
FTAFP: A Feedthrough-Aware Floorplanner for

Hierarchical Design of Large-Scale SoCs

Zirui Li1,*, Kanglin Tian1,*, Jianwang Zhai1, †, Zixuan Li1, Shixiong Kai2, Siyuan Xu2,

Bei Yu3, Kang Zhao1

1Beijing University of Posts and Telecommunications
2Huawai Noah’s Ark Lab
3The Chinese University of Hong Kong

Jan. 21, 2025

1

Outline

• Introduction

• Preliminaries

• Framework

• Evaluation

• Conclusion

2

Introduction——Background

• As the scale and complexity of System-on-Chips (SoCs) continue to grow,

hierarchical and modular concepts pushing the floorplanning challenge down

to the sub-chip level.

• Hierarchical breaks complex systems down into multiple levels of subsystems,

modular design to package and reuse different functionalities at each level.

• These integrated, bottom-up design methods significantly speed up the front-end

chip design process.

3

Introduction——Challenge

• However, these methods also present new optimization challenge in

floorplanning, named Feedthrough.

• Feedthrough is a through-module connection, yet it would require additional

buffers and ports inside the module for data transmission.

Fig.1. The violations caused by feedthrough insertion

in hierarchical floorplanning of the large-scale SoC.

4

Introduction——Related works

• Analytical-based Methods1

• Generally adopt a two-stage framework of global distribution and legalization.

• Heuristic Methods2

• Rely on topological representations and employ heuristic algorithms to

optimize floorplans.

• Learning-based Methods3

• learning an optimized and generalized mapping between circuit connectivity

to produce a chip floorplan.

__
1F. Huang, et al. “Handling orientation and aspect ratio of modules in electrostatics-based large scale fixed-outline

floorplanning,” In: Proc. ICCAD, 2023.
2Y.-C. Chang, et al. “B*-Trees: a new representation for non-slicing floorplans,” In: Proc. DAC, 2000.
3Y. Liu, et al. “GraphPlanner: Floorplanning with graph neural network,” In: ACM TODAES, 2022.

5

Introduction——Limitations

In order to minimize feedthrough, the above methods has the following limitations:

• Overlaps in the global distribution stage of analytical methods complicate

feedthrough handling, which relies on neighbor information.

• Learning-based methods, constrained in representation and generalization, are

also unsuitable for feedthrough optimization.

Considering both efficiency and generality, heuristic-based methods are promising

approaches to address the feedthrough challenge.

6

Outline

• Introduction

• Preliminaries

• Framework

• Evaluation

• Conclusion

7

Preliminaries

• Fixed-outline Floorplanning

• Let 𝐵 = 𝑏𝑖|1 ≤ 𝑖 ≤ 𝑛 be a set of rectangle modules, each module 𝑏𝑖 has width

𝑤𝑖 and height ℎ𝑖.

• The connections among modules are described in netlist 𝑁 = 𝑁𝑖|𝑖 ≤ 𝑖 ≤ 𝑚 ,

where each 𝑁𝑖 specifies a set of modules requiring connectivity.

• The fixed-outline floorplanning aims to place all modules without overlapping in

a rectangular outline 𝑅, with width 𝑊0 and height 𝐻0.

• Given the total modules’ area 𝐴 and a maximum white space ratio 𝜎, the width

𝑊0 and the height 𝐻0 are calculated as:

𝑊0 = 1 + 𝜎 𝐴𝜆, 𝐻0 = 1 + 𝜎 𝐴/𝜆

8

(a) (b)
Fig.2. Feedthrough example with two nets, 𝑵𝟏 = 𝑨,𝑩 and 𝑵𝟐 = {𝑨, 𝑪}.

Preliminaries

• Feedthrough Problem
• Feedthrough

• Feedthrough wirelength 𝐹𝑇𝐻𝑤𝑙 and number of feedthroughed modules 𝐹𝑇𝐻𝑛𝑢𝑚

• Common Edge

• If 𝐴,𝐵 adjacent vertically,

𝑐𝑒𝑙𝑒𝑛 𝐴,𝐵 = 𝑚𝑖𝑛 𝐴. 𝑥𝑡𝑟 , 𝐵. 𝑥𝑡𝑟 −𝑚𝑎𝑥 𝐴. 𝑥𝑏𝑙 , 𝐵. 𝑥𝑏𝑙
9

Preliminaries

• CB-Tree Representation
• CB-Tree

• A CB-Tree is a B*-Tree integrated with corner stitching.

• Corner Stitching

• A classical data structure for representing non-overlapping rectangular modules

in the 2D plane (called tile plane).
• Neighbor Finding

• Corner stitching provides many efficient operations to support handling

geometric constraints such as neighbor finding.

(a) (b) (c)
Fig.3. (a) A CB-Tree example. (b) Subtree packing. (c) Neighbor finding.

10

Preliminaries

• Slack Computation

The slack of a module refers to the range within which it can move without overlapping

or pushing other modules.

• The x and y coordinates of modules are computed separately.

• In each dimension, the floorplan is constrained by one or more “critical paths” in

corresponding constraint graphs.

• Any change in the location of a module on the critical path will produce overlaps or

increase the span of the floorplan.

• Module’s horizontal slack (x-slack)is calculated as

𝑠𝑙𝑎𝑐𝑘 𝑣ℎ𝑖 = 𝑅 𝑣ℎ𝑖 − 𝐿 𝑣ℎ𝑖 11

Outline

• Introduction

• Preliminaries

• Framework

• Evaluation

• Conclusion

12

Framework

Fig.4. Flowchart of FTAFP

• Overview

• Feedthrough Estimation Model

• Slack Computation by CS

• Two-phase SA Framework

• Cost Evaluation

13

Fig.5. An example of net simplification. A net with 6 modules which are clustered into 3 sub-nets

Framework

• Feedthrough Estimation Model

• Net Simplification

• Transform nets into undirected graphs

• Merge adjacent modules and computing common edge length

• Found shortest feedthrough connections by using MST 14

Framework

• Feedthrough Estimation

• 𝑓𝑡ℎ𝑤𝑙: For net 𝑁𝑖, its 𝑓𝑡ℎ𝑤𝑙 𝑁𝑖 can be estimated as the sum of the

wirelength of each feedthrough edge within the MST.

𝑓𝑡ℎ𝑤𝑙 𝑁𝑖 = ∑
𝑒 𝐴,𝐵 ∈𝐸𝑖

𝑓𝑡ℎ𝑤𝑙 𝐴, 𝐵 × 𝜔 𝐴, 𝐵

𝑓𝑡ℎ𝑤𝑙 𝐴, 𝐵 = 𝑤𝑙𝑚𝑎𝑛ℎ 𝐴, 𝐵 − 𝑤𝑙′ 𝐴 − 𝑤𝑙′ 𝐵 × 𝜔 𝐴, 𝐵

𝑤𝑙′ 𝐴 =
𝑤 𝐴 + ℎ 𝐴

2
×

𝑎𝑟𝑒𝑎′ 𝐴

𝑎𝑟𝑒𝑎 𝐴

• 𝑓𝑡ℎ𝑛𝑢𝑚: To estimate 𝑓𝑡ℎ𝑛𝑢𝑚, we propose a greedy detection algorithm

based on neighbor searching.

15

Framework

• Slack Computation by Corner Stitching

• Slack Computation

Fig.6. (a) An example tile plane contains seven packed modules. (b) Slacks of 𝒃𝟑
are initialized its slacks based on the associated tiles A and B. (c) When packing

module 𝒃𝟔, we update module 𝒃𝟓’s x-slack and module 𝒃𝟒’s y-slack as 𝒃𝟔’s.

(a) (c)(b)

16

Framework

• Slack Computation by Corner Stitching

• The SCB-Tree Packing Flow

Fig.7. The SCB-Tree packing flow

• Determine the positions of modules

• Initializing the slack of modules

• Update the slack of modules by

neighbor finding operation

17

Framework

• Two-phase SA Framework

• Boundary Shrinking Phase

Fig.8. (a) A floorplan with 7 modules, the black arrow

represents the critical path on x-dimension, and the x-slack

on this path is non-positive. (b) After rotating module 𝒃𝟐 on

the critical path, the x-span of the floorplan is reduced.

(a) (b)

The B*-Tree is commonly used for

three main operations:

• Op1: Rotate a module.

• Op2: Relocate a module.

• Op3: Swap two modules.

• Op4: Change the module’s neighbors. Select a module with minimal neighbor

satisfaction and randomly swap it to its neighborhood-demanding child nodes.

• Solution Optimization Phase

18

Framework

• Cost Evaluation

• The cost of the SA is calculated by summing weighted metrics. However, these

metrics have a large range and cannot be simply weighted sum. Therefore, we

develop a method to calculate the cost of the SA:

• Expectations of each metric: 𝑀𝑒𝑡𝑟𝑖𝑐𝑠

• Normalizing:
𝑀𝑒𝑡𝑟𝑖𝑐𝑠

𝑀𝑒𝑡𝑟𝑖𝑐𝑠

• Weighted sum: 𝛼𝐴 + 𝛽𝐵 + γ𝐶 + 𝛿𝐷

𝑐𝑜𝑠𝑡 = 𝛼
𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙
𝐴𝑟𝑒𝑎

+ 𝛽
𝐻𝑃𝑊𝐿

𝐻𝑃𝑊𝐿
+ γ

𝐶𝐸𝑙𝑒𝑛
𝐶𝐸𝑙𝑒𝑛

+ 𝛿
𝐹𝑇𝐻𝑛𝑢𝑚
𝐹𝑇𝐻𝑛𝑢𝑚

+
𝐹𝑇𝐻𝑤𝑙
𝐹𝑇𝐻𝑤𝑙

• Finally, we can obtain the total cost, defined as:

19

Outline

• Introduction

• Preliminaries

• Framework

• Evaluation

• Conclusion

20

Evaluation

• Experiments Settings

• The FTAFP framework is compared with three competitive heuristic-based methods

based on the topological representation: Corblivar4, SP-FOFP5, and CB-Tree6.

• The test cases are derived from the GSRC7 and MCNC8 benchmarks.

__
4J. Knechtel, et al. “Structural planning of 3D-IC interconnects by block alignment,” In: Proc. ASPDAC, 2014.
5Q. Xu, et al. “Combining the ant system algorithm and simulated annealing for 3D/2D fixed-outline floorplanning,” Elsevier

Applied Soft Computing, 2016.
6H.-F. Tsao, et al. “A corner stitching compliant B*-tree representation and its applications to analog placement,” In: Proc. ICCAD

2011.
7W. Dai, L. Wu, and S. Zhang. (2000) GSRC benchmarks. [Online]. Available: http://vlsicad.eecs.umich.edu/BK/GSRCbench/
8M. C. of North Carolina (MCNC). (2000) MCNC benchmarks.[Online]. Available: http://vlsicad.eecs.umich.edu/BK/MCNCbench/

21

Evaluation

• Results without Feedthrough Optimization

• Average wirelength reductions of 23%, 12%, and 6% over Corblivar, SP-FOFP,

and CB-Tree.

• Increase in the runtime of around 13% compared to CB-Tree.

22

Evaluation

• Results with Feedthrough Optimization

• Compared to the CB-Tree, the FTNUM and FTWL metrics are reduced by 12%

and 28%, and CEL is also improved by 25%.

23

Outline

• Introduction

• Preliminaries

• Framework

• Evaluation

• Conclusion

24

Conclusion

• We propose a feedthrough-aware floorplanner named FTAFP to solve the

feedthrough challenge faced by the hierarchical design of large-scale SoCs.

• To the best of our knowledge, we are the first to model and optimize the

feedthrough problem in floorplanning.

• We introduce SCB-Tree to better satisfy the fixed-outline constraint and

optimization objectives and propose a two-phase SA framework with targeted

perturbation operations.

25

THANK YOU!

26

