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Introduction——Background

• As the scale and complexity of System-on-Chips (SoCs) continue to grow, 

hierarchical and modular concepts pushing the floorplanning challenge down 

to the sub-chip level.

• Hierarchical breaks complex systems down into multiple levels of subsystems, 

modular design to package and reuse different functionalities at each level.

• These integrated, bottom-up design methods significantly speed up the front-end 

chip design process.
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Introduction——Challenge

• However, these methods also present new optimization challenge in 

floorplanning, named Feedthrough.

• Feedthrough is a through-module connection, yet it would require additional 

buffers and ports inside the module for data transmission.

Fig.1. The violations caused by feedthrough insertion 

in hierarchical floorplanning of the large-scale SoC.
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Introduction——Related works

• Analytical-based Methods1

• Generally adopt a two-stage framework of global distribution and legalization.

• Heuristic Methods2

• Rely on topological representations and employ heuristic algorithms to 

optimize floorplans.

• Learning-based Methods3

• learning an optimized and generalized mapping between circuit connectivity 

to produce a chip floorplan.

____________________________________________
1F. Huang, et al. “Handling orientation and aspect ratio of modules in electrostatics-based large scale fixed-outline 

floorplanning,” In: Proc. ICCAD, 2023.
2Y.-C. Chang, et al. “B*-Trees: a new representation for non-slicing floorplans,” In: Proc. DAC, 2000.
3Y. Liu, et al. “GraphPlanner: Floorplanning with graph neural network,” In: ACM TODAES, 2022.
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Introduction——Limitations

In order to minimize feedthrough, the above methods has the following limitations:

• Overlaps in the global distribution stage of analytical methods complicate 

feedthrough handling, which relies on neighbor information. 

• Learning-based methods, constrained in representation and generalization, are 

also unsuitable for feedthrough optimization.

Considering both efficiency and generality, heuristic-based methods are promising 

approaches to address the feedthrough challenge.
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Preliminaries

• Fixed-outline Floorplanning

• Let 𝐵 = 𝑏𝑖|1 ≤ 𝑖 ≤ 𝑛 be a set of rectangle modules, each module 𝑏𝑖 has width 

𝑤𝑖 and height ℎ𝑖.

• The connections among modules are described in netlist 𝑁 = 𝑁𝑖|𝑖 ≤ 𝑖 ≤ 𝑚 , 

where each 𝑁𝑖 specifies a set of modules requiring connectivity.

• The fixed-outline floorplanning aims to place all modules without overlapping in 

a rectangular outline 𝑅, with width 𝑊0 and height 𝐻0.

• Given the total modules’ area 𝐴 and a maximum white space ratio 𝜎, the width 

𝑊0 and the height 𝐻0 are calculated as:

𝑊0 = 1 + 𝜎 𝐴𝜆, 𝐻0 = 1 + 𝜎 𝐴/𝜆

8



(a) (b)
Fig.2. Feedthrough example with two nets, 𝑵𝟏 = 𝑨,𝑩 and 𝑵𝟐 = {𝑨, 𝑪}.

Preliminaries

• Feedthrough Problem
• Feedthrough

• Feedthrough wirelength 𝐹𝑇𝐻𝑤𝑙 and number of feedthroughed modules 𝐹𝑇𝐻𝑛𝑢𝑚

• Common Edge

• If 𝐴,𝐵 adjacent vertically, 

𝑐𝑒𝑙𝑒𝑛 𝐴,𝐵 = 𝑚𝑖𝑛 𝐴. 𝑥𝑡𝑟 , 𝐵. 𝑥𝑡𝑟 −𝑚𝑎𝑥 𝐴. 𝑥𝑏𝑙 , 𝐵. 𝑥𝑏𝑙
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Preliminaries

• CB-Tree Representation
• CB-Tree

• A CB-Tree is a B*-Tree integrated with corner stitching. 

• Corner Stitching

• A classical data structure for representing non-overlapping rectangular modules 

in the 2D plane (called tile plane).
• Neighbor Finding

• Corner stitching provides many efficient operations to support handling 

geometric constraints such as neighbor finding. 

(a) (b) (c)
Fig.3. (a) A CB-Tree example. (b) Subtree packing. (c) Neighbor finding. 
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Preliminaries

• Slack Computation

The slack of a module refers to the range within which it can move without overlapping 

or pushing other modules.

• The x and y coordinates of modules are computed separately.

• In each dimension, the floorplan is constrained by one or more “critical paths” in 

corresponding constraint graphs.

• Any change in the location of a module on the critical path will produce overlaps or 

increase the span of the floorplan.

• Module’s horizontal slack (x-slack)is calculated as

𝑠𝑙𝑎𝑐𝑘 𝑣ℎ𝑖 = 𝑅 𝑣ℎ𝑖 − 𝐿 𝑣ℎ𝑖 11
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Framework

Fig.4. Flowchart of FTAFP

• Overview

• Feedthrough Estimation Model

• Slack Computation by CS

• Two-phase SA Framework

• Cost Evaluation
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Fig.5. An example of net simplification. A net with 6 modules which are clustered into 3 sub-nets

Framework

• Feedthrough Estimation Model

• Net Simplification

• Transform nets into undirected graphs

• Merge adjacent modules and computing common edge length

• Found shortest feedthrough connections by using MST 14



Framework

• Feedthrough Estimation

• 𝑓𝑡ℎ𝑤𝑙: For net 𝑁𝑖, its 𝑓𝑡ℎ𝑤𝑙 𝑁𝑖 can be estimated as the sum of the 

wirelength of each feedthrough edge within the MST.

𝑓𝑡ℎ𝑤𝑙 𝑁𝑖 = ∑
𝑒 𝐴,𝐵 ∈𝐸𝑖

𝑓𝑡ℎ𝑤𝑙 𝐴, 𝐵 × 𝜔 𝐴, 𝐵

𝑓𝑡ℎ𝑤𝑙 𝐴, 𝐵 = 𝑤𝑙𝑚𝑎𝑛ℎ 𝐴, 𝐵 − 𝑤𝑙′ 𝐴 − 𝑤𝑙′ 𝐵 × 𝜔 𝐴, 𝐵

𝑤𝑙′ 𝐴 =
𝑤 𝐴 + ℎ 𝐴

2
×

𝑎𝑟𝑒𝑎′ 𝐴

𝑎𝑟𝑒𝑎 𝐴

• 𝑓𝑡ℎ𝑛𝑢𝑚: To estimate 𝑓𝑡ℎ𝑛𝑢𝑚, we propose a greedy detection algorithm 

based on neighbor searching.
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Framework

• Slack Computation by Corner Stitching

• Slack Computation

Fig.6. (a) An example tile plane contains seven packed modules. (b) Slacks of 𝒃𝟑
are initialized its slacks based on the associated tiles A and B. (c) When packing 

module 𝒃𝟔, we update module 𝒃𝟓’s x-slack and module 𝒃𝟒’s y-slack as 𝒃𝟔’s.

(a) (c)(b)
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Framework

• Slack Computation by Corner Stitching

• The SCB-Tree Packing Flow

Fig.7. The SCB-Tree packing flow

• Determine the positions of modules

• Initializing the slack of modules

• Update the slack of modules by 

neighbor finding operation
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Framework

• Two-phase SA Framework

• Boundary Shrinking Phase

Fig.8. (a) A floorplan with 7 modules, the black arrow 

represents the critical path on x-dimension, and the x-slack 

on this path is non-positive. (b) After rotating module 𝒃𝟐 on 

the critical path, the x-span of the floorplan is reduced.

(a) (b)

The B*-Tree is commonly used for 

three main operations:

• Op1: Rotate a module.

• Op2: Relocate a module.

• Op3: Swap two modules. 

• Op4: Change the module’s neighbors. Select a module with minimal neighbor 

satisfaction and randomly swap it to its neighborhood-demanding child nodes.

• Solution Optimization Phase
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Framework

• Cost Evaluation

• The cost of the SA is calculated by summing weighted metrics. However, these 

metrics have a large range and cannot be simply weighted sum. Therefore, we 

develop a method to calculate the cost of the SA:

• Expectations of each metric:                  𝑀𝑒𝑡𝑟𝑖𝑐𝑠

• Normalizing:                                           
𝑀𝑒𝑡𝑟𝑖𝑐𝑠

𝑀𝑒𝑡𝑟𝑖𝑐𝑠

• Weighted sum:                               𝛼𝐴 + 𝛽𝐵 + γ𝐶 + 𝛿𝐷

𝑐𝑜𝑠𝑡 = 𝛼
𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙
𝐴𝑟𝑒𝑎

+ 𝛽
𝐻𝑃𝑊𝐿

𝐻𝑃𝑊𝐿
+ γ

𝐶𝐸𝑙𝑒𝑛
𝐶𝐸𝑙𝑒𝑛

+ 𝛿
𝐹𝑇𝐻𝑛𝑢𝑚
𝐹𝑇𝐻𝑛𝑢𝑚

+
𝐹𝑇𝐻𝑤𝑙
𝐹𝑇𝐻𝑤𝑙

• Finally, we can obtain the total cost, defined as:
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Evaluation

• Experiments Settings

• The FTAFP framework is compared with three competitive heuristic-based methods 

based on the topological representation: Corblivar4, SP-FOFP5, and CB-Tree6.

• The test cases are derived from the GSRC7 and MCNC8 benchmarks.

____________________________________________
4J. Knechtel, et al. “Structural planning of 3D-IC interconnects by block alignment,” In: Proc. ASPDAC, 2014.
5Q. Xu, et al. “Combining the ant system algorithm and simulated annealing for 3D/2D fixed-outline floorplanning,” Elsevier 

Applied Soft Computing, 2016.
6H.-F. Tsao, et al. “A corner stitching compliant B*-tree representation and its applications to analog placement,” In: Proc. ICCAD 

2011.
7W. Dai, L. Wu, and S. Zhang. (2000) GSRC benchmarks. [Online]. Available: http://vlsicad.eecs.umich.edu/BK/GSRCbench/
8M. C. of North Carolina (MCNC). (2000) MCNC benchmarks.[Online]. Available: http://vlsicad.eecs.umich.edu/BK/MCNCbench/
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Evaluation

• Results without Feedthrough Optimization

• Average wirelength reductions of 23%, 12%, and 6% over Corblivar, SP-FOFP, 

and CB-Tree.

• Increase in the runtime of around 13% compared to CB-Tree.
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Evaluation

• Results with Feedthrough Optimization

• Compared to the CB-Tree, the FTNUM and FTWL metrics are reduced by 12% 

and 28%, and CEL is also improved by 25%. 
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Conclusion

• We propose a feedthrough-aware floorplanner named FTAFP to solve the 

feedthrough challenge faced by the hierarchical design of large-scale SoCs. 

• To the best of our knowledge, we are the first to model and optimize the 

feedthrough problem in floorplanning. 

• We introduce SCB-Tree to better satisfy the fixed-outline constraint and 

optimization objectives and propose a two-phase SA framework with targeted 

perturbation operations. 
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