Setup and Results**
- **IV. Conclusion**

* Appendix, References.

I. Introduction

Challenges for Analog Circuit Design

Traditionally relies on human expertise

I. Introduction

Application of Artificial Intelligence (AI)

- Application of AI to sizing AMS circuits
 - Bayesian Optimization (BO) [1]
 - Reinforcement Learning (RL) [2, 3, 4]
- Previous research typically overlooks the optimization of complex analog circuits.

- [1] W. Lyu et al., "An efficient bayesian optimization approach for automated optimization of analog circuits", TCAS-I, 2017.
- [2] K. Settaluri et al., "Autockt: Deep reinforcement learning of analog circuit designs", DATE, 2020.
- [3] H. Wang et al., "Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning", DAC, 2020.
- [4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

I. Introduction

Optimizing complex analog circuits

- Applying MADDPG framework [5] handle this issue.
 - States, actions, and rewards are shared.
 - DDPG requires extensive simulations, *increasing overall optimization time.*

- Partition-and-conquest-based optimizer (PC-Opt)
 - RL-inspired framework
 - Partition and conquer strategy
 - Multi-agent systems
 - Concentrated sampling method

- Partition-and-conquest-based optimizer (PC-Opt)
 - RL-inspired framework
 - optimizes circuits within a few simulations.

Partition-and-conquest-based optimizer (PC-Opt)

- RL-inspired framework [4, 6, 7]
 - Pseudo samples are generated for critic training.

[4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

Partition-and-conquest-based optimizer (PC-Opt)

RL-inspired framework [4, 6, 7]

[4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

Partition-and-conquest-based optimizer (PC-Opt)

RL-inspired framework [4, 6, 7]

[4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

Partition-and-conquest-based optimizer (PC-Opt)

RL-inspired framework [4, 6, 7]

- Elite solution set stores the best N_{es} designs depending on FoM.
- Help actor training by applying the elite boundary

[4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

Partition-and-conquest-based optimizer (PC-Opt)

RL-inspired framework [4, 6, 7]

- After prediction, circuit simulation is executed.
- Predicted designs are stored.

[4] C. Ding et al., "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

- Partition and conquer strategy
 - Partition complex analog circuits into evaluable circuits

Partition-and-conquest-based optimizer (PC-Opt)

Partition and conquer strategy

Partition complex analog circuits into evaluable circuits

- Partition and conquer strategy
 - Partitioned sub-circuits are assigned to each sub-process

- Multi-agent systems (critic)
 - For sub-processes, critics predict each circuit's specs.
 - Global critic predicts the main circuit's specs.

- Multi-agent systems (actor)
 - Each actor is trained by using *partial differential training*.

- Multi-agent systems (actor)
 - Partial differential training (loss function)
 - For the actor training, the FoM predictions (sub-circuit, maincircuit) are used.

$$L_{a}(\theta^{\mu_{i}}) = \frac{1}{N_{b}} \sum_{k=1}^{N_{b}} [FoM_{i}^{*}(\mathbf{x}_{i,k}, \mu_{i}(\mathbf{x}_{i,k} \mid \theta^{\mu_{i}})) + ||\lambda * V_{i}(\mathbf{x}_{i,k})||_{2} + FoM_{g}^{*}(\overline{\mathbf{x}_{opt,i,k}}, \Delta \overline{\mathbf{x}_{opt,i,k}})$$

- Multi-agent systems (actor)
 - Partial differential training (loss function)
 - Applying the FoM prediction of the main circuit, sub-circuits are trained considering the optimizations of the main circuit.

$$L_{a}(\theta^{\mu_{i}}) = \frac{1}{N_{b}} \sum_{k=1}^{N_{b}} [\underline{FoM_{i}^{*}(\mathbf{x}_{i,k}, \mu_{i}(\mathbf{x}_{i,k} \mid \theta^{\mu_{i}}))} + ||\lambda * V_{i}(\mathbf{x}_{i,k})||_{2} + \underline{FoM_{g}^{*}(\overline{\mathbf{x}_{opt,i,k}}, \Delta \overline{\mathbf{x}_{opt,i,k}})}]$$

Partition-and-conquest-based optimizer (PC-Opt)

- Multi-agent systems (actor)
 - Partial differential training (loss function)
 - Critics (sub-circuit, main circuit) are applied to the FoM predictions.
 - Global critic is shared with actor training of sub-processes.

Sub-circuit $FoM_g^*(\mathbf{x}_g, \Delta \mathbf{x}_g) = g_g[Q_g(\mathbf{x}_g, \Delta \mathbf{x}_g)]$ $FoM_i^*(\mathbf{x}_{i,k}, \mu_i(\mathbf{x}_{i,k} \mid \theta^{\mu_i})) = g_i[Q_i(\mathbf{x}_{i,k}, \mu_i(\mathbf{x}_{i,k} \mid \theta^{\mu_i}))]$ $\overline{Main \ circuit, \ shared!}$

$$g[f(x)] = w_0 \times f_0(x) + \sum_{i=1}^{m} \min(1, \max(0, w_i \times |\frac{f_i(x) - c_i}{c_i}|))$$

- Multi-agent systems (actor)
 - Partial differential training (training data set)

• Applying the best design of the main circuit, \mathbf{x}_{opt}

- Multi-agent systems (actor)
 - Partial differential training (training data set)

The training data set is applied to the part of the sub-circuit.

- Multi-agent systems (actor)
 - Partial differential training (training data set)
 - The partial change is defined by applying the actor's prediction.

- Multi-agent systems (actor)
 - Partial differential training (training data set)

These are utilized to the FoM prediction of the main circuit.

Partition-and-conquest-based optimizer (PC-Opt)

- Concentrated sampling method
 - Creating balanced dataset for network training is crucial [8, 9].
 - Devised for efficient critic training.

[8] J. Laurikkala, "Improving identification of difficult small classes by balancing class distribution," Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence Medicine, pp. 63-66, 2001. [9] D. Mease *et al.*, "A multiple resampling method for learning from imbalanced data sets," Computational Intelligence, vol. 20, pp. 18-36, 2004.

- Concentrated sampling method
 - Using the entire data in the elite boundary
 - Not only the elite data but also non-elite data

- Concentrated sampling method
 - Providing a compact and non-biased dataset for critic training

Experimental setup

- Intel(R) Xeon(R) Gold 6132 CPUs operation at a clock frequency of 2.60 GHz
- Synopsys HSPICE, Cadence Open Command Environment for Analysis (OCEAN)
- A commercial 28nm technology for the gain-boost amplifiers
- A commercial 180nm technology for the Phase locked loop (PLL)

Circuits for experiments

Schematics

Two types of gain-boost amplifiers

PLL

Circuits for experiments

Types and ranges of design parameters

(a) Gain Boost Amplifier 1

Types of parameters	Unit	Ranges
$W1_1, \ldots, W7_1, W1_2, \ldots, W7_2$, and $W1_3, \ldots, W7_3$	μ m	[0.08, 40]
$L1_1, \ldots, L7_1, L1_2, \ldots, L7_2$, and $L1_3, \ldots, L7_3$	μ m	[0.03, 1]
$N1_1, \ldots, N4_1, N1_2, \ldots, N4_2$, and $N1_3, \ldots, N3_3$	integer	[1, 10]
Cf_1, Cf_2 , and Cf_3	fF	[30, 3000

The notation p_{i_s} represents the parameter p of the i_s^{th} sub-circuit.

(b) Gain Boost Amplifier 2

Types of parameters	Unit	Ranges
$W1_1, \ldots, W7_1, W1_2, \ldots, W7_2$, and $W1_3, \ldots, W5_3$	μ m	[0.08, 40]
$L1_1, \ldots, L7_1, L1_2, \ldots, L7_2$, and $L1_3, \ldots, L5_3$	μ m	[0.03, 1]
$N1_1, \ldots, N4_1, N1_2, \ldots, N4_2$, and $N3_3, \ldots, N3_3$	integer	[1, 10]
$Cf_1, Cf_2, Cf_3, \text{ and } Cm_3$	fF	[30, 3000]
R_3	KΩ	[0.1, 100]

The notation p_{i_s} represents the parameter p of the i_s^{th} sub-circuit.

(c) Phase Locked Loop

Types of parameters	Unit	Ranges
$W_{1_1,\ldots,W_{4_1},W_{1_2,\ldots,W_{4_2}}$, and $W_{1_3,\ldots,W_{4_3}}$	μ m	[0.22, 5]
$L1_1, \ldots, L4_1, L1_2, \ldots, L4_2$, and $L1_3, \ldots, L4_3$	μ m	[0.18, 1]
$N1_1, \ldots, N4_1, N1_2, \ldots, N4_2$, and $N1_3, \ldots, N3_3$	integer	[1, 10]
$C1_3$ and $C2_3$	fF	[30, 3000]
R_3	KΩ	[1, 100]

The notation p_{i_s} represents the parameter p of the i_s^{th} sub-circuit.

Types of specs and targets

(a) Gain Boost Amplifier 1

(b) Gain Boost Amplifier 2

Targets	Types of specs	Targets
> 100 MHz	Unity gain freq.s	> 100 MHz
$> 60^{\circ}$	Phase margin _s	$> 60^{\circ}$
> 60 dB	DC gain _s	> 60 dB
> 90 dB	$CMRR_s$	> 90 dB
> 90 dB	PSRR _s	> 90 dB
> 100 MHz	Unity gain Freq. _q	> 50 MHz
$> 60^{\circ}$	Phase margin _a	$> 60^{\circ}$
> 90 dB	DC gain a	> 120 dB
> 120 dB	$CMRR_{q}$	> 150 dB
> 120 dB	$PSRR_{g}$	> 150 dB
Minimize	Power $_s$, Power $_g$	Minimize
	Targets > 100 MHz > 60° > 60 dB > 90 dB > 90 dB > 100 MHz > 60° > 90 dB > 120 dB > 120 dB Minimize	$\begin{tabular}{ c c c c } \hline Targets & Types of specs \\ \hline > 100 \ MHz & Unity \ gain \ freqs \\ \hline > 60^\circ & Phase \ margin_s \\ \hline > 60 \ dB & DC \ gain_s \\ \hline > 90 \ dB & CMRR_s \\ \hline > 90 \ dB & PSRR_s \\ \hline > 100 \ MHz & Unity \ gain \ Freqg \\ \hline > 60^\circ & Phase \ margin_g \\ \hline > 60^\circ & Phase \ margin_g \\ \hline > 90 \ dB & DC \ gain_g \\ \hline > 120 \ dB & CMRR_g \\ \hline Minimize & Power_s, \ Power_g \\ \hline \end{tabular}$

The notation s_s and s_g represent the spec s of the sub-circuits and the main circuit, respectively.

(c) Phase Locked Loop

Types of specs	Targets	Types of specs	Targets
Minimum frog	< 100 MHz	Lock time ₃	Minimize
Minimum freq. ₁	< 100 MHZ	Current diff.3	Minimize
Maximum freq. ₁	$_1 > 300 \text{ MHz}$	Power ₃	Minimize
DC gain ₂	> 60 dB	Lock time $_g$	Minimize
CMRR ₂	> 90 dB	Zitter _g	Minimize
PSRR ₂	> 90 dB	Phase diff. $_g$	Minimize
Power ₂	Minimize	$Power_g$	Minimize

The notation s_{i_s} and s_g represent the spec s of the i_s^{th} sub-circuit and the main circuit, respectively.

Experimental Setup

- BO [10], DDPG [11], MA-Opt [6, 7] were compared to PC-Opt.
- Ablation experiments for the concentrated sampling method was conducted (NC-Opt).

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

[7] Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors," TCAS-I, 2023.

[10] F. Nogueira., "Bayesian Optimization: open source constrained global optimization tool for python," https://github.com/fmfn/BayesianOptimization, 2014.

[11] A. Hill et al., "Stable Baseline3," https://github.com/DLR-RM/stable-baselines3, 2023.

Experimental Setup

- Each method was executed five to six times to analyze the results statistically.
- For the gain-boost amplifiers, the execution time of each method was restricted based on the time when PC-Opt was terminated.
- For the PLL, the number of simulations was set to 100 for all optimization methods.
 - Circuit simulation time was dominant.

Experimental Results

- For the test circuits, PC-Opt obtained the best average FoM, success rate, and minimum target metric.
- The effectiveness of the concentrated sampling method was demonstrated.

(a) Gain Boost Amplifier 1

Algorithm	BO	DDPG	MA-Opt	NC-Opt	PC-Opt
Success rate	0/6	1/6	0/6	3/6	6/6
Min. power (μ W)	-	883.0	-	178.5	121.0
Avg. log10(FoM)	-0.683	-0.585	-0.832	-1.717	-3.808
Total runtime (h)	483*	2740*	557*	2.1	2.17

*: The number of simulations conducted within the execution time when PC-Opt was performed 200 times.

(b) Gain Boost Amplifier 2

Algorithm	BO	DDPG	MA-Opt	NC-Opt	PC-Opt
Success rate	3/6	6/6	2/6	2/6	6/6
Min. power (μ W)	132.8	131.0	112.0	112.5	93.8
Avg. log10(FoM)	-1.434	-3.492	-1.282	-1.125	-3.914
Total runtime (h)	1200*	2350^{*}	600*	2.25	2.33

*: The number of simulations conducted within the execution time when PC-Opt was performed 200 times.

(c) Phase Locked Loop

Algorithm	BO	DDPG	MA-Opt	NC-Opt	PC-Opt
Success rate	0/5	0/5	0/5	1/5	4/5
Min. FoM	-	-	-	0.67	0.46
Avg. log ₁₀ (FoM)	1.308	1.564	1.303	1.191	0.697

FoM: 1e6 × Lock time_g [s] + 1e5 × Zitter_g [s] + 1e9 × Phase diff._g [s] + le2 × Power_g [W]

33

IV. Conclusion

We proposed PC-Opt.

- a partition-and-conquest-based
- multi-agent actor-critic framework
- applying the RL-inspired method

• We defined the proper roles of the multi-agent actor-critic framework.

Partial differential training

Concentrated sampling method for generating a balanced dataset

Thank you!

Contact: ycchoi@postech.ac.kr

Appendix A.

Reflection of the sub-process for the main circuit optimization

• The average and FoM_g are changed at the same time

References

[1] W. Lyu *et al.*, "An efficient bayesian optimization approach for automated optimization of analog circuits", TCAS-I, 2017.

[2] K. Settaluri et al., "Autockt: Deep reinforcement learning of analog circuit designs", DATE, 2020.

[3] H. Wang *et al.*, "Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and reinforcement learning", DAC, 2020.

[4] C. Ding *et al.*, "Dnn-opt: An RL inspired optimization for analog circuit sizing using deep neural networks", DAC, 2021.

[5] Zhang et al., "Automated design of complex analog circuits with multiagent based reinforcement learning," DAC, 2023.

[6] A. Budak et al., "APOSTLE: asynchronously parallel optimization for sizing analog transistors using DNN Learning," ASP-DAC, 2023.

[7] Y. Choi et al., "MA-opt: Reinforcement Learning-based analog circuit optimization using multi-actors," TCAS-I, 2023.

[8] J. Laurikkala, "Improving identification of difficult small classes by balancing class distribution," Proceedings of the 8th Conference on AI in Medicine in Europe: Artificial Intelligence Medicine, pp. 63-66, 2001.

[9] D. Mease *et al.*, "A multiple resampling method for learning from imbalanced data sets," Computational Intelligence, vol. 20, pp. 18-36, 2004.

[10] F. Nogueira., "Bayesian Optimization: open source constrained global optimization tool for python," https://github.com/fmfn/BayesianOptimization, 2014.

[11] A. Hill *et al.*, "Stable Baseline3," https://github.com/DLR-RM/stable-baselines3, 2023.